SOME CLASSES OF INTEGRAL GRAPHS WHICH BELONG TO THE CLASS $\overline{\alpha K_a \cup \beta K_{b,b}}$

Mirko Lepović

Communicated by Slobodan Simić

ABSTRACT. Let G be a simple graph and let \overline{G} denote its complement. We say that G is integral if its spectrum consists of integral values. We have recently established a characterization of integral graphs which belong to the class $\overline{\alpha K_a \cup \beta K_{b,b}}$, where mG denotes the m-fold union of the graph G. In this work we investigate integral graphs from the class $\overline{\alpha K_a \cup \beta K_{b,b}}$ with $\overline{\lambda}_1 = a + b$, where $\overline{\lambda}_1$ is the largest eigenvalue of $\overline{\alpha K_a \cup \beta K_{b,b}}$.

In this work we consider only simple graphs. The spectrum of a simple graph G of order n contains the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ of the ordinary adjacency matrix of G, and is denoted by $\sigma(G)$. A graph G is called integral if its spectrum $\sigma(G)$ consists only of integers [1].

An eigenvalue μ of G is main if and only if $\langle \mathbf{j}, \mathbf{P} \mathbf{j} \rangle = n \cos^2 \alpha > 0$, where \mathbf{j} is the main vector (with coordinates equal to 1) and \mathbf{P} is the orthogonal projection of the space \mathbb{R}^n onto the eigenspace $\mathcal{E}_A(\mu)$. The quantity $\beta = |\cos \alpha|$ is called the main angle of μ .

Let K_n and $K_{m,n}$ denote the complete graph and the complete bipartite graph, respectively. We have recently described all integral graphs which belong to the classes $\overline{\alpha K_a \cup \beta K_b}$, $\overline{\alpha K_{a,b}}$, $\overline{K_{a,a} \cup K_{b,b}}$ and $\overline{\alpha K_a \cup \beta K_{b,b}}$ (see [2], [3], [4] and [5], respectively), where \overline{G} and mG denote the complementary graph of G and the m-fold union of the graph G, respectively.

The characterization of integral graphs which is related to the class $\overline{\alpha K_a \cup \beta K_{b,b}}$ is reduced to the problem of finding the most general integral solution of the following Diophantine equation [5]

(1)
$$\left[(\alpha+1)a + (2\beta-1)b - 1 \right]^2 - 4\alpha a(a-b-1) = \delta^2.$$

In other words, $\overline{\alpha K_a \cup \beta K_{b,b}}$ is integral if and only if $(\alpha, \beta, a, b, \delta)$ represents a positive integral solution of the equation (1). We note that $\alpha K_a \cup \beta K_{b,b}$ is an

²⁰⁰⁰ Mathematics Subject Classification: Primary 05C50.

Key words and phrases: graph, eigenvalue, Diophantine equation, continued fractions.

integral graph with two main eigenvalues $\mu_a = a-1$ and $\mu_b = b$ for any $\alpha, \beta, a, b \in \mathbb{N}$ with $a \neq (b+1)$.

REMARK 1. We know that $\lambda_1 + \overline{\lambda}_1 \geqslant n-1$ for any graph G of order n with equality if and only if G is regular [1], where $\overline{\lambda}_1$ is the largest eigenvalue of \overline{G} . If $G = \alpha K_a \cup \beta K_{b,b}$ we obtain (i) $\overline{\lambda}_1 \geqslant 2b+1$ if a > (b+1) and (ii) $\overline{\lambda}_1 \geqslant a+b$ if $a \leqslant b$.

In the sequel the symbol (m, n) denotes the greatest common divisor of integers m, n while $m \mid n$ means that m divides n.

THEOREM 1 (Lepović [5]). If $\overline{\alpha K_a \cup \beta K_{b,b}}$ is integral then it belongs to one of the following classes of integral graphs:

(2)
$$\left[\pm \frac{2kt}{\tau} x_0 + \frac{4mt}{\tau} z \right] K_a \cup \left[\pm \frac{2kt}{\tau} y_0 + \frac{a}{\tau} z \right] (2n-1) K_{b,b} ,$$

where (i) $a = \pm \left[2t + (2\ell - 1)(2n - 1)\right]k + (2\ell - 1)m + 1$ and $b = (2\ell - 1)m$; (ii) $t, k, \ell, m, n \in \mathbb{N}$ such that (m, 2n - 1) = 1, (2n - 1, 2t) = 1 and $(2\ell - 1, 2t) = 1$; (iii) $\tau = (a, 4mt)$ such that $\tau \mid 2kt$; (iv) x_0 and y_0 is a particular solution of the linear Diophantine equation $ax - (4mt)y = \tau$ and $(v) \ge z \ge z_0$, where $z_0 = \min \mathbb{Z}$ such that $\left(\pm \frac{2kt}{\tau} x_0 + \frac{4mt}{\tau} z_0\right) \ge 1$ and $\left(\pm \frac{2kt}{\tau} y_0 + \frac{a}{\tau} z_0\right) \ge 1$;

(3)
$$\frac{1}{\left[\pm \frac{(2t-1)k}{\tau}x_0 + \frac{2m(2t-1)}{\tau}z\right]K_a \cup \left[\pm \frac{(2t-1)k}{\tau}y_0 + \frac{a}{\tau}z\right](2n-1)K_{b,b}},$$

where (i) $a = \pm \left[(2t-1) + (2\ell-1)(2n-1) \right] k + (2\ell-1)m + 1$ and $b = (2\ell-1)m$; (ii) $t, k, \ell, m, n \in \mathbb{N}$ such that (m, 2n-1) = 1, (2n-1, 2t-1) = 1 and $(2\ell-1, 2t-1) = 1$; (iii) $\tau = (a, 2m(2t-1))$ such that $\tau \mid (2t-1)k$; (iv) x_0 and y_0 is a particular solution of the linear Diophantine equation $ax - 2m(2t-1)y = \tau$ and $(v) z \geqslant z_0$ where $z_0 = \min \mathbb{Z}$ such that $(\pm \frac{(2t-1)k}{\tau} x_0 + \frac{2m(2t-1)}{\tau} z_0) \geqslant 1$ and $(\pm \frac{(2t-1)k}{\tau} y_0 + \frac{a}{\tau} z_0) \geqslant 1$;

