SOME CLASSES OF INTEGRAL GRAPHS WHICH BELONG TO THE CLASS $\overline{\alpha K_a \cup \beta K_{b,b}}$ ## Mirko Lepović Communicated by Slobodan Simić ABSTRACT. Let G be a simple graph and let \overline{G} denote its complement. We say that G is integral if its spectrum consists of integral values. We have recently established a characterization of integral graphs which belong to the class $\overline{\alpha K_a \cup \beta K_{b,b}}$, where mG denotes the m-fold union of the graph G. In this work we investigate integral graphs from the class $\overline{\alpha K_a \cup \beta K_{b,b}}$ with $\overline{\lambda}_1 = a + b$, where $\overline{\lambda}_1$ is the largest eigenvalue of $\overline{\alpha K_a \cup \beta K_{b,b}}$. In this work we consider only simple graphs. The spectrum of a simple graph G of order n contains the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ of the ordinary adjacency matrix of G, and is denoted by $\sigma(G)$. A graph G is called integral if its spectrum $\sigma(G)$ consists only of integers [1]. An eigenvalue μ of G is main if and only if $\langle \mathbf{j}, \mathbf{P} \mathbf{j} \rangle = n \cos^2 \alpha > 0$, where \mathbf{j} is the main vector (with coordinates equal to 1) and \mathbf{P} is the orthogonal projection of the space \mathbb{R}^n onto the eigenspace $\mathcal{E}_A(\mu)$. The quantity $\beta = |\cos \alpha|$ is called the main angle of μ . Let K_n and $K_{m,n}$ denote the complete graph and the complete bipartite graph, respectively. We have recently described all integral graphs which belong to the classes $\overline{\alpha K_a \cup \beta K_b}$, $\overline{\alpha K_{a,b}}$, $\overline{K_{a,a} \cup K_{b,b}}$ and $\overline{\alpha K_a \cup \beta K_{b,b}}$ (see [2], [3], [4] and [5], respectively), where \overline{G} and mG denote the complementary graph of G and the m-fold union of the graph G, respectively. The characterization of integral graphs which is related to the class $\overline{\alpha K_a \cup \beta K_{b,b}}$ is reduced to the problem of finding the most general integral solution of the following Diophantine equation [5] (1) $$\left[(\alpha+1)a + (2\beta-1)b - 1 \right]^2 - 4\alpha a(a-b-1) = \delta^2.$$ In other words, $\overline{\alpha K_a \cup \beta K_{b,b}}$ is integral if and only if $(\alpha, \beta, a, b, \delta)$ represents a positive integral solution of the equation (1). We note that $\alpha K_a \cup \beta K_{b,b}$ is an ²⁰⁰⁰ Mathematics Subject Classification: Primary 05C50. Key words and phrases: graph, eigenvalue, Diophantine equation, continued fractions. integral graph with two main eigenvalues $\mu_a = a-1$ and $\mu_b = b$ for any $\alpha, \beta, a, b \in \mathbb{N}$ with $a \neq (b+1)$. REMARK 1. We know that $\lambda_1 + \overline{\lambda}_1 \geqslant n-1$ for any graph G of order n with equality if and only if G is regular [1], where $\overline{\lambda}_1$ is the largest eigenvalue of \overline{G} . If $G = \alpha K_a \cup \beta K_{b,b}$ we obtain (i) $\overline{\lambda}_1 \geqslant 2b+1$ if a > (b+1) and (ii) $\overline{\lambda}_1 \geqslant a+b$ if $a \leqslant b$. In the sequel the symbol (m, n) denotes the greatest common divisor of integers m, n while $m \mid n$ means that m divides n. THEOREM 1 (Lepović [5]). If $\overline{\alpha K_a \cup \beta K_{b,b}}$ is integral then it belongs to one of the following classes of integral graphs: (2) $$\left[\pm \frac{2kt}{\tau} x_0 + \frac{4mt}{\tau} z \right] K_a \cup \left[\pm \frac{2kt}{\tau} y_0 + \frac{a}{\tau} z \right] (2n-1) K_{b,b} ,$$ where (i) $a = \pm \left[2t + (2\ell - 1)(2n - 1)\right]k + (2\ell - 1)m + 1$ and $b = (2\ell - 1)m$; (ii) $t, k, \ell, m, n \in \mathbb{N}$ such that (m, 2n - 1) = 1, (2n - 1, 2t) = 1 and $(2\ell - 1, 2t) = 1$; (iii) $\tau = (a, 4mt)$ such that $\tau \mid 2kt$; (iv) x_0 and y_0 is a particular solution of the linear Diophantine equation $ax - (4mt)y = \tau$ and $(v) \ge z \ge z_0$, where $z_0 = \min \mathbb{Z}$ such that $\left(\pm \frac{2kt}{\tau} x_0 + \frac{4mt}{\tau} z_0\right) \ge 1$ and $\left(\pm \frac{2kt}{\tau} y_0 + \frac{a}{\tau} z_0\right) \ge 1$; (3) $$\frac{1}{\left[\pm \frac{(2t-1)k}{\tau}x_0 + \frac{2m(2t-1)}{\tau}z\right]K_a \cup \left[\pm \frac{(2t-1)k}{\tau}y_0 + \frac{a}{\tau}z\right](2n-1)K_{b,b}},$$ where (i) $a = \pm \left[(2t-1) + (2\ell-1)(2n-1) \right] k + (2\ell-1)m + 1$ and $b = (2\ell-1)m$; (ii) $t, k, \ell, m, n \in \mathbb{N}$ such that (m, 2n-1) = 1, (2n-1, 2t-1) = 1 and $(2\ell-1, 2t-1) = 1$; (iii) $\tau = (a, 2m(2t-1))$ such that $\tau \mid (2t-1)k$; (iv) x_0 and y_0 is a particular solution of the linear Diophantine equation $ax - 2m(2t-1)y = \tau$ and $(v) z \geqslant z_0$ where $z_0 = \min \mathbb{Z}$ such that $(\pm \frac{(2t-1)k}{\tau} x_0 + \frac{2m(2t-1)}{\tau} z_0) \geqslant 1$ and $(\pm \frac{(2t-1)k}{\tau} y_0 + \frac{a}{\tau} z_0) \geqslant 1$; (4) $$\left[\pm \frac{(2t-1)k}{\tau} x_0 + \frac{(2t-1)m}{\tau} z \right] K_a \cup \left[\pm \frac{(2t-1)k}{\tau} y_0 + \frac{a}{\tau} z \right] n K_{b,b} ,$$ where (i) $a = \pm \left[(2t-1) + 2\ell n \right] k + \ell m + 1$ and $b = \ell m$; (ii) $t, k, \ell, m, n \in \mathbb{N}$ such that (m,n) = 1, (n,2t-1) = 1 and $(\ell,2t-1) = 1$; (iii) $\tau = (a,(2t-1)m)$ such that $\tau \mid (2t-1)k$; (iv) x_0 and y_0 is a particular solution of the linear Diophantine equation $ax - (2t-1)my = \tau$ and $(v) z \ge z_0$ where $z_0 = \min \mathbb{Z}$ with $(\pm \frac{(2t-1)k}{\tau} x_0 + \frac{(2t-1)m}{\tau} z_0) \ge 1$ and $(\pm \frac{(2t-1)k}{\tau} y_0 + \frac{a}{\tau} z_0) \ge 1$. In these classes the symbol ' \pm ' is related to '+' if a > (b+1); and ' \pm ' is related to '-' if $a \le b$. If $\overline{\alpha K_a \cup \beta K_{b,b}}$ is an integral graph then it uniquely determines the parameters t, τ, k, ℓ, m, n . However, if $\underline{x_0}$ and $\underline{y_0}$ is obtained by using the EUCLID algorithm then a fixed integral graph $\overline{\alpha K_a \cup \beta K_{b,b}}$ also uniquely determines the parameters x_0, y_0, z_0, z (see [5]). Using Theorem1 we proved in [5] the following results: (i) if $\overline{\alpha K_a \cup \beta K_{b,b}}$ is integral with $\overline{\lambda}_1 = 2b + 1$ and a > (b+1) then it is $\overline{K_5 \cup K_{2,2}}$; (ii) if $\overline{\alpha K_a \cup \beta K_{b,b}}$ is integral with $\overline{\lambda}_1 = 2b+1$ and $a \leqslant b$ then it belongs to the class of integral graphs $\overline{3K_t \cup K_{4t-2,4t-2}}$, where $t \in \mathbb{N}$ and (iii) if $\overline{\alpha K_a \cup \beta K_{b,b}}$ is integral with $\overline{\lambda}_1 = a+b$ and $a \leqslant b$ then it is one of the following two integral graphs $\overline{K_2 \cup K_{6,6}}$ or $\overline{K_3 \cup K_{6,6}}$. The characterization of integral graphs with $\overline{\lambda}_1 = a + b$ and $\lambda_1 = a - 1$ is reduced to the problem of finding the most general positive solution of the equation $x^2 - dy^2 = c$, where d is not a perfect square. It is based on the concept of continued fractions and some basic results which are related to $x^2 - dy^2 = c$ (see [6]). Let a_0, a_1, \ldots, a_n be a sequence of integers with $a_i > 0$ for $i \geqslant 1$. Then the term $[a_0; a_1, \ldots, a_n] = [a_0; a_1, \ldots, a_{n-1} + \frac{1}{a_n}]$ is called the simple continued fraction, where $[a_0; a_1] = a_0 + \frac{1}{a_1}$. If a_0, a_1, a_2, \ldots is an infinite sequence of integers with $a_i > 0$ for $i \geqslant 1$, the expression $[a_0; a_1, a_2, \ldots] = \lim_{n \to +\infty} [a_0; a_1, \ldots, a_n]$ is called the infinite simple continued fraction. We say that $[a_0; a_1, \ldots, a_{m-1}, \overline{a_m, \ldots, a_{m+r-1}}]$ is an infinite simple continued fraction of periodic r if r is the least positive integer such that $a_{r+n} = a_n$ for any $n \geqslant m$. Let a_0, a_1, \ldots be a sequence of integers with $a_i > 0$ for $i \ge 1$. We then define two associated sequences $\{p_n\}$ and $\{q_n\}$ by $p_i = a_i p_{i-1} + p_{i-2}$ and $q_i = a_i q_{i-1} + q_{i-2}$ for $i \ge 0$, where $p_{-2} = 0$, $p_{-1} = 1$ and $q_{-2} = 1$, $q_{-1} = 0$. The rational number $\frac{p_n}{q_n} = [a_0; a_1, \ldots, a_n]$ is called the *n*-th convergent to the infinite simple continued fraction. Next, the general solution of the Pell equation $x^2-dy^2=1$ is given in the form $x_i+y_i\sqrt{d}=(x_1+y_1\sqrt{d})^i$, where $x_1+y_1\sqrt{d}$ is its fundamental solution. We know that $x_1+y_1\sqrt{d}=p_{r-1}+q_{r-1}\sqrt{d}$ if r is even, and $x_1+y_1\sqrt{d}=p_{2r-1}+q_{2r-1}\sqrt{d}$ if r is odd, where r is the period length of \sqrt{d} . If $\rho_0+\varphi_0\sqrt{d}$ is a fundamental solution of the equation $x^2-dy^2=c$, then $$\rho_i + \varphi_i \sqrt{d} = (\rho_0 + \varphi_0 \sqrt{d})(x_1 + y_1 \sqrt{d})^i$$ represents a class of solutions of $x^2 - dy^2 = c$. Using the last relation we easily find that $\rho_i = \rho_0 x_i + d\varphi_0 y_i$ and $\varphi_i = \varphi_0 x_i + \rho_0 y_i$ for any $i \ge 0$, understanding that $x_0 = 1$ and $y_0 = 0$. Besides, we have (5) $$\rho_{i} = \frac{\rho_{0} + \varphi_{0}\sqrt{d}}{2} \left(x_{1} + y_{1}\sqrt{d}\right)^{i} + \frac{\rho_{0} - \varphi_{0}\sqrt{d}}{2} \left(x_{1} - y_{1}\sqrt{d}\right)^{i};$$ (6) $$\varphi_i = \frac{\rho_0 + \varphi_0 \sqrt{d}}{2\sqrt{d}} \left(x_1 + y_1 \sqrt{d} \right)^i - \frac{\rho_0 - \varphi_0 \sqrt{d}}{2\sqrt{d}} \left(x_1 - y_1 \sqrt{d} \right)^i.$$ Finally, for any fundamental solution $\rho_0 + \varphi_0 \sqrt{d}$ of the equation $x^2 - dy^2 = c$, the following two relations are satisfied [6] (7) $$0 \leqslant |\rho_0| \leqslant \sqrt{\frac{c(x_1+1)}{2}} \text{ and } 0 \leqslant \varphi_0 \leqslant y_1 \sqrt{\frac{c}{2(x_1+1)}}.