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WHICH BELONG TO THE CLASS aK, U 8Ky,
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ABSTRACT. Let G be a simple graph and let G denote its complement. We
say that G is integral if its spectrum consists of integral values. We have
recently established a characterization of integral graphs which belong to the
class aKq U 3K} 1, where mG denotes the m-fold union of the graph G. In this
work we investigate integral graphs from the class a K, U 8Kjp p with X1 = a+b,
where A1 is the largest eigenvalue of aK, U BKyp-

In this work we consider only simple graphs. The spectrum of a simple graph
G of order n contains the eigenvalues A\ > Ay > --- > A, of the ordinary adjacency
matrix of G, and is denoted by o(G). A graph G is called integral if its spectrum
o(G) consists only of integers [1].

An eigenvalue p of G is main if and only if (j, Pj) = ncos?a > 0, where j is
the main vector (with coordinates equal to 1) and P is the orthogonal projection
of the space R™ onto the eigenspace £4(i). The quantity 8 = | cos ¢ is called the
main angle of pu.

Let K, and K, , denote the complete graph and the complete bipartite graph,
respectively. We have recently described all integral graphs which belong to the
classes aK, UKy, aK,p, Kq0 UKy and oK, U BKpy (see [2], [3], [4] and [5],
respectively), where G and mG denote the complementary graph of G and the
m-fold union of the graph G, respectively.

The characterization of integral graphs which is related to the class a K, U SKjp
is reduced to the problem of finding the most general integral solution of the fol-
lowing Diophantine equation [5]

(1) [(a+ Da+ (26— 1)b—1]” — daa(a—b—1) = 5>

In other words, oK, U SK};, is integral if and only if (o, 3, a, b, d) represents
a positive integral solution of the equation (1). We note that oK, U K} is an

2000 Mathematics Subject Classification: Primary 05C50.
Key words and phrases: graph, eigenvalue, Diophantine equation, continued fractions.

25



26 MIRKO LEPOVIC

integral graph with two main eigenvalues p, = a—1 and pp = b for any «, 3,a,b € N
with a # (b+1).

REMARK 1. We know that \; + \; > n — 1 for any graph G of order n with
equality if and only if G is regular [1], where )\; is the largest eigenvalue of G. If
G = aK, UBKp, we obtain (i) A > 20+ 1ifa > (b+1) and (ii) M1 > a+ b if
a<b.

In the sequel the symbol (m, n) denotes the greatest common divisor of integers
m,n while m | n means that m divides n.

THEOREM 1 (Lepovi¢ [5]). If aK,U BKyy is integral then it belongs to one of
the following classes of integral graphs:

[ 2kt 4dmt 2kt

2) iTxOJrTz]K u{i—yﬁ—z](zn—l)&,,b,

where (i) a = £[2t + (20— 1)(2n — )]k + (20 — I)m + 1 and b = (20 — 1)m;

(i) t, k, €,m,n € N such that (m,2n—1) =1, 2n—1,2t) =1 and (2¢ —1,2t) = 1;
(iii) T = (a,4mt) such that 7 | 2kt; (iv) xo and yo is a particular solution of the
linear Diophantine equation ax — (d4mt)y = 7 and (v) z > 29, where zg = minZ
such that (:tQTkt o + @zo) >1 and (i 27“ Yo+ % zo) >1;

3) [i (2t—1)kx0+2m(2t—1) z}KaU [i

T T
where (i) a=£[(2t — 1)+ (20— 1)(2n — 1)]k+ (20 = 1)m + 1 and b = (2( — 1)m;
(i1) t,k,£,m,n € N such that (m,2n —1) =1, 2n— 1,2t — 1) =1 and (2¢ — 1,
2t—-1) = 1; (uz) T = (a,2m(2t — 1)) such that 7 | (2t — 1)k; (iv) zo and yo
is a particular solution of the linear Diophantine equation ax —2m(2t — 1)y = 1
and (v) z > zp where zg = minZ such that (:I:@ xo + wzo) > 1 and
(i(2t 1)ky +720)>1;

() [;i;(Qt_Dkxo—i-(Qt_l)mz]KaU[:I:

T T
where (i) a = +[(2t — 1) + 2¢n]k + m + 1 and b = ¢m; (ii) t,k,{,m,n € N such
that (m,n) =1, (n,2t — 1) =1 and (£,2t — 1) = 1; (ii1) 7 = (a, (2t — 1)m) such
that 7 | (2t — 1)k; (iv) xo and yo s a particular solution of the linear Diophantine
equation ax — (2t — 1)my = 7 and (v) z > 2y where zy = min Z with (i@ o+
w,zo) >1 and (:l: @1k Yo + £ zo) > 1. In these classes the symbol ‘L’ is
related to “+’ if a > (b+ 1); and ‘L’ is related to ‘—’ if a < b.

(2t — 1)k

a
Yo + = z} 2n—1)Kyy,

(2t— Dk

a
Yo + - Z} nkyy,

If aK,UpBKyy is an integral graph then it uniquely determines the parameters
t, T, k, £, m, n. However, if xy and g is obtained by using the EUCLID algorithm
then a fixed integral graph aK, U SKjp; also uniquely determines the parameters
Zo, Yo, 20, 2 (see [5]).

Using Theoreml we proved in [5] the following results: (i) if aK,U Ky is
integral with A\; = 2b+ 1 and a > (b+ 1) then it is K5 U Ko 9; (ii) if oK, U 8K



SOME CLASSES OF INTEGRAL GRAPHS 27

is integral with \; = 2b 4+ 1 and a < b then it belongs to the class of inte-
gral graphs 3K; U Ky; 24t 2, where t € N and (iii) if K, UBKyy is integral
with A\ = a + b and @ < b then it is one of the following two integral graphs
KQ U KG,G or K3 U KG’G.

The characterization of integral graphs with \y = a +b and A\; = a — 1 is
reduced to the problem of finding the most general positive solution of the equation
2% —dy?® = ¢, where d is not a perfect square. It is based on the concept of continued
fractions and some basic results which are related to 22 — dy? = ¢ (see [6]).

Let ag,aq,...,a, be a sequence of integers with a; > 0 for ¢ > 1. Then the
term [ag; @y, ..., an] = [ag; a1y, an_1 —l—i] is called the simple continued fraction,

where [ag; a1] = ag + % If ag, a1, as, ... is an infinite sequence of integers with
a; > 0 for ¢ > 1, the expression [ag; a1, az,...] = 11141_1 [ag; a1, ..., ay] is called the
n—-—+0oo

infinite simple continued fraction. We say that [ag;a1,..., Gm—1,Tm; -5 CGmtr—1)
is an infinite simple continued fraction of periodic r if r is the least positive integer
such that a,4, = a, for any n > m.

Let ag,a1,-.. be a sequence of integers with a; > 0 for ¢ > 1. We then define
two associated sequences {p,, } and {¢,} by p; = a;p;_1+p;—2 and ¢; = a;q;—1+Gi—2
for i > 0, where p_5 =0, p-1 = 1 and g2 = 1, g_1 = 0. The rational number

fli = [ag;az1,...,ay] is called the n-th convergent to the infinite simple continued
fraction.

Next, the general solution of the Pell equation 22 —dy? = 1 is given in the form
T; + yZ\/E = (1 + ylx/z_i)i, where x1 + ylx/E is its fundamental solution. We know
that z1 +y1Vd = pr—1 +¢,—1Vd if r is even, and 1 +y1Vd = par—1 +qor—1Vd if
is odd, where r is the period length of v/d. If pg 4 ¢oV/d is a fundamental solution
of the equation 22 — dy? = ¢, then

pi +piVd = (po + 900\/8)(331 + yl\/a)i

represents a class of solutions of z? — dy? = c. Using the last relation we easily
find that p; = pox; + dpoy; and p; = @ox; + poy; for any i > 0, understanding that
zo = 1 and yo = 0. Besides, we have

O B oy 2B (o i),

(6) %Z%\(ZE{\/&(% +y1\/g>im;7\(/p§\/8(m1y1\/a)i.