(4)
$$\left[\pm \frac{(2t-1)k}{\tau} x_0 + \frac{(2t-1)m}{\tau} z \right] K_a \cup \left[\pm \frac{(2t-1)k}{\tau} y_0 + \frac{a}{\tau} z \right] n K_{b,b} ,$$

where (i) $a = \pm \left[(2t-1) + 2\ell n \right] k + \ell m + 1$ and $b = \ell m$; (ii) $t, k, \ell, m, n \in \mathbb{N}$ such that (m,n) = 1, (n,2t-1) = 1 and $(\ell,2t-1) = 1$; (iii) $\tau = (a,(2t-1)m)$ such that $\tau \mid (2t-1)k$; (iv) x_0 and y_0 is a particular solution of the linear Diophantine equation $ax - (2t-1)my = \tau$ and $(v) z \ge z_0$ where $z_0 = \min \mathbb{Z}$ with $(\pm \frac{(2t-1)k}{\tau} x_0 + \frac{(2t-1)m}{\tau} z_0) \ge 1$ and $(\pm \frac{(2t-1)k}{\tau} y_0 + \frac{a}{\tau} z_0) \ge 1$. In these classes the symbol ' \pm ' is related to '+' if a > (b+1); and ' \pm ' is related to '-' if $a \le b$.

If $\overline{\alpha K_a \cup \beta K_{b,b}}$ is an integral graph then it uniquely determines the parameters t, τ, k, ℓ, m, n . However, if $\underline{x_0}$ and $\underline{y_0}$ is obtained by using the EUCLID algorithm then a fixed integral graph $\overline{\alpha K_a \cup \beta K_{b,b}}$ also uniquely determines the parameters x_0, y_0, z_0, z (see [5]).

Using Theorem1 we proved in [5] the following results: (i) if $\overline{\alpha K_a \cup \beta K_{b,b}}$ is integral with $\overline{\lambda}_1 = 2b + 1$ and a > (b+1) then it is $\overline{K_5 \cup K_{2,2}}$; (ii) if $\overline{\alpha K_a \cup \beta K_{b,b}}$

is integral with $\overline{\lambda}_1 = 2b+1$ and $a \leqslant b$ then it belongs to the class of integral graphs $\overline{3K_t \cup K_{4t-2,4t-2}}$, where $t \in \mathbb{N}$ and (iii) if $\overline{\alpha K_a \cup \beta K_{b,b}}$ is integral with $\overline{\lambda}_1 = a+b$ and $a \leqslant b$ then it is one of the following two integral graphs $\overline{K_2 \cup K_{6,6}}$ or $\overline{K_3 \cup K_{6,6}}$.

The characterization of integral graphs with $\overline{\lambda}_1 = a + b$ and $\lambda_1 = a - 1$ is reduced to the problem of finding the most general positive solution of the equation $x^2 - dy^2 = c$, where d is not a perfect square. It is based on the concept of continued fractions and some basic results which are related to $x^2 - dy^2 = c$ (see [6]).

Let a_0, a_1, \ldots, a_n be a sequence of integers with $a_i > 0$ for $i \geqslant 1$. Then the term $[a_0; a_1, \ldots, a_n] = [a_0; a_1, \ldots, a_{n-1} + \frac{1}{a_n}]$ is called the simple continued fraction, where $[a_0; a_1] = a_0 + \frac{1}{a_1}$. If a_0, a_1, a_2, \ldots is an infinite sequence of integers with $a_i > 0$ for $i \geqslant 1$, the expression $[a_0; a_1, a_2, \ldots] = \lim_{n \to +\infty} [a_0; a_1, \ldots, a_n]$ is called the infinite simple continued fraction. We say that $[a_0; a_1, \ldots, a_{m-1}, \overline{a_m, \ldots, a_{m+r-1}}]$ is an infinite simple continued fraction of periodic r if r is the least positive integer such that $a_{r+n} = a_n$ for any $n \geqslant m$.

Let a_0, a_1, \ldots be a sequence of integers with $a_i > 0$ for $i \ge 1$. We then define two associated sequences $\{p_n\}$ and $\{q_n\}$ by $p_i = a_i p_{i-1} + p_{i-2}$ and $q_i = a_i q_{i-1} + q_{i-2}$ for $i \ge 0$, where $p_{-2} = 0$, $p_{-1} = 1$ and $q_{-2} = 1$, $q_{-1} = 0$. The rational number $\frac{p_n}{q_n} = [a_0; a_1, \ldots, a_n]$ is called the *n*-th convergent to the infinite simple continued fraction.

Next, the general solution of the Pell equation $x^2-dy^2=1$ is given in the form $x_i+y_i\sqrt{d}=(x_1+y_1\sqrt{d})^i$, where $x_1+y_1\sqrt{d}$ is its fundamental solution. We know that $x_1+y_1\sqrt{d}=p_{r-1}+q_{r-1}\sqrt{d}$ if r is even, and $x_1+y_1\sqrt{d}=p_{2r-1}+q_{2r-1}\sqrt{d}$ if r is odd, where r is the period length of \sqrt{d} . If $\rho_0+\varphi_0\sqrt{d}$ is a fundamental solution of the equation $x^2-dy^2=c$, then

$$\rho_i + \varphi_i \sqrt{d} = (\rho_0 + \varphi_0 \sqrt{d})(x_1 + y_1 \sqrt{d})^i$$

represents a class of solutions of $x^2 - dy^2 = c$. Using the last relation we easily find that $\rho_i = \rho_0 x_i + d\varphi_0 y_i$ and $\varphi_i = \varphi_0 x_i + \rho_0 y_i$ for any $i \ge 0$, understanding that $x_0 = 1$ and $y_0 = 0$. Besides, we have

(5)
$$\rho_{i} = \frac{\rho_{0} + \varphi_{0}\sqrt{d}}{2} \left(x_{1} + y_{1}\sqrt{d}\right)^{i} + \frac{\rho_{0} - \varphi_{0}\sqrt{d}}{2} \left(x_{1} - y_{1}\sqrt{d}\right)^{i};$$

(6)
$$\varphi_i = \frac{\rho_0 + \varphi_0 \sqrt{d}}{2\sqrt{d}} \left(x_1 + y_1 \sqrt{d} \right)^i - \frac{\rho_0 - \varphi_0 \sqrt{d}}{2\sqrt{d}} \left(x_1 - y_1 \sqrt{d} \right)^i.$$

Finally, for any fundamental solution $\rho_0 + \varphi_0 \sqrt{d}$ of the equation $x^2 - dy^2 = c$, the following two relations are satisfied [6]

(7)
$$0 \leqslant |\rho_0| \leqslant \sqrt{\frac{c(x_1+1)}{2}} \text{ and } 0 \leqslant \varphi_0 \leqslant y_1 \sqrt{\frac{c}{2(x_1+1)}}.$$

Using the concept of continued fractions we proved in [5] that there is no integral graph from the class $\overline{\alpha K_a \cup (3\beta+2)K_{b,b}}$ with $\overline{\lambda}_1 = a+b$ and a > (b+1) for any $\beta \in \mathbb{N}$. It is also observed that there is no integral graph from the class $\overline{\alpha K_a \cup \beta K_{b,b}}$ with $\overline{\lambda}_1 = a+b$ and a > (b+1) for $\beta = 1$.