$$ Using the concept of continued fractions we proved in [5] that there is no integral graph from the class $\overline{\alpha K_a \cup (3\beta+2)K_{b,b}}$ with $\overline{\lambda}_1 = a+b$ and a > (b+1) for any $\beta \in \mathbb{N}$. It is also observed that there is no integral graph from the class $\overline{\alpha K_a \cup \beta K_{b,b}}$ with $\overline{\lambda}_1 = a+b$ and a > (b+1) for $\beta = 1$. The characterization of integral graphs with $\overline{\lambda}_1 = a + b$ and $\lambda_1 = a - 1$ is reduced to the problem of finding the most general positive integral solution of the following two Diophantine equations: (8) $$\left[8\eta(\eta \dot{n} - 1)m - k \right]^2 - \left[16\eta \dot{n}(\eta \dot{n} - 1) + 1 \right] k^2 = 16\eta(\eta \dot{n} - 1) ,$$ where $\dot{n} = 2n - 1$ and $\beta = \eta \dot{n}$; (1.1) $a = (2\ell - 1)(2t - 1)$; (1.2) $b = (2\ell - 1)m$; (1.3) $(2\ell - 1) = 2\eta m + k$ and (1.4) $(2t - 1) = (2\ell - 1)\dot{n} - m$; and (9) $$\left[4\eta(\eta n - 1)m - k \right]^2 - \left[16\eta n(\eta n - 1) + 1 \right] k^2 = 8\eta(\eta n - 1),$$ where $\beta = \eta n$ and (2.1) $a = (2t - 1)\ell$; (2.2) $b = \ell m$; (2.3) $\ell = \eta m + k$ and (2.4) where $\beta = \eta n$ and (2.1) $a = (2t - 1)\ell$; (2.2) $b = \ell m$; (2.3) $\ell = \eta m + k$ and (2 $(2t - 1) = 2\ell n - m$ (see [5]). Further, let $x=8\eta(\eta\dot{\eta}-1)m-k$ and let y=k. Let $d=16\eta\dot{\eta}(\eta\dot{\eta}-1)+1$ and let $\rho_0+\varphi_0\sqrt{d}$ be a fundamental solution of $x^2-dy^2=16\eta(\eta\dot{\eta}-1)$. Then $k=\varphi_i$ and $m=\frac{\rho_i+\varphi_i}{8\eta(\eta\dot{\eta}-1)}$, understanding that $\rho_i+\varphi_i\sqrt{d}$ is the *i*-th solution which belongs to the class with respect to $\rho_0+\varphi_0\sqrt{d}$. It was proved in [5] that $8\eta(\eta\dot{\eta}-1)\mid (\rho_i+\varphi_i)$ if and only if $8\eta(\eta\dot{\eta}-1)\mid (\rho_0+\varphi_0)$. Consequently, the most general integral solution of (8) is reduced to the positive fundamental solutions $\rho_0+\varphi_0\sqrt{d}$ for which $8\eta(\eta\dot{\eta}-1)\mid (\rho_0+\varphi_0)$. Similarly, the most general integral solution of (9) is reduced to the positive fundamental solutions $\rho_0+\varphi_0\sqrt{d}$ for which $4\eta(\eta n-1)\mid (\rho_0+\varphi_0)$. We now proceed to establish a characterization of integral graphs $\overline{\alpha K_a \cup \beta K_{b,b}}$ with $\overline{\lambda}_1 = a + b$ and a > (b+1) for $\beta = 2, 3, 4$. We note first if $\overline{\alpha K_a \cup \beta K_{b,b}}$ is an integral graph with $\overline{\lambda}_1 = a + b$ and $\lambda_1 = a - 1$ then $(a + b) + (a - 1) \geqslant \alpha a + 2\beta b$ (see Remark1), which implies that $\alpha = 1$. PROPOSITION 1. If $\overline{\alpha K_a \cup 2K_{b,b}}$ is integral with $\overline{\lambda}_1 = a + b$ and a > (b+1) then it belongs to the following class of integral graphs $$\overline{K_{a_{+}\,z_{-}^{2i}\,+\,a_{-}\,z_{-}^{2i}\,+\,\frac{1}{33}}\,\,\cup\,\,2K_{b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{7}{33}}\,,\,b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{7}{33}} } \\ where \,\,z_{\pm}\,=\,23\,\pm\,4\sqrt{33}\,\,and\,\,i\geqslant0,\,\,a_{\pm}\,=\,\frac{247\,\pm\,43\,\sqrt{33}}{33}\,\,and\,\,b_{\pm}\,=\,\frac{46\,\pm\,8\,\sqrt{33}}{33}.$$ PROOF. We shall first consider the general positive integral solution of the equation (8) for $\eta \dot{n}=2$. Clearly, $\dot{n}=1$ and $\eta=2$. Then relation (8) is reduced to $x^2-33y^2=32$. Using a computer program¹ we obtain that $\sqrt{33}=[5;\overline{1,2,1,10}]$ and $23+4\sqrt{33}$ is the fundamental solution of the equation $x^2-33y^2=1$. Since $\rho_0\leqslant 19$ and $\varphi_0\leqslant 3$ (see (7)), it is easy to verify that there is no fundamental solution of $x^2-33y^2=32$, which means that (8) does not generate any integral graph with $\beta=2$. Consider the general positive integral solution of the equation (9) for $\eta n = 2$. We shall distinguish the following two cases: Case 1. $(n=1 \text{ and } \eta=2)$. Then (9) is reduced to (i) $x^2-33y^2=16$. We now find that $\rho_0 \leq 13$ and $\varphi_0 \leq 2$, and $4+0\sqrt{33}$ and $7+\sqrt{33}$ are the fundamental ¹All the results given in Propositions1,2 and3 are obtained by using the program called DIOPHANTUS, written by the author in the programming language C. solutions of (i). Since $8 \nmid (4+0)$ it follows that the class of solutions of (i) which corresponds to $4+0\sqrt{33}$ does not generate any integral graph with $\beta=2$. Since $m=\frac{\rho_i+\varphi_i}{8}$ and $k=\varphi_i$, for the fundamental solution $7+\sqrt{33}$, we obtain from (5) and (6) that $$m = \frac{\sqrt{33} + 5}{2\sqrt{33}} \left(23 + 4\sqrt{33}\right)^{i} + \frac{\sqrt{33} - 5}{2\sqrt{33}} \left(23 - 4\sqrt{33}\right)^{i};$$ $$k = \frac{7 + \sqrt{33}}{2\sqrt{33}} \left(23 + 4\sqrt{33}\right)^i - \frac{7 - \sqrt{33}}{2\sqrt{33}} \left(23 - 4\sqrt{33}\right)^i.