Finally, for any fundamental solution py + pv/d of the equation > — dy? = ¢,
the following two relations are satisfied [6]

clxy +1) ¢
_ < < —_—.
2 and 0S¢0 Sy [r Ty

Using the concept of continued fractions we proved in [5] that there is no
integral graph from the class aK, U (33 + 2) Ky, with Ay =a+band a > (b+ 1)

for any € N. It is also observed that there is no integral graph from the class
aK,UBKpyp with \y =a+band a> (b+1) for § = 1.

(7) 0 < |po| <
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The characterization of integral graphs with \; = a +b and \; = a — 1 is
reduced to the problem of finding the most general positive integral solution of the
following two Diophantine equations:

(8) [8n(niv — 1)ym — k]* — [16na(ni — 1) + 1]k* = 16n(ni — 1),

)
where 1 =2n —1 and §=nn; (1.1) a = (20 —1)(2t — 1); (1.2) b = (20 — 1)m; (1.3)
(20 —1)=2nm+Fk and (1.4) (2t — 1) = (2¢ — 1) — m; and
(9) [4n(nn — 1)m — k]2 — [16nn(nn — 1) + 1]k* = 8n(nn — 1),
where 3 = nn and (2.1) a = (2t — 1)¢; (2.2) b = fm; (2.3) £ = nm + k and (2.4)
(2t — 1) = 2¢n — m (see [5]).

Further, let z = 8n(nn — 1)m — k and let y = k. Let d = 16nn(npn — 1) + 1
and let po + ©ov/d be a fundamental solution of z? — dy? = 161(nn — 1). Then
k = ¢; and m = 8—7]%“0_1—1), understanding that p; + ¢;V/d is the i-th solution
which belongs to the class with respect to pg + @ov/d. Tt was proved in [5] that
8n(ni—1) | (pi + i) if and only if 8n(nn — 1) | (po + wo). Consequently, the most
general integral solution of (8) is reduced to the positive fundamental solutions
po + wov/d for which 8n(ni — 1) | (po + @o). Similarly, the most general integral
solution of (9) is reduced to the positive fundamental solutions po +@ov/d for which
An(nn —1) | (po + @o)-

We now proceed to establish a characterization of integral graphs oK, U 8Kp
with A = a +b and a > (b+ 1) for 8 = 2,3,4. We note first if aK, U 3Ky is an
integral graph with A\; = a +b and Ay = a — 1 then (a +b) + (a — 1) > aa + 243b
(see Remark1), which implies that o = 1.

PROPOSITION 1. If akq U2Kyy is integral with M =a+banda> (b+1)
then it belongs to the following class of integral graphs

Ka+ zf +a_ 2% +% U 2Kb+ zi’;er, 22t +% , by zii +b_ 22t %

where 2o = 23 +4v/33 and i > 0, ay = 24TEBVI g p, — 4648V33

PROOF. We shall first consider the general positive integral solution of the
equation (8) for nn = 2. Clearly, n =1 and 7 = 2. Then relation (8) is reduced to
2?2 — 33y? = 32. Using a computer program® we obtain that /33 = [5; 1,2, 1, 10]
and 23 + 4v/33 is the fundamental solution of the equation z? — 33y? = 1. Since
po < 19 and g < 3 (see (7)), it is easy to verify that there is no fundamental
solution of 22 — 33y? = 32, which means that (8) does not generate any integral
graph with g = 2.

Consider the general positive integral solution of the equation (9) for nn = 2.
We shall distinguish the following two cases:

Case 1. (n =1 and = 2). Then (9) is reduced to (i) 2% — 33y? = 16. We
now find that pg < 13 and ¢y < 2, and 4 + 0v/33 and 7 + /33 are the fundamental

1ALl the results given in Propositionsl,2 and3 are obtained by using the program called
DIOPHANTUS, written by the author in the programming language C.
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solutions of (i). Since 8 1 (4 + 0) it follows that the class of solutions of (i) which
corresponds to 4 + 0v/33 does not generate any integral graph with 3 = 2. Since
m = 2225 and k = ¢;, for the fundamental solution 7 4+ v/33, we obtain from (5)
and (6) that

_*/_+5(23+4\/_) V33— (23 4\/_)

233 2V33
7;\/[(23+4\/_)i 7\/\i_<23 4\/—)

Further, making use of (2.1), (2.2), (2.3) and (2.4), from the previous relations
we easily get

e_3‘/_+17(23+4f)i BV33 17(23 4f)

2/33 2/33
_5*5;29 (23+4\/_)i 5\5\/@29 (23 4\/_)

which provides the class of integral graphs represented in Proposition 1, under-
standing that p = 2p — 1.