The characterization of integral graphs with $\overline{\lambda}_1 = a + b$ and $\lambda_1 = a - 1$ is reduced to the problem of finding the most general positive integral solution of the following two Diophantine equations:

(8)
$$\left[8\eta(\eta \dot{n} - 1)m - k \right]^2 - \left[16\eta \dot{n}(\eta \dot{n} - 1) + 1 \right] k^2 = 16\eta(\eta \dot{n} - 1) ,$$
 where $\dot{n} = 2n - 1$ and $\beta = \eta \dot{n}$; (1.1) $a = (2\ell - 1)(2t - 1)$; (1.2) $b = (2\ell - 1)m$; (1.3) $(2\ell - 1) = 2\eta m + k$ and (1.4) $(2t - 1) = (2\ell - 1)\dot{n} - m$; and

(9)
$$\left[4\eta(\eta n - 1)m - k \right]^2 - \left[16\eta n(\eta n - 1) + 1 \right] k^2 = 8\eta(\eta n - 1),$$
 where $\beta = \eta n$ and (2.1) $a = (2t - 1)\ell$; (2.2) $b = \ell m$; (2.3) $\ell = \eta m + k$ and (2.4)

where $\beta = \eta n$ and (2.1) $a = (2t - 1)\ell$; (2.2) $b = \ell m$; (2.3) $\ell = \eta m + k$ and (2 $(2t - 1) = 2\ell n - m$ (see [5]).

Further, let $x=8\eta(\eta\dot{\eta}-1)m-k$ and let y=k. Let $d=16\eta\dot{\eta}(\eta\dot{\eta}-1)+1$ and let $\rho_0+\varphi_0\sqrt{d}$ be a fundamental solution of $x^2-dy^2=16\eta(\eta\dot{\eta}-1)$. Then $k=\varphi_i$ and $m=\frac{\rho_i+\varphi_i}{8\eta(\eta\dot{\eta}-1)}$, understanding that $\rho_i+\varphi_i\sqrt{d}$ is the *i*-th solution which belongs to the class with respect to $\rho_0+\varphi_0\sqrt{d}$. It was proved in [5] that $8\eta(\eta\dot{\eta}-1)\mid (\rho_i+\varphi_i)$ if and only if $8\eta(\eta\dot{\eta}-1)\mid (\rho_0+\varphi_0)$. Consequently, the most general integral solution of (8) is reduced to the positive fundamental solutions $\rho_0+\varphi_0\sqrt{d}$ for which $8\eta(\eta\dot{\eta}-1)\mid (\rho_0+\varphi_0)$. Similarly, the most general integral solution of (9) is reduced to the positive fundamental solutions $\rho_0+\varphi_0\sqrt{d}$ for which $4\eta(\eta n-1)\mid (\rho_0+\varphi_0)$.

We now proceed to establish a characterization of integral graphs $\overline{\alpha K_a \cup \beta K_{b,b}}$ with $\overline{\lambda}_1 = a + b$ and a > (b+1) for $\beta = 2, 3, 4$. We note first if $\overline{\alpha K_a \cup \beta K_{b,b}}$ is an integral graph with $\overline{\lambda}_1 = a + b$ and $\lambda_1 = a - 1$ then $(a + b) + (a - 1) \geqslant \alpha a + 2\beta b$ (see Remark1), which implies that $\alpha = 1$.

PROPOSITION 1. If $\overline{\alpha K_a \cup 2K_{b,b}}$ is integral with $\overline{\lambda}_1 = a + b$ and a > (b+1) then it belongs to the following class of integral graphs

$$\overline{K_{a_{+}\,z_{-}^{2i}\,+\,a_{-}\,z_{-}^{2i}\,+\,\frac{1}{33}}\,\,\cup\,\,2K_{b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{7}{33}}\,,\,b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{7}{33}} } \\ where \,\,z_{\pm}\,=\,23\,\pm\,4\sqrt{33}\,\,and\,\,i\geqslant0,\,\,a_{\pm}\,=\,\frac{247\,\pm\,43\,\sqrt{33}}{33}\,\,and\,\,b_{\pm}\,=\,\frac{46\,\pm\,8\,\sqrt{33}}{33}.$$

PROOF. We shall first consider the general positive integral solution of the equation (8) for $\eta \dot{n}=2$. Clearly, $\dot{n}=1$ and $\eta=2$. Then relation (8) is reduced to $x^2-33y^2=32$. Using a computer program¹ we obtain that $\sqrt{33}=[5;\overline{1,2,1,10}]$ and $23+4\sqrt{33}$ is the fundamental solution of the equation $x^2-33y^2=1$. Since $\rho_0\leqslant 19$ and $\varphi_0\leqslant 3$ (see (7)), it is easy to verify that there is no fundamental solution of $x^2-33y^2=32$, which means that (8) does not generate any integral graph with $\beta=2$.