$$ Further, making use of (2.1), (2.2), (2.3) and (2.4), from the previous relations we easily get $$\ell = \frac{3\sqrt{33} + 17}{2\sqrt{33}} \left(23 + 4\sqrt{33}\right)^i + \frac{3\sqrt{33} - 17}{2\sqrt{33}} \left(23 - 4\sqrt{33}\right)^i;$$ $$\dot{t} = \frac{5\sqrt{33} + 29}{2\sqrt{33}} \left(23 + 4\sqrt{33}\right)^{i} + \frac{5\sqrt{33} - 29}{2\sqrt{33}} \left(23 - 4\sqrt{33}\right)^{i},$$ which provides the class of integral graphs represented in Proposition 1, understanding that $\dot{p} = 2p - 1$. Case 2. $(n=2 \text{ and } \eta=1)$. Then (9) is reduced to (ii) $x^2-33y^2=8$. We now find that (iii) $\rho_0 \leq 9$ and $\varphi_0 \leq 1$. Using (iii) it is not difficult to show that there exists no fundamental solution of (ii), which completes the proof. Proposition 2. If $\overline{\alpha K_a \cup 3K_{b,b}}$ is integral with $\overline{\lambda}_1 = a + b$ and a > (b+1) then it belongs to one of the following three classes of integral graphs: $$\overline{K_{a_{+}\,z_{+}^{2i}\,+\,a_{-}\,z_{-}^{2i}\,+\,\frac{1}{97}}\,\,\cup\,\,3K_{b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{1}{97}\,,\,b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{1}{97}}$$ where $z_{\pm} = 62809633 \pm 6377352\sqrt{97}$ and $i \geqslant 0$; and (1°) $$a_{\pm} = \frac{6170687737 \pm 626538413\sqrt{97}}{97}$$ and $b_{\pm} = \frac{1309509107 \pm 132960505\sqrt{97}}{194}$; (2°) $$a_{\pm} = \frac{5188723\pm526835\sqrt{97}}{194}$$ and $b_{\pm} = \frac{550561\pm55901\sqrt{97}}{194}$ and (3°) $$a_{\pm} = \frac{681412777 \pm 69186985\sqrt{97}}{194}$$ and $b_{\pm} = \frac{72302819 \pm 7341239\sqrt{97}}{194}$. PROOF. We shall first consider the general positive integral solution of the equation (8) for $\eta \dot{n} = 3$. Case 1.1 ($\dot{n}=1$ and $\eta=3$). Then (8) is reduced to (i) $x^2-97y^2=96$. We now have (ii) $\sqrt{97}=[9;\,\overline{1,5,1,1,1,1,1,1,5,1,18}]$; (iii) $62809633+6377352\sqrt{97}$ is the fundamental solution of the equation $x^2-97y^2=1$ and (iv) $\rho_0\leqslant 54907$ and $\varphi_0\leqslant 5575$. According to (iv) we find that $22+2\sqrt{97}$; $463+47\sqrt{97}$; $2738+278\sqrt{97}$ and $49589+5035\sqrt{97}$ are the fundamental solutions of (i). Since $48\nmid (22+2)$; $48\nmid (463+47)$ and $48\nmid (2738+278)$, these solutions do not generate any integral graph with $\beta=3$. Consequently, the general solution of (i) is reduced to the class which corresponds to the fundamental solution $49589 + 5035\sqrt{97}$. Since $m = \frac{\rho_i + \varphi_i}{48}$ and $k = \varphi_i$, using (iii) and (5), (6), we obtain $$\begin{split} m &= \left(\frac{1138\sqrt{97} + 11208}{2\sqrt{97}}\right) z_{+}^{i} \, + \, \left(\frac{1138\sqrt{97} - 11208}{2\sqrt{97}}\right) z_{-}^{i}; \\ k &= \left(\frac{49589 + 5035\sqrt{97}}{2\sqrt{97}}\right) z_{+}^{i} \, - \, \left(\frac{49589 - 5035\sqrt{97}}{2\sqrt{97}}\right) z_{-}^{i}. \end{split}$$ Next, making use of (1.1), (1.2), (1.3) and (1.4), by a straight-forward calculation, we get from the last relation that $$\dot{\ell} = \left(\frac{11863\sqrt{97} + 116837}{2\sqrt{97}}\right) z_{+}^{i} + \left(\frac{11863\sqrt{97} - 116837}{2\sqrt{97}}\right) z_{-}^{i};$$ $$\dot{t} = \left(\frac{10725\sqrt{97} + 105629}{2\sqrt{97}}\right) z_{+}^{i} + \left(\frac{10725\sqrt{97} - 105629}{2\sqrt{97}}\right) z_{-}^{i};$$ which provides the class of integral graphs represented in Proposition 2 (1^0) . Case 1.2 ($\dot{n}=3$ and $\eta=1$). Then (8) is reduced to (v) $x^2-97y^2=32$. According to (iii) and (7) we find that (vi) $\rho_0\leqslant 31701$ and $\varphi_0\leqslant 3218$. Using (vi) we get $138+14\sqrt{97}$ and $3063+311\sqrt{97}$ are the fundamental solutions of (v). Since $16 \nmid (138+14)$ and $16 \nmid (3063+311)$ it follows that (v) generates no integral graph with $\beta=3$. Consider the general positive integral solution of the equation (9) for $\eta n = 3$. We shall also distinguish the following two cases: Case 2.1 $(n=1 \text{ and } \eta=3)$. Then (9) is reduced to (vii) $x^2-97y^2=48$. We now find that $\rho_0 \leqslant 38825$ and $\varphi_0 \leqslant 3942$; $40+4\sqrt{97}$, $719+73\sqrt{97}$ and $15965+1621\sqrt{97}$ are the fundamental solutions of (vii). Since $24 \nmid (40+4)$ and $24 \nmid (15965+1621)$ it remains to consider the fundamental solution $719+73\sqrt{97}$. Therefore, by an easy calculation we get $m=(\frac{33\sqrt{97}+325}{2\sqrt{97}})z_+^i+(\frac{33\sqrt{97}-325}{2\sqrt{97}})z_-^i$ and $k=(\frac{719+73\sqrt{97}}{2\sqrt{97}})z_+^i-(\frac{719-73\sqrt{97}}{2\sqrt{97}})z_-^i$, which yields $\ell=(\frac{86\sqrt{97}+847}{\sqrt{97}})z_+^i+(\frac{86\sqrt{97}-847}{\sqrt{97}})z_-^i$ and $t=(\frac{311\sqrt{97}+3063}{2\sqrt{97}})z_+^i+(\frac{311\sqrt{97}-3063}{2\sqrt{97}})z_-^i$. So we get the class of integral graphs represented in Proposition 2 (2°). Case 2.2 $(n=3 \text{ and } \eta=1)$. Then (9) is reduced to (viii) $x^2-97y^2=16$. We now find that $\rho_0\leqslant 22416$ and $\varphi_0\leqslant 2275$; $4+0\sqrt{97}$ and $4757+483\sqrt{97}$ are the fundamental solutions of (viii). Consequently, since $8\nmid (4+0)$ and $8\mid (4757+483)$ we obtain that $m=(\frac{655\sqrt{97+6451}}{2\sqrt{97}})z_+^i+(\frac{655\sqrt{97-6451}}{2\sqrt{97}})z_-^i;\ k=(\frac{4757+483\sqrt{97}}{2\sqrt{97}})z_+^i-(\frac{4757-483\sqrt{97}}{2\sqrt{97}})z_-^i;\ \ell=(\frac{569\sqrt{97+5604}}{\sqrt{97}})z_+^i+(\frac{569\sqrt{97-5604}}{\sqrt{97}})z_-^i;\ t=(\frac{6173\sqrt{97-60797}}{2\sqrt{97}})z_-^i,$ which provides the class represented in Proposition 2 (3°). \square PROPOSITION 3. If $\overline{\alpha K_a \cup 4K_{b,b}}$ is integral with $\overline{\lambda}_1 = a + b$ and a > (b+1) then it belongs to one of the following three classes of integral graphs: $$\overline{K_{a_{+}\,z_{+}^{2i}\,+\,a_{-}\,z_{-}^{2i}\,+\,\frac{1}{193}}\,\,\cup\,\,4K_{b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{15}{193}\,,\,b_{+}\,z_{+}^{2i}\,+\,b_{-}\,z_{-}^{2i}\,+\,\frac{15}{193}}$$ where $z_{\pm} = 6224323426849 \pm 448036604040\sqrt{193}$ and $i \geqslant 0$; and (10) $$a_{\pm} = \frac{1209056824462393\pm87029814579823\sqrt{193}}{193}$$ and $$b_{\pm} = \frac{179835915982455\pm12944872487449\sqrt{193}}{386};$$ (2°) $$a_{\pm} = \frac{758972 \pm 54632\sqrt{193}}{193}$$ and $b_{\pm} = \frac{56445 \pm 4063\sqrt{193}}{193}$; (3°) $$a_{\pm} = \frac{92695388006569\pm6672360030889\sqrt{193}}{386}$$ and $b_{\pm} = \frac{6893786823015\pm496225633751\sqrt{193}}{386}$ PROOF. We shall first consider the general positive integral solution of the equation (8) for $\eta \dot{n} = 4$. Clearly, $\dot{n} = 1$ and $\eta = 4$. In this case (8) is reduced to (i) $x^2 - 193y^2 = 192$. We now have (ii) $\sqrt{193} = [13; \overline{1,8,3,2,1,3,3,1,2,3,8,1,26}]$; (iii) $6224323426849 + 448036604040\sqrt{193}$ is the fundamental solution of the Pell equation $x^2 - 193y^2 = 1$ and (iv) $\rho_0 \le 244444530$ and $\varphi_0 \le 1759555$. Using (iv) we find that $112 + 8\sqrt{193}$; $3362 + 242\sqrt{193}$; $87703 + 6313\sqrt{193}$; $871862 + 62758\sqrt{193}$ and $22743973 + 1637147\sqrt{193}$ are the fundamental solutions of (i). Since $96 \nmid (112 + 8)$; $96 \nmid (3362 + 242)$; $96 \nmid (87703 + 6313)$ and $96 \nmid (871862 + 62758)$, these solutions do not generate any integral graph with $\beta = 4$. Thus, the general solution of (i) is reduced to the class which corresponds to the fundamental solution $22743973+1637147\sqrt{193}$. Making use of (iii) and (5), (6), we get implicitly that $m=(\frac{126985\sqrt{193}+1764132}{\sqrt{193}})z_+^i+(\frac{126985\sqrt{193}-1764132}{\sqrt{193}})z_-^i$ and $k=(\frac{22743973+1637147\sqrt{193}}{2\sqrt{193}})z_+^i-(\frac{22743973-1637147\sqrt{193}}{2\sqrt{193}})z_-^i,$ which provides that $\dot{\ell}=(\frac{3668907\sqrt{193}+50970085}{2\sqrt{193}})z_+^i+(\frac{3668907\sqrt{193}-50970085}{2\sqrt{193}})z_-^i;$ $\dot{t}=(\frac{3414937\sqrt{193}+47441821}{2\sqrt{193}})z_+^i+(\frac{3414937\sqrt{193}-47441821}{2\sqrt{193}})z_-^i.$ So we arrive at the class of integral graphs represented in Proposition3 (10). Consider the general positive integral solution of the equation (9) for $\eta n = 4$. We shall distinguish the following three cases: Case 1. $(n=1 \text{ and } \eta=4)$. Then (9) is reduced to $(\mathbf{v}) \ x^2-193y^2=96$. We now find that $\rho_0\leqslant 17284892$ and $\varphi_0\leqslant 1244193;\ 17+\sqrt{193},\ 403+29\sqrt{193},\ 12142+874\sqrt{193}$ and $3148778+226654\sqrt{193}$ are the fundamental solutions of (\mathbf{v}) . Of course, since $48\nmid (17+1);\ 48\nmid (12142+874)$ and $48\nmid (3148778+226654),$ these solutions generate no integral graph with $\beta=4$. For $403+29\sqrt{193}$ we have $m=(\frac{9\sqrt{193}+125}{2\sqrt{193}})z_+^i+(\frac{9\sqrt{193}-125}{2\sqrt{193}})z_-^i;\ k=(\frac{403+29\sqrt{193}}{2\sqrt{193}})z_+^i-(\frac{403-29\sqrt{193}}{2\sqrt{193}})z_-^i;$ $\ell=(\frac{65\sqrt{193}+903}{2\sqrt{193}})z_+^i+(\frac{65\sqrt{193}-903}{2\sqrt{193}})z_-^i$ and $\ell=(\frac{121\sqrt{193}+1681}{2\sqrt{193}})z_+^i+(\frac{121\sqrt{193}-1681}{2\sqrt{193}})z_-^i,$ which provides the class of integral graphs represented in Proposition 3 (2^0) . Case 2. $(n = 2 \text{ and } \eta = 2)$. Then (9) is reduced to (vi) $x^2 - 193y^2 = 48$. We now find that $\rho_0 \le 12222265$ and $\varphi_0 \le 879777$; $56 + 4\sqrt{193}$, $1681 + 121\sqrt{193}$ and $435931 + 31379\sqrt{193}$ are the fundamental solutions of (vi). Consequently, since $24 \nmid (56+4)$, $24 \nmid (1681+121)$ and $24 \nmid (435931+31379)$, the equation (vi) does not generate any integral graph with $\beta = 4$. Case 3. $(n=4 \text{ and } \eta=1)$. Then (9) is reduced to (vii) $x^2-193y^2=24$. We now find that $\rho_0 \leq 8642446$ and $\varphi_0 \leq 622096$; $6071+437\sqrt{193}$ and $1574389+113327\sqrt{193}$ are the fundamental solutions of (vii). Since $12 \nmid (6071+437)$ and $12 \mid (1574389+113327)$, we obtain for $1574389+113327\sqrt{193}$ that $m=(\frac{140643\sqrt{193}+1953875}{2\sqrt{193}})z_+^i+(\frac{140643\sqrt{193}-1953875}{2\sqrt{193}})z_-^i$ and $k=(\frac{1574389+113327\sqrt{193}}{2\sqrt{193}})z_+^i-(\frac{1574389-113327\sqrt{193}}{2\sqrt{193}})z_-^i$. In this way we obtain that $\ell=(\frac{126985\sqrt{193}+1764132}{\sqrt{193}})z_+^i+(\frac{126985\sqrt{193}-1764132}{\sqrt{193}})z_-^i$ and $t=(\frac{1891117\sqrt{193}+26272237}{2\sqrt{193}})z_+^i+(\frac{1891117\sqrt{193}-26272237}{2\sqrt{193}})z_-^i$. Using