Consider the general positive integral solution of the equation (9) for $\eta n = 2$. We shall distinguish the following two cases:

Case 1. $(n=1 \text{ and } \eta=2)$. Then (9) is reduced to (i) $x^2-33y^2=16$. We now find that $\rho_0 \leq 13$ and $\varphi_0 \leq 2$, and $4+0\sqrt{33}$ and $7+\sqrt{33}$ are the fundamental

¹All the results given in Propositions1,2 and3 are obtained by using the program called DIOPHANTUS, written by the author in the programming language C.

solutions of (i). Since $8 \nmid (4+0)$ it follows that the class of solutions of (i) which corresponds to $4+0\sqrt{33}$ does not generate any integral graph with $\beta=2$. Since $m=\frac{\rho_i+\varphi_i}{8}$ and $k=\varphi_i$, for the fundamental solution $7+\sqrt{33}$, we obtain from (5) and (6) that

$$m = \frac{\sqrt{33} + 5}{2\sqrt{33}} \left(23 + 4\sqrt{33}\right)^{i} + \frac{\sqrt{33} - 5}{2\sqrt{33}} \left(23 - 4\sqrt{33}\right)^{i};$$

$$k = \frac{7 + \sqrt{33}}{2\sqrt{33}} \left(23 + 4\sqrt{33}\right)^i - \frac{7 - \sqrt{33}}{2\sqrt{33}} \left(23 - 4\sqrt{33}\right)^i.$$

Further, making use of (2.1), (2.2), (2.3) and (2.4), from the previous relations we easily get

$$\ell = \frac{3\sqrt{33} + 17}{2\sqrt{33}} \left(23 + 4\sqrt{33}\right)^i + \frac{3\sqrt{33} - 17}{2\sqrt{33}} \left(23 - 4\sqrt{33}\right)^i;$$

$$\dot{t} = \frac{5\sqrt{33} + 29}{2\sqrt{33}} \left(23 + 4\sqrt{33}\right)^{i} + \frac{5\sqrt{33} - 29}{2\sqrt{33}} \left(23 - 4\sqrt{33}\right)^{i},$$

which provides the class of integral graphs represented in Proposition 1, understanding that $\dot{p} = 2p - 1$.

Case 2. $(n=2 \text{ and } \eta=1)$. Then (9) is reduced to (ii) $x^2-33y^2=8$. We now find that (iii) $\rho_0 \leq 9$ and $\varphi_0 \leq 1$. Using (iii) it is not difficult to show that there exists no fundamental solution of (ii), which completes the proof.

Proposition 2. If $\overline{\alpha K_a \cup 3K_{b,b}}$ is integral with $\overline{\lambda}_1 = a + b$ and a > (b+1) then it belongs to one of the following three classes of integral graphs:

$$\overline{K_{a_{+}\,z_{+}^{2i}\,+\,a_{-}\,z_{-}^{2i}\,+\,\frac{1}{97}}\,\,\cup\,\,3K_{b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{1}{97}\,,\,b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{1}{97}}$$

where $z_{\pm} = 62809633 \pm 6377352\sqrt{97}$ and $i \geqslant 0$; and

(1°)
$$a_{\pm} = \frac{6170687737 \pm 626538413\sqrt{97}}{97}$$
 and $b_{\pm} = \frac{1309509107 \pm 132960505\sqrt{97}}{194}$;

(2°)
$$a_{\pm} = \frac{5188723\pm526835\sqrt{97}}{194}$$
 and $b_{\pm} = \frac{550561\pm55901\sqrt{97}}{194}$ and

(3°)
$$a_{\pm} = \frac{681412777 \pm 69186985\sqrt{97}}{194}$$
 and $b_{\pm} = \frac{72302819 \pm 7341239\sqrt{97}}{194}$.

PROOF. We shall first consider the general positive integral solution of the equation (8) for $\eta \dot{n} = 3$.

Case 1.1 ($\dot{n}=1$ and $\eta=3$). Then (8) is reduced to (i) $x^2-97y^2=96$. We now have (ii) $\sqrt{97}=[9;\,\overline{1,5,1,1,1,1,1,1,5,1,18}]$; (iii) $62809633+6377352\sqrt{97}$ is the fundamental solution of the equation $x^2-97y^2=1$ and (iv) $\rho_0\leqslant 54907$ and $\varphi_0\leqslant 5575$. According to (iv) we find that $22+2\sqrt{97}$; $463+47\sqrt{97}$; $2738+278\sqrt{97}$ and $49589+5035\sqrt{97}$ are the fundamental solutions of (i). Since $48\nmid (22+2)$; $48\nmid (463+47)$ and $48\nmid (2738+278)$, these solutions do not generate any integral graph with $\beta=3$.

Consequently, the general solution of (i) is reduced to the class which corresponds to the fundamental solution $49589 + 5035\sqrt{97}$. Since $m = \frac{\rho_i + \varphi_i}{48}$ and $k = \varphi_i$, using (iii) and (5), (6), we obtain

$$\begin{split} m &= \left(\frac{1138\sqrt{97} + 11208}{2\sqrt{97}}\right) z_{+}^{i} \, + \, \left(\frac{1138\sqrt{97} - 11208}{2\sqrt{97}}\right) z_{-}^{i}; \\ k &= \left(\frac{49589 + 5035\sqrt{97}}{2\sqrt{97}}\right) z_{+}^{i} \, - \, \left(\frac{49589 - 5035\sqrt{97}}{2\sqrt{97}}\right) z_{-}^{i}. \end{split}$$

Next, making use of (1.1), (1.2), (1.3) and (1.4), by a straight-forward calculation, we get from the last relation that

$$\dot{\ell} = \left(\frac{11863\sqrt{97} + 116837}{2\sqrt{97}}\right) z_{+}^{i} + \left(\frac{11863\sqrt{97} - 116837}{2\sqrt{97}}\right) z_{-}^{i};$$

$$\dot{t} = \left(\frac{10725\sqrt{97} + 105629}{2\sqrt{97}}\right) z_{+}^{i} + \left(\frac{10725\sqrt{97} - 105629}{2\sqrt{97}}\right) z_{-}^{i};$$

which provides the class of integral graphs represented in Proposition 2 (1^0) .

Case 1.2 ($\dot{n}=3$ and $\eta=1$). Then (8) is reduced to (v) $x^2-97y^2=32$. According to (iii) and (7) we find that (vi) $\rho_0\leqslant 31701$ and $\varphi_0\leqslant 3218$. Using (vi) we get $138+14\sqrt{97}$ and $3063+311\sqrt{97}$ are the fundamental solutions of (v). Since $16 \nmid (138+14)$ and $16 \nmid (3063+311)$ it follows that (v) generates no integral graph with $\beta=3$.

Consider the general positive integral solution of the equation (9) for $\eta n = 3$. We shall also distinguish the following two cases:

Case 2.1 $(n=1 \text{ and } \eta=3)$. Then (9) is reduced to (vii) $x^2-97y^2=48$. We now find that $\rho_0 \leqslant 38825$ and $\varphi_0 \leqslant 3942$; $40+4\sqrt{97}$, $719+73\sqrt{97}$ and $15965+1621\sqrt{97}$ are the fundamental solutions of (vii). Since $24 \nmid (40+4)$ and $24 \nmid (15965+1621)$ it remains to consider the fundamental solution $719+73\sqrt{97}$. Therefore, by an easy calculation we get $m=(\frac{33\sqrt{97}+325}{2\sqrt{97}})z_+^i+(\frac{33\sqrt{97}-325}{2\sqrt{97}})z_-^i$ and $k=(\frac{719+73\sqrt{97}}{2\sqrt{97}})z_+^i-(\frac{719-73\sqrt{97}}{2\sqrt{97}})z_-^i$, which yields $\ell=(\frac{86\sqrt{97}+847}{\sqrt{97}})z_+^i+(\frac{86\sqrt{97}-847}{\sqrt{97}})z_-^i$ and $t=(\frac{311\sqrt{97}+3063}{2\sqrt{97}})z_+^i+(\frac{311\sqrt{97}-3063}{2\sqrt{97}})z_-^i$. So we get the class of integral graphs represented in Proposition 2 (2°).

Case 2.2 $(n=3 \text{ and } \eta=1)$. Then (9) is reduced to (viii) $x^2-97y^2=16$. We now find that $\rho_0\leqslant 22416$ and $\varphi_0\leqslant 2275$; $4+0\sqrt{97}$ and $4757+483\sqrt{97}$ are the fundamental solutions of (viii). Consequently, since $8\nmid (4+0)$ and $8\mid (4757+483)$ we obtain that $m=(\frac{655\sqrt{97+6451}}{2\sqrt{97}})z_+^i+(\frac{655\sqrt{97-6451}}{2\sqrt{97}})z_-^i;\ k=(\frac{4757+483\sqrt{97}}{2\sqrt{97}})z_+^i-(\frac{4757-483\sqrt{97}}{2\sqrt{97}})z_-^i;\ \ell=(\frac{569\sqrt{97+5604}}{\sqrt{97}})z_+^i+(\frac{569\sqrt{97-5604}}{\sqrt{97}})z_-^i;\ t=(\frac{6173\sqrt{97-60797}}{2\sqrt{97}})z_-^i,$ which provides the class represented in Proposition 2 (3°). \square

PROPOSITION 3. If $\overline{\alpha K_a \cup 4K_{b,b}}$ is integral with $\overline{\lambda}_1 = a + b$ and a > (b+1) then it belongs to one of the following three classes of integral graphs:

$$\overline{K_{a_{+}\,z_{+}^{2i}\,+\,a_{-}\,z_{-}^{2i}\,+\,\frac{1}{193}}\,\,\cup\,\,4K_{b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{15}{193}\,,\,b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{15}{193}}$$

where $z_{\pm} = 6224323426849 \pm 448036604040\sqrt{193}$ and $i \geqslant 0$; and

(10)
$$a_{\pm} = \frac{1209056824462393\pm87029814579823\sqrt{193}}{193}$$
 and
$$b_{\pm} = \frac{179835915982455\pm12944872487449\sqrt{193}}{386};$$

(2°)
$$a_{\pm} = \frac{758972 \pm 54632\sqrt{193}}{193}$$
 and $b_{\pm} = \frac{56445 \pm 4063\sqrt{193}}{193}$;

(3°)
$$a_{\pm} = \frac{92695388006569\pm6672360030889\sqrt{193}}{386}$$
 and $b_{\pm} = \frac{6893786823015\pm496225633751\sqrt{193}}{386}$

PROOF. We shall first consider the general positive integral solution of the equation (8) for $\eta \dot{n} = 4$. Clearly, $\dot{n} = 1$ and $\eta = 4$. In this case (8) is reduced to (i) $x^2 - 193y^2 = 192$. We now have (ii) $\sqrt{193} = [13; \overline{1,8,3,2,1,3,3,1,2,3,8,1,26}]$; (iii) $6224323426849 + 448036604040\sqrt{193}$ is the fundamental solution of the Pell equation $x^2 - 193y^2 = 1$ and (iv) $\rho_0 \le 244444530$ and $\varphi_0 \le 1759555$. Using (iv) we find that $112 + 8\sqrt{193}$; $3362 + 242\sqrt{193}$; $87703 + 6313\sqrt{193}$; $871862 + 62758\sqrt{193}$ and $22743973 + 1637147\sqrt{193}$ are the fundamental solutions of (i). Since $96 \nmid (112 + 8)$; $96 \nmid (3362 + 242)$; $96 \nmid (87703 + 6313)$ and $96 \nmid (871862 + 62758)$, these solutions do not generate any integral graph with $\beta = 4$.

Thus, the general solution of (i) is reduced to the class which corresponds to the fundamental solution $22743973+1637147\sqrt{193}$. Making use of (iii) and (5), (6), we get implicitly that $m=(\frac{126985\sqrt{193}+1764132}{\sqrt{193}})z_+^i+(\frac{126985\sqrt{193}-1764132}{\sqrt{193}})z_-^i$ and $k=(\frac{22743973+1637147\sqrt{193}}{2\sqrt{193}})z_+^i-(\frac{22743973-1637147\sqrt{193}}{2\sqrt{193}})z_-^i,$ which provides that $\dot{\ell}=(\frac{3668907\sqrt{193}+50970085}{2\sqrt{193}})z_+^i+(\frac{3668907\sqrt{193}-50970085}{2\sqrt{193}})z_-^i;$ $\dot{t}=(\frac{3414937\sqrt{193}+47441821}{2\sqrt{193}})z_+^i+(\frac{3414937\sqrt{193}-47441821}{2\sqrt{193}})z_-^i.$ So we arrive at the class of integral graphs represented in Proposition3 (10).