these relations we obtain Proposition 3 (3°). Table 1 contains the set of all integral graphs² from the class $\overline{\alpha K_a \cup \beta K_{b,b}}$, whose order 'o' does not exceed 30. In this table an integral graph is described by the parameters α, β, a, b and ones presented in the class of integral graphs in Theorem 1. The symbol 'i' denotes the identification number of the corresponding integral graph. In Table 1 (i) graphs with identification numbers $1, 2, \ldots, 18$ belong to the classes represented by (2); (ii) graphs with identification numbers $19, 20, \ldots, 47$ belong to the classes represented by (3); and (iii) graphs with $i = 48, 49, \ldots, 70$ belong to the classes represented by (4). We note that there exist exactly 18, 29 and 23 non-isomorphic integral graphs from the classes described by (2), (3) and (4), respectively. In this table³ identification number 20 is related to the integral graph with the largest eigenvalue $\overline{\mu}_1 = 2b + 1$ and a > (b + 1), while identification numbers 4, 19 and 44 are related to the integral graphs with $\overline{\mu}_1 = 2b + 1$ and a < (b + 1) and its identification number is 64 – the first next one has 12545 vertices. Identification numbers 24 and 50 are related to the integral graphs with $\overline{\mu}_1 = (a + b)$ and $a \le b$. There exist exactly 7556 non-isomorphic integral graphs which belong to the class $\overline{\alpha K_a \cup \beta K_{b,b}}$, whose order does not exceed 300. In particular, the total number of such integral graphs (obtained by using (2), (3) and (4)) is (1433+888), (1265+948) and (1736+1286), respectively, where m and n in the expression (m+n) are the numbers of integral graphs with a > (b+1) and $a \le b$, respectively. Table 2 contains a distribution of those graphs with respect to their orders. In Table 2 the number n in the symbol o^n denotes the number of integral graphs of the corresponding order $o = 1, 2, \ldots, 300$. In this table o^n is omitted if the corresponding number n = 0. ²The data given in Tables 1 and 2 are obtained in two different ways: (i) they are generated by using relations (2), (3) and (4); and (ii) by varying the parameters α , β , a, b in all possible ways in equation (1). ³In Tables 1 and 3 the number $\overline{\mu}_2$ denotes the second main eigenvalue of the corresponding integral graph $\overline{\alpha K_a \cup \beta K_{b,b}}$. ⁴For any integral graph $\overline{\alpha K_a \cup \beta K_{b,b}}$ with the largest eigenvalue $\overline{\mu}_1 = a + b$ we have (i) $\overline{\mu}_2 = -\frac{2\beta ab}{a+b}$ and (ii) $(a+b)(a+2b+1) = 2\beta b(2a+b)$ (see the proof of Theorem 1). | i | x_0 | <i>y</i> 0 | z | 0 | α | β | a | b | τ | t | k | ℓ | m | n | $\overline{\mu}_1$ | $\overline{\mu}_2$ | |-----------|-------|------------|----------------|----------|----------------|---------------|-----------------|---------------|--------|---------------|---------------|--------|---------------|--------|--------------------|--------------------| | 1 | 0 | -1 | 1 | 10 | 1 | 1 | 8 | 1 | 4 | 1 | 2 | 1 | 1 | 1 | 4 | -4 | | 2 | 1 | 1 | 0 | 14 | $\overline{2}$ | 2 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 | -3 | | 3 | 1 | 0 | 1 | 16 | 10 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 14 | -3 | | 4 | 1 | 0 | 1 | 18 | 3 | 1 | 2 | 6 | 2 | 1 | 1 | 2 | 2 | 1 | 13 | -4 | | 5 | -1 | -1 | 1 | 20 | 2 | 1 | 9 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 12 | -3 | | 6 | 7 | 4 | -1 | 20 | 2 | 1 | 7 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 14 | -5 | | 7 | 1 | 2 | -1 | 22 | 1 | 1 | 18 | 2 | 2 | 1 | 5 | 1 | 2 | 1 | 9 | -8 | | 8 | 0 | -1 | 1 | 22 | 1 | 3 | 16 | 1 | 8 | 2 | 2 | 1 | 1 | 2 | 12 | -8 | | 9 | 0 | -1 | 2 | 22 | 2 | 3 | 8 | 1 | 4 | 1 | 2 | 1 | 1 | 1 | 16 | -4 | | 10 | 1 | 0 | 1 | 22 | 7 | 1 | 2 | 4 | 2 | 1 | 1 | 1 | 4 | 1 | 19 | -4 | | 11 | 0 | -1 | 1 | 24 | 1 | 2 | 20 | 1 | 4 | 1 | 6 | 1 | 1 | 1 | 10 | -8 | | 12 | 0 | -1 | 1 | 24 | 1 | 6 | 12 | 1 | 4 | 1 | 2 | 1 | 1 | 2 | 18 | -8 | | 13 | -1 | -1 | 1 | 26 | 3 | 2 | 6 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 21 | -4 | | 14 | 1 | 1 | 0 | 28 | 2 | 2 | 12 | 1 | 4 | 2 | 2 | 1 | 1 | 1 | 18 | -4 | | 15 | -7 | -3 | -1 | 28 | 2 | 1 | 5 | 9 | 1 | 1 | 1 | 2 | 3 | 1 | 20 | -7 | | 16 | -13 | -2 | -1 | 28 | 6 | 1 | 3 | 5 | 1 | 1 | 1 | 1 | 5 | 1 | 24 | -5 | | 17 | 3 | 8 | -4 | 30 | 2 | 4 | 11 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 22 | -5 | | 18 | 1 | 1 | 0 | 30 | 1 | 5 | 10 | 2 | 2 | 1 | 1 | 1 | 2 | 3 | 25 | -8 | | <u>19</u> | 1 | 0 | 1 | 7 | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 5 | -2 | | 20 | 1 | 1 | 0 | 9 | 1 | 1 | 5 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 5 | -4 | | 21 | 0 | -1 | 1 | 10 | 1 | 2 | 6 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 6 | -4 | | 22 | 1 | 1 | 0 | 14 | 1 | 1 | 8 | 3 | 2 | 1 | 2 | 1 | 3 | 1 | 8 | -6 | | 23 | 1 | 0 | 1 | 14 | 6 | 1 | 1 | 4 | 1 | 1 | 2 | 1 | 4 | 1 | 11 | -3 | | 24 | -1 | -1 | 0 | 15 | 1 | 1 | 3 | 6 | 1 | 1 | 1 | 2 | 2 | 1 | 9 | -4 | | 25 | 1 | 0 | 2 | 15 | 7 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 13 | -2 | | 26 | 0 | -1 | 1 | 16 | 1 | 3 | 10 | 1 | 2 | 1 | 4 | 1 | 1 | 1 | 10 | -6 | | 27 | 1 | 0 | 1 | 18 | 4 | 1 | 2 | 5 | 2 | 1 | 2 | 1 | 5 | 1 | 14 | -4 | | 28 | 3 | 4 | -1 | 19
20 | 1 | 1 | 11 | 4 | 1 | $\frac{1}{2}$ | $\frac{3}{4}$ | 1
1 | 4 | 1 | 11 | -8 | | 29
30 | 0 1 | $-1 \\ 3$ | $\frac{1}{-1}$ | 21 | 1
1 | $\frac{1}{2}$ | 18
13 | $\frac{1}{2}$ | 6
1 | 1 | 4
5 | 1 | $\frac{1}{2}$ | 1
1 | 6
13 | $-6 \\ -8$ | | 31 | 1 | о
0 | 1 | 21 | 9 | 1 | 13 | 6 | 1 | 1 | 3 | 1 | 6 | 1 | 13
17 | - o
- 4 | | 32 | 1 | 0 | 1 | 22 | 2 | 1 | 2 | 9 | 2 | 1 | 2 | 2 | 3 | 1 | 14 | $-4 \\ -4$ | | 33 | 0 | -1 | 1 | 22 | 1 | 4 | $\frac{2}{14}$ | 1 | 2 | 1 | 6 | 1 | 1 | 1 | 14 | -8 | | 34 | 0 | -1 | 2 | 22 | 2 | 5 | 6 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 18 | -4 | | 35 | 1 | 0 | 3 | 23 | 11 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 21 | -2 | | 36 | 3 | 4 | -1 | 24 | 1 | 1 | 14 | 5 | 2 | 1 | 4 | 1 | 5 | 1 | 14 | -10 | | 37 | 0 | - 1 | 1 | 26 | 1 | 1 | 20 | 3 | 10 | 3 | 2 | 2 | 1 | 1 | 12 | - 10 | | 38 | -3 | -1 | 0 | 26 | 3 | 1 | 4 | 7 | 2 | 1 | 2 | 1 | 7 | 1 | 20 | -6 | | 39 | 3 | 5 | -1 | 26 | 2 | 3 | 7 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 21 | - 5 | | 40 | 0 | -1 | 1 | 28 | 1 | 5 | 18 | 1 | 2 | 1 | 8 | 1 | 1 | 1 | 18 | - 10 | | 41 | 1 | 0 | 1 | 28 | 12 | 1 | 1 | 8 | 1 | 1 | 4 | 1 | 8 | 1 | 23 | -5 | | 42 | 5 | 7 | -2 | 29 | 1 | 1 | $\overline{17}$ | 6 | 1 | 1 | 5 | 1 | 6 | 1 | 17 | -12 | | 43 | 1 | 0 | 1 | 29 | 5 | 1 | 1 | 12 | 1 | 1 | 3 | 2 | 4 | 1 | 19 | -4 | | 44 | 1 | 0 | 1 | 29 | 3 | 1 | 3 | 10 | 3 | 2 | 1 | 3 | 2 | 1 | 21 | -6 | | 45 | 1 | 0 | 1 | 29 | 21 | 1 | 1 | 4 | 1 | 2 | 1 | 1 | 4 | 1 | 27 | -4 | | | 1 | - | 1 | | | - | | -1 | | | | т | -1 | 1 | | -1 | Table 1 | i | x_0 | y_0 | z | 0 | α | β | a | b | τ | t | k | ℓ | m | n | $\overline{\mu}_1$ | $\overline{\mu}_2$ | |-----------|-------|-------|----|----|----|---|----|----|----|---|---|--------|---|---|--------------------|--------------------| | 46 | -1 | -1 | 1 | 30 | 2 | 1 | 12 | 3 | 6 | 2 | 2 | 1 | 3 | 1 | 20 | -6 | | 47 | 1 | 0 | 2 | 30 | 14 | 2 | 1 | 4 | 1 | 1 | 2 | 1 | 4 | 1 | 27 | -3 | | <u>48</u> | 1 | 0 | 1 | 8 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 5 | -2 | | 49 | 0 | -1 | 1 | 13 | 1 | 4 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 | -4 | | 50 | -1 | -1 | 0 | 14 | 1 | 1 | 2 | 6 | 1 | 1 | 1 | 2 | 3 | 1 | 8 | -3 | | 51 | 0 | -1 | 1 | 16 | 1 | 2 | 12 | 1 | 3 | 2 | 2 | 1 | 1 | 1 | 8 | -6 | | 52 | 1 | 0 | 1 | 16 | 4 | 1 | 1 | 6 | 1 | 1 | 2 | 1 | 6 | 1 | 11 | -3 | | 53 | 0 | -1 | 1 | 17 | 1 | 4 | 9 | 1 | 3 | 2 | 1 | 1 | 1 | 2 | 12 | -6 | | 54 | 1 | 0 | 2 | 17 | 5 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 14 | -2 | | 55 | 0 | -1 | 1 | 18 | 1 | 1 | 14 | 2 | 7 | 4 | 1 | 2 | 1 | 1 | 8 | -7 | | 56 | 1 | 2 | 0 | 19 | 1 | 2 | 7 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 14 | -6 | | 57 | 0 | -1 | 1 | 20 | 1 | 6 | 8 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 16 | -6 | | 58 | -5 | -2 | -1 | 22 | 2 | 1 | 3 | 8 | 1 | 1 | 2 | 1 | 8 | 1 | 15 | -5 | | 59 | 1 | 0 | 1 | 22 | 12 | 1 | 1 | 5 | 1 | 2 | 1 | 1 | 5 | 1 | 19 | -4 | | 60 | 1 | 0 | 1 | 23 | 3 | 1 | 1 | 10 | 1 | 1 | 2 | 2 | 5 | 1 | 14 | -3 | | 61 | 1 | 0 | 1 | 24 | 6 | 1 | 1 | 9 | 1 | 1 | 3 | 1 | 9 | 1 | 17 | -4 | | 62 | 1 | 0 | 1 | 24 | 4 | 2 | 1 | 5 | 1 | 1 | 1 | 1 | 5 | 2 | 19 | -2 | | 63 | 1 | 0 | 3 | 26 | 8 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 23 | -2 | | 64 | 0 | -1 | 1 | 27 | 1 | 2 | 15 | 3 | 5 | 3 | 1 | 3 | 1 | 1 | 18 | -10 | | 65 | 0 | -1 | 1 | 27 | 1 | 8 | 11 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 22 | -8 | | 66 | 0 | -1 | 1 | 28 | 1 | 4 | 20 | 1 | 5 | 3 | 2 | 1 | 1 | 2 | 16 | -10 | | 67 | 0 | -1 | 2 | 28 | 2 | 9 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 25 | -4 | | 68 | -3 | -2 | 0 | 29 | 3 | 2 | 3 | 5 | 1 | 1 | 1 | 1 | 5 | 1 | 24 | -4 | | 69 | 0 | -1 | 1 | 30 | 1 | 2 | 22 | 2 | 11 | 6 | 1 | 2 | 1 | 2 | 16 | -11 | | 70 | -4 | -1 | -1 | 30 | 3 | 1 | 2 | 12 | 1 | 2 | 1 | 4 | 3 | 1 | 20 | -5 | Table 1. (continued) | 007^{01} 020^{04} 032^{10} | 008^{01} 021^{02} 033^{04} | $009^{01} \\ 022^{09} \\ 034^{21}$ | 010^{02} 023^{02} 035^{04} | $013^{01} \\ 024^{05} \\ 036^{07}$ | 014^{04} 026^{05} 037^{02} | $015^{02} \\ 027^{02} \\ 038^{11}$ | $016^{04} \\ 028^{07} \\ 039^{02}$ | $017^{02} \\ 029^{05} \\ 040^{10}$ | 018^{03} 030^{06} 041^{01} | 019^{02} 031^{05} 042^{06} | |----------------------------------|----------------------------------|------------------------------------|----------------------------------|------------------------------------|----------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------|----------------------------------| | 043^{07} 054^{17} | 044^{16}
055^{03} | 045^{06}