Consider the general positive integral solution of the equation (9) for $\eta n = 4$. We shall distinguish the following three cases:

Case 1. $(n=1 \text{ and } \eta=4)$. Then (9) is reduced to $(\mathbf{v}) \ x^2-193y^2=96$. We now find that $\rho_0\leqslant 17284892$ and $\varphi_0\leqslant 1244193;\ 17+\sqrt{193},\ 403+29\sqrt{193},\ 12142+874\sqrt{193}$ and $3148778+226654\sqrt{193}$ are the fundamental solutions of (\mathbf{v}) . Of course, since $48\nmid (17+1);\ 48\nmid (12142+874)$ and $48\nmid (3148778+226654),$ these solutions generate no integral graph with $\beta=4$. For $403+29\sqrt{193}$ we have $m=(\frac{9\sqrt{193}+125}{2\sqrt{193}})z_+^i+(\frac{9\sqrt{193}-125}{2\sqrt{193}})z_-^i;\ k=(\frac{403+29\sqrt{193}}{2\sqrt{193}})z_+^i-(\frac{403-29\sqrt{193}}{2\sqrt{193}})z_-^i;$ $\ell=(\frac{65\sqrt{193}+903}{2\sqrt{193}})z_+^i+(\frac{65\sqrt{193}-903}{2\sqrt{193}})z_-^i$ and $\ell=(\frac{121\sqrt{193}+1681}{2\sqrt{193}})z_+^i+(\frac{121\sqrt{193}-1681}{2\sqrt{193}})z_-^i,$ which provides the class of integral graphs represented in Proposition 3 (2^0) .

Case 2. $(n = 2 \text{ and } \eta = 2)$. Then (9) is reduced to (vi) $x^2 - 193y^2 = 48$. We now find that $\rho_0 \le 12222265$ and $\varphi_0 \le 879777$; $56 + 4\sqrt{193}$, $1681 + 121\sqrt{193}$

and $435931 + 31379\sqrt{193}$ are the fundamental solutions of (vi). Consequently, since $24 \nmid (56+4)$, $24 \nmid (1681+121)$ and $24 \nmid (435931+31379)$, the equation (vi) does not generate any integral graph with $\beta = 4$.

Case 3. $(n=4 \text{ and } \eta=1)$. Then (9) is reduced to (vii) $x^2-193y^2=24$. We now find that $\rho_0 \leq 8642446$ and $\varphi_0 \leq 622096$; $6071+437\sqrt{193}$ and $1574389+113327\sqrt{193}$ are the fundamental solutions of (vii). Since $12 \nmid (6071+437)$ and $12 \mid (1574389+113327)$, we obtain for $1574389+113327\sqrt{193}$ that $m=(\frac{140643\sqrt{193}+1953875}{2\sqrt{193}})z_+^i+(\frac{140643\sqrt{193}-1953875}{2\sqrt{193}})z_-^i$ and $k=(\frac{1574389+113327\sqrt{193}}{2\sqrt{193}})z_+^i-(\frac{1574389-113327\sqrt{193}}{2\sqrt{193}})z_-^i$. In this way we obtain that $\ell=(\frac{126985\sqrt{193}+1764132}{\sqrt{193}})z_+^i+(\frac{126985\sqrt{193}-1764132}{\sqrt{193}})z_-^i$ and $t=(\frac{1891117\sqrt{193}+26272237}{2\sqrt{193}})z_+^i+(\frac{1891117\sqrt{193}-26272237}{2\sqrt{193}})z_-^i$. Using these relations we obtain Proposition 3 (3°).

Table 1 contains the set of all integral graphs² from the class $\overline{\alpha K_a \cup \beta K_{b,b}}$, whose order 'o' does not exceed 30. In this table an integral graph is described by the parameters α, β, a, b and ones presented in the class of integral graphs in Theorem 1. The symbol 'i' denotes the identification number of the corresponding integral graph. In Table 1 (i) graphs with identification numbers $1, 2, \ldots, 18$ belong to the classes represented by (2); (ii) graphs with identification numbers $19, 20, \ldots, 47$ belong to the classes represented by (3); and (iii) graphs with $i = 48, 49, \ldots, 70$ belong to the classes represented by (4). We note that there exist exactly 18, 29 and 23 non-isomorphic integral graphs from the classes described by (2), (3) and (4), respectively. In this table³ identification number 20 is related to the integral graph with the largest eigenvalue $\overline{\mu}_1 = 2b + 1$ and a > (b + 1), while identification numbers 4, 19 and 44 are related to the integral graphs with $\overline{\mu}_1 = 2b + 1$ and a < (b + 1) and its identification number is 64 – the first next one has 12545 vertices. Identification numbers 24 and 50 are related to the integral graphs with $\overline{\mu}_1 = (a + b)$ and $a \le b$.

There exist exactly 7556 non-isomorphic integral graphs which belong to the class $\overline{\alpha K_a \cup \beta K_{b,b}}$, whose order does not exceed 300. In particular, the total number of such integral graphs (obtained by using (2), (3) and (4)) is (1433+888), (1265+948) and (1736+1286), respectively, where m and n in the expression (m+n) are the numbers of integral graphs with a > (b+1) and $a \le b$, respectively. Table 2 contains a distribution of those graphs with respect to their orders. In Table 2 the number n in the symbol o^n denotes the number of integral graphs of the corresponding order $o = 1, 2, \ldots, 300$. In this table o^n is omitted if the corresponding number n = 0.

²The data given in Tables 1 and 2 are obtained in two different ways: (i) they are generated by using relations (2), (3) and (4); and (ii) by varying the parameters α , β , a, b in all possible ways in equation (1).

³In Tables 1 and 3 the number $\overline{\mu}_2$ denotes the second main eigenvalue of the corresponding integral graph $\overline{\alpha K_a \cup \beta K_{b,b}}$.

⁴For any integral graph $\overline{\alpha K_a \cup \beta K_{b,b}}$ with the largest eigenvalue $\overline{\mu}_1 = a + b$ we have (i) $\overline{\mu}_2 = -\frac{2\beta ab}{a+b}$ and (ii) $(a+b)(a+2b+1) = 2\beta b(2a+b)$ (see the proof of Theorem 1).