056^{10} | 046^{22} 057^{05} | 047^{02} 058^{22} | 048^{12} 059^{06} | 049^{05} 060^{18} | 050^{13} 061^{10} | 051^{06} 062^{27} | 052^{14} 063^{06} | 053^{04} 064^{15} | | 065^{05} 076^{34} | 066^{19} 077^{04} | 067^{07} 078^{24} | 068^{16} 079^{07} | 069^{09} 080^{20} | 070^{18} 081^{04} | 071^{12} 082^{29} | 072^{12} 083^{06} | 073^{08} 084^{22} | 074^{29} 085^{04} | 075^{03} 086^{23} | | 087^{06} | 088^{22} | 089^{10} | 090^{22} | 091^{09} | 092^{26} | 093^{14} | 094^{34} | 095^{12} | 096^{31} | 097^{09} | | 098^{33} 109^{10} | 099^{09} 110^{23} | $100^{21} \\ 111^{11}$ | $101^{07} 112^{29}$ | $102^{37} 113^{05}$ | $103^{13} \\ 114^{37}$ | 104^{30} 115^{09} | $105^{07} 116^{34}$ | $106^{46} 117^{07}$ | 107^{11} 118^{40} | 108^{29} 119^{11} | Table 2 | 20 | 19 | 91 | 19 | 49 | 11 | 20 | 11 | 20 | 15 | 97 | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 120^{30} | 121^{12} | 122^{31} | 123^{12} | 124^{42} | 125^{11} | 126^{30} | 127^{11} | 128^{30} | 129^{15} | 130^{37} | | 131^{08} | 132^{36} | 133^{12} | 134^{45} | 135^{12} | 136^{39} | 137^{13} | 138^{48} | 139^{15} | 140^{35} | 141^{11} | | 142^{50} | 143^{13} | 144^{39} | 145^{10} | 146^{42} | 147^{07} | 148^{44} | 149^{15} | 150^{35} | 151^{09} | 152^{30} | | 153^{16} | 154^{33} | 155^{15} | 156^{43} | 157^{14} | 158^{47} | 159^{18} | 160^{49} | 161^{10} | 162^{47} | 163^{12} | | 164^{50} | 165^{10} | 166^{57} | 167^{11} | 168^{39} | 169^{10} | 170^{33} | 171^{09} | 172^{53} | 173^{10} | 174^{50} | | 175^{08} | 176^{51} | 177^{09} | 178^{51} | 179^{10} | 180^{30} | 181^{12} | 182^{35} | 183^{17} | 184^{47} | 185^{07} | | 186^{49} | 187^{12} | 188^{56} | 189^{17} | 190^{62} | 191^{17} | 192^{40} | 193^{21} | 194^{60} | 195^{19} | 196^{53} | | 197^{20} | 198^{47} | 199^{19} | 200^{33} | 201^{13} | 202^{61} | 203^{14} | 204^{76} | 205^{15} | 206^{54} | 207^{18} | | 208^{49} | 209^{13} | 210^{41} | 211^{11} | 212^{58} | 213^{12} | 214^{69} | 215^{15} | 216^{47} | 217^{12} | 218^{59} | | 219^{14} | 220^{49} | 221^{14} | 222^{65} | 223^{13} | 224^{40} | 225^{17} | 226^{69} | 227^{18} | 228^{48} | 229^{16} | | 230^{55} | 231^{20} | 232^{47} | 233^{18} | 234^{60} | 235^{18} | 236^{55} | 237^{20} | 238^{64} | 239^{13} | 240^{55} | | 241^{24} | 242^{64} | 243^{13} | 244^{74} | 245^{13} | 246^{68} | 247^{11} | 248^{56} | 249^{25} | 250^{73} | 251^{16} | | 252^{53} | 253^{20} | 254^{68} | 255^{22} | 256^{57} | 257^{10} | 258^{73} | 259^{16} | 260^{57} | 261^{22} | 262^{55} | | 263^{17} | 264^{66} | 265^{16} | 266^{50} | 267^{12} | 268^{66} | 269^{14} | 270^{51} | 271^{17} | 272^{57} | 273^{21} | | 274^{71} | 275^{19} | 276^{83} | 277^{17} | 278^{65} | 279^{28} | 280^{52} | 281^{17} | 282^{75} | 283^{20} | 284^{84} | | 285^{24} | 286^{72} | 287^{19} | 288^{60} | 289^{15} | 290^{62} | 291^{23} | 292^{66} | 293^{10} | 294^{77} | 295^{16} | | 296^{80} | 297^{13} | 298^{70} | 299^{14} | 300^{67} | | | | | | | Table 2. (continued) | a | b | 0 | $\overline{\mu}_1$ | $\overline{\mu}_2$ | |----------------|--------------|----------------|--------------------|--------------------| | 7865 | 585 | 12545 | 8450 | -4356 | | 53492 | 5676 | 87548 | 59168 | -30789 | | 7024874 | 745390 | 11497214 | 7770264 | -4043315 | | 127230675 | 13500094 | 208231239 | 140730769 | -73230300 | | 480286984490 | 35719102710 | 766039806170 | 516006087200 | -265972368231 | | 12529086263859 | 931792310790 | 19983424750179 | 13460878574649 | -6938332399120 | Table 3 Table 3 contains the integral graphs $\overline{\alpha K_a \cup \beta K_{b,b}}$ with $\overline{\mu}_1 = a + b$ and a > (b+1), obtained from the classes represented in Propositions2 and3 for i=0. We note that any graph in this list is an integral graph with the minimal number of vertices for the corresponding class. The first, second, ..., sixth integral graph in List 3 belongs to the class described in Proposition m (n^0), where (m, n) = (3, 2), (2,2), (2,3), (2,1), (3,3) and (3,1), respectively. **Acknowledgement.** The author is very grateful to prof. Dragoš Cvetković for his valuable comments and suggestions concerning this paper. MIRKO LEPOVIĆ ## References - [1] D. Cvetković, M. Doob, H. Sachs, Spectra of graphs Theory and applications, 3rd revised and enlarged edition, J. A. Barth Verlag, Heidelberg Leipzig, 1995. - [2] M. Lepović, On integral graphs which belong to the class $\overline{\alpha K_a \cup \beta K_b}$, submitted to Linear and Multilinear Algebra. - [3] M. Lepović, On integral graphs which belong to the class $\overline{\alpha K_{a,b}}$, Graphs and Combinatorics, in press. - [4] M. Lepović, On integral graphs which belong to the class $\overline{\alpha K_{a,a} \cup \beta K_{b,b}}$, submitted to Indian J. Pure Appl. Math. - [5] M. Lepović, On integral graphs which belong to the class $\overline{\alpha K_a \cup \beta K_{b,b}}$, submitted to Discrete Math - [6] D. Redmond, Number Theory an Introduction, Marcel Dekker, New York, 1996. Prirodno-matematički fakultet 34000 Kragujevac Serbia and Montenegro lepovic@knez.uis.kg.ac.yu (Received 12 11 2002) (Revised 24 12 2003)