i	x_0	<i>y</i> 0	z	0	α	β	a	b	τ	t	k	ℓ	m	n	$\overline{\mu}_1$	$\overline{\mu}_2$
1	0	-1	1	10	1	1	8	1	4	1	2	1	1	1	4	-4
2	1	1	0	14	$\overline{2}$	2	5	1	1	1	1	1	1	1	10	-3
3	1	0	1	16	10	1	1	3	1	1	1	1	3	1	14	-3
4	1	0	1	18	3	1	2	6	2	1	1	2	2	1	13	-4
5	-1	-1	1	20	2	1	9	1	3	3	1	1	1	1	12	-3
6	7	4	-1	20	2	1	7	3	1	1	1	1	3	1	14	-5
7	1	2	-1	22	1	1	18	2	2	1	5	1	2	1	9	-8
8	0	-1	1	22	1	3	16	1	8	2	2	1	1	2	12	-8
9	0	-1	2	22	2	3	8	1	4	1	2	1	1	1	16	-4
10	1	0	1	22	7	1	2	4	2	1	1	1	4	1	19	-4
11	0	-1	1	24	1	2	20	1	4	1	6	1	1	1	10	-8
12	0	-1	1	24	1	6	12	1	4	1	2	1	1	2	18	-8
13	-1	-1	1	26	3	2	6	2	2	1	1	1	2	1	21	-4
14	1	1	0	28	2	2	12	1	4	2	2	1	1	1	18	-4
15	-7	-3	-1	28	2	1	5	9	1	1	1	2	3	1	20	-7
16	-13	-2	-1	28	6	1	3	5	1	1	1	1	5	1	24	-5
17	3	8	-4	30	2	4	11	1	1	1	3	1	1	1	22	-5
18	1	1	0	30	1	5	10	2	2	1	1	1	2	3	25	-8
<u>19</u>	1	0	1	7	3	1	1	2	1	1	1	1	2	1	5	-2
20	1	1	0	9	1	1	5	2	1	1	1	1	2	1	5	-4
21	0	-1	1	10	1	2	6	1	2	1	2	1	1	1	6	-4
22	1	1	0	14	1	1	8	3	2	1	2	1	3	1	8	-6
23	1	0	1	14	6	1	1	4	1	1	2	1	4	1	11	-3
24	-1	-1	0	15	1	1	3	6	1	1	1	2	2	1	9	-4
25	1	0	2	15	7	2	1	2	1	1	1	1	2	1	13	-2
26	0	-1	1	16	1	3	10	1	2	1	4	1	1	1	10	-6
27	1	0	1	18	4	1	2	5	2	1	2	1	5	1	14	-4
28	3	4	-1	19 20	1	1	11	4	1	$\frac{1}{2}$	$\frac{3}{4}$	1 1	4	1	11	-8
29 30	0 1	$-1 \\ 3$	$\frac{1}{-1}$	21	1 1	$\frac{1}{2}$	18 13	$\frac{1}{2}$	6 1	1	4 5	1	$\frac{1}{2}$	1 1	6 13	$-6 \\ -8$
31	1	о 0	1	21	9	1	13	6	1	1	3	1	6	1	13 17	- o - 4
32	1	0	1	22	2	1	2	9	2	1	2	2	3	1	14	$-4 \\ -4$
33	0	-1	1	22	1	4	$\frac{2}{14}$	1	2	1	6	1	1	1	14	-8
34	0	-1	2	22	2	5	6	1	2	1	2	1	1	1	18	-4
35	1	0	3	23	11	3	1	2	1	1	1	1	2	1	21	-2
36	3	4	-1	24	1	1	14	5	2	1	4	1	5	1	14	-10
37	0	- 1	1	26	1	1	20	3	10	3	2	2	1	1	12	- 10
38	-3	-1	0	26	3	1	4	7	2	1	2	1	7	1	20	-6
39	3	5	-1	26	2	3	7	2	1	1	2	1	2	1	21	- 5
40	0	-1	1	28	1	5	18	1	2	1	8	1	1	1	18	- 10
41	1	0	1	28	12	1	1	8	1	1	4	1	8	1	23	-5
42	5	7	-2	29	1	1	$\overline{17}$	6	1	1	5	1	6	1	17	-12
43	1	0	1	29	5	1	1	12	1	1	3	2	4	1	19	-4
44	1	0	1	29	3	1	3	10	3	2	1	3	2	1	21	-6
45	1	0	1	29	21	1	1	4	1	2	1	1	4	1	27	-4
	1	-	1			-		-1				т	-1	1		-1

Table 1

i	x_0	y_0	z	0	α	β	a	b	τ	t	k	ℓ	m	n	$\overline{\mu}_1$	$\overline{\mu}_2$
46	-1	-1	1	30	2	1	12	3	6	2	2	1	3	1	20	-6
47	1	0	2	30	14	2	1	4	1	1	2	1	4	1	27	-3
<u>48</u>	1	0	1	8	2	1	1	3	1	1	1	1	3	1	5	-2
49	0	-1	1	13	1	4	5	1	1	1	1	1	1	1	10	-4
50	-1	-1	0	14	1	1	2	6	1	1	1	2	3	1	8	-3
51	0	-1	1	16	1	2	12	1	3	2	2	1	1	1	8	-6
52	1	0	1	16	4	1	1	6	1	1	2	1	6	1	11	-3
53	0	-1	1	17	1	4	9	1	3	2	1	1	1	2	12	-6
54	1	0	2	17	5	2	1	3	1	1	1	1	3	1	14	-2
55	0	-1	1	18	1	1	14	2	7	4	1	2	1	1	8	-7
56	1	2	0	19	1	2	7	3	1	1	1	1	3	1	14	-6
57	0	-1	1	20	1	6	8	1	1	1	2	1	1	1	16	-6
58	-5	-2	-1	22	2	1	3	8	1	1	2	1	8	1	15	-5
59	1	0	1	22	12	1	1	5	1	2	1	1	5	1	19	-4
60	1	0	1	23	3	1	1	10	1	1	2	2	5	1	14	-3
61	1	0	1	24	6	1	1	9	1	1	3	1	9	1	17	-4
62	1	0	1	24	4	2	1	5	1	1	1	1	5	2	19	-2
63	1	0	3	26	8	3	1	3	1	1	1	1	3	1	23	-2
64	0	-1	1	27	1	2	15	3	5	3	1	3	1	1	18	-10
65	0	-1	1	27	1	8	11	1	1	1	3	1	1	1	22	-8
66	0	-1	1	28	1	4	20	1	5	3	2	1	1	2	16	-10
67	0	-1	2	28	2	9	5	1	1	1	1	1	1	1	25	-4
68	-3	-2	0	29	3	2	3	5	1	1	1	1	5	1	24	-4
69	0	-1	1	30	1	2	22	2	11	6	1	2	1	2	16	-11
70	-4	-1	-1	30	3	1	2	12	1	2	1	4	3	1	20	-5

Table 1. (continued)

007^{01} 020^{04} 032^{10}	008^{01} 021^{02} 033^{04}	$009^{01} \\ 022^{09} \\ 034^{21}$	010^{02} 023^{02} 035^{04}	$013^{01} \\ 024^{05} \\ 036^{07}$	014^{04} 026^{05} 037^{02}	$015^{02} \\ 027^{02} \\ 038^{11}$	$016^{04} \\ 028^{07} \\ 039^{02}$	$017^{02} \\ 029^{05} \\ 040^{10}$	018^{03} 030^{06} 041^{01}	019^{02} 031^{05} 042^{06}
043^{07} 054^{17}	044^{16} 055^{03}	045^{06} 056^{10}	046^{22} 057^{05}	047^{02} 058^{22}	048^{12} 059^{06}	049^{05} 060^{18}	050^{13} 061^{10}	051^{06} 062^{27}	052^{14} 063^{06}	053^{04} 064^{15}
065^{05} 076^{34}	066^{19} 077^{04}	067^{07} 078^{24}	068^{16} 079^{07}	069^{09} 080^{20}	070^{18} 081^{04}	071^{12} 082^{29}	072^{12} 083^{06}	073^{08} 084^{22}	074^{29} 085^{04}	075^{03} 086^{23}
087^{06}	088^{22}	089^{10}	090^{22}	091^{09}	092^{26}	093^{14}	094^{34}	095^{12}	096^{31}	097^{09}
098^{33} 109^{10}	099^{09} 110^{23}	$100^{21} \\ 111^{11}$	$101^{07} 112^{29}$	$102^{37} 113^{05}$	$103^{13} \\ 114^{37}$	104^{30} 115^{09}	$105^{07} 116^{34}$	$106^{46} 117^{07}$	107^{11} 118^{40}	108^{29} 119^{11}

Table 2

20	19	91	19	49	11	20	11	20	15	97
120^{30}	121^{12}	122^{31}	123^{12}	124^{42}	125^{11}	126^{30}	127^{11}	128^{30}	129^{15}	130^{37}
131^{08}	132^{36}	133^{12}	134^{45}	135^{12}	136^{39}	137^{13}	138^{48}	139^{15}	140^{35}	141^{11}
142^{50}	143^{13}	144^{39}	145^{10}	146^{42}	147^{07}	148^{44}	149^{15}	150^{35}	151^{09}	152^{30}
153^{16}	154^{33}	155^{15}	156^{43}	157^{14}	158^{47}	159^{18}	160^{49}	161^{10}	162^{47}	163^{12}
164^{50}	165^{10}	166^{57}	167^{11}	168^{39}	169^{10}	170^{33}	171^{09}	172^{53}	173^{10}	174^{50}
175^{08}	176^{51}	177^{09}	178^{51}	179^{10}	180^{30}	181^{12}	182^{35}	183^{17}	184^{47}	185^{07}
186^{49}	187^{12}	188^{56}	189^{17}	190^{62}	191^{17}	192^{40}	193^{21}	194^{60}	195^{19}	196^{53}
197^{20}	198^{47}	199^{19}	200^{33}	201^{13}	202^{61}	203^{14}	204^{76}	205^{15}	206^{54}	207^{18}
208^{49}	209^{13}	210^{41}	211^{11}	212^{58}	213^{12}	214^{69}	215^{15}	216^{47}	217^{12}	218^{59}
219^{14}	220^{49}	221^{14}	222^{65}	223^{13}	224^{40}	225^{17}	226^{69}	227^{18}	228^{48}	229^{16}
230^{55}	231^{20}	232^{47}	233^{18}	234^{60}	235^{18}	236^{55}	237^{20}	238^{64}	239^{13}	240^{55}
241^{24}	242^{64}	243^{13}	244^{74}	245^{13}	246^{68}	247^{11}	248^{56}	249^{25}	250^{73}	251^{16}
252^{53}	253^{20}	254^{68}	255^{22}	256^{57}	257^{10}	258^{73}	259^{16}	260^{57}	261^{22}	262^{55}
263^{17}	264^{66}	265^{16}	266^{50}	267^{12}	268^{66}	269^{14}	270^{51}	271^{17}	272^{57}	273^{21}
274^{71}	275^{19}	276^{83}	277^{17}	278^{65}	279^{28}	280^{52}	281^{17}	282^{75}	283^{20}	284^{84}
285^{24}	286^{72}	287^{19}	288^{60}	289^{15}	290^{62}	291^{23}	292^{66}	293^{10}	294^{77}	295^{16}
296^{80}	297^{13}	298^{70}	299^{14}	300^{67}						

Table 2. (continued)

a	b	0	$\overline{\mu}_1$	$\overline{\mu}_2$
7865	585	12545	8450	-4356
53492	5676	87548	59168	-30789
7024874	745390	11497214	7770264	-4043315
127230675	13500094	208231239	140730769	-73230300
480286984490	35719102710	766039806170	516006087200	-265972368231
12529086263859	931792310790	19983424750179	13460878574649	-6938332399120

Table 3

Table 3 contains the integral graphs $\overline{\alpha K_a \cup \beta K_{b,b}}$ with $\overline{\mu}_1 = a + b$ and a > (b+1), obtained from the classes represented in Propositions2 and3 for i=0. We note that any graph in this list is an integral graph with the minimal number of vertices for the corresponding class. The first, second, ..., sixth integral graph in List 3 belongs to the class described in Proposition m (n^0), where (m, n) = (3, 2), (2,2), (2,3), (2,1), (3,3) and (3,1), respectively.

Acknowledgement. The author is very grateful to prof. Dragoš Cvetković for his valuable comments and suggestions concerning this paper.

MIRKO LEPOVIĆ

References

- [1] D. Cvetković, M. Doob, H. Sachs, Spectra of graphs Theory and applications, 3rd revised and enlarged edition, J. A. Barth Verlag, Heidelberg Leipzig, 1995.
- [2] M. Lepović, On integral graphs which belong to the class $\overline{\alpha K_a \cup \beta K_b}$, submitted to Linear and Multilinear Algebra.
- [3] M. Lepović, On integral graphs which belong to the class $\overline{\alpha K_{a,b}}$, Graphs and Combinatorics, in press.
- [4] M. Lepović, On integral graphs which belong to the class $\overline{\alpha K_{a,a} \cup \beta K_{b,b}}$, submitted to Indian J. Pure Appl. Math.
- [5] M. Lepović, On integral graphs which belong to the class $\overline{\alpha K_a \cup \beta K_{b,b}}$, submitted to Discrete Math
- [6] D. Redmond, Number Theory an Introduction, Marcel Dekker, New York, 1996.

Prirodno-matematički fakultet 34000 Kragujevac Serbia and Montenegro lepovic@knez.uis.kg.ac.yu (Received 12 11 2002) (Revised 24 12 2003)