Case 2. (n =2 and 1 = 1). Then (9) is reduced to (ii) 2 — 33y? = 8. We
now find that (iii) py < 9 and ¢y < 1. Using (iii) it is not difficult to show that
there exists no fundamental solution of (ii), which completes the proof. O

PROPOSITION 2. If aK,U3Kyy is integral with M=a+banda > (b+1)
then it belongs to one of the following three classes of integral graphs:

Ka+z2i+a_ 22+ U 3Kb 230+ b z2j'+%,b+zii+b_ 2244

where z4+ = 62809633 + 637735297 and i > 0; and

(19) ay = SLT06STISTE626538413V07 o j , — 1309509107:132060505v/07 .
(2) qu = SISST234526835V0T g g, — SSOSCLESI0LVOT 4 g

0 _ 681412777+69186985\/97 _ 72302819+7341239\/97
(37) ax = 194 and b 194

PROOF. We shall first consider the general positive integral solution of the
equation (8) for nn = 3.

Case 1.1 (n = 1 and 1 = 3). Then (8) is reduced to (i) % — 97y? = 96. We
now have (ii) /97 = [9; 1,5,1,1,1,1, 1, 1, 5, 1, 18]; (iii) 62809633 + 63773521/97 is
the fundamental solution of the equation 22 — 97y?> = 1 and (iv) po < 54907 and
©o < 5575. According to (iv) we find that 22 +2v/97; 463 +47/97; 2738 +278/97
and 49589 + 50351/97 are the fundamental solutions of (i). Since 48 { (22 + 2);
48 1 (463 + 47) and 48 t (2738 + 278), these solutions do not generate any integral
graph with g = 3.
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Consequently, the general solution of (i) is reduced to the class which corre-
sponds to the fundamental solution 49589 +50351/97. Since m = %8% and k = ¢,
using (iii) and (5), (6), we obtain

B (1138\/W+ 11208 ) ; (1138\/9_7 — 11208 ) i

= z
2,97 * 2/97

. (49589 + 5035\/ﬁ> i (49589 — 5035v/97 ) ;
2/97 * 2197 -

Next, making use of (1.1), (1.2), (1.3) and (1.4), by a straight-forward calcula-
tion, we get from the last relation that

é:<11863¢£77+116837) ; (11863\/S77—116837) i,

z 5

24/97 + 24/97 -

i <1o725\/97 + 105629 ) o <10725\/97 — 105629 ) .
2,97 + 2,97 -

which provides the class of integral graphs represented in Proposition 2 (1°).

Case 1.2 (i = 3 and n = 1). Then (8) is reduced to (v) 2% — 97y? = 32.
According to (iii) and (7) we find that (vi) pgp < 31701 and ¢¢ < 3218. Using (vi)
we get 138 +14+/97 and 3063 + 3111/97 are the fundamental solutions of (v). Since
16 1 (138 + 14) and 16 1 (3063 + 311) it follows that (v) generates no integral graph
with g = 3.

Consider the general positive integral solution of the equation (9) for nn = 3.
We shall also distinguish the following two cases:

Case 2.1 (n = 1 and = 3). Then (9) is reduced to (vii) 2% — 97y* = 48.
We now find that py < 38825 and ¢y < 3942; 40 4 44/97, 719 4+ 734/97 and
15965 + 1621/97 are the fundamental solutions of (vii). Since 24 { (40+4) and 24 {

(159654 1621) it remains to consider the fundamental solution 719+ 73+/97. There-

fore, by an easy calculation we get m = (3’3‘?_%)21 + (33‘29_%)2’; and k =

o7 , B , o , B ,
( 19;\/377%?)21 _ (7192\;%m)z’,, which yields ¢ = (86\/\%%4447)21+ + (86%847)21
and { = (még_%)zi + (311‘29_%)23. So we get the class of integral graphs

represented in Proposition 2 (29).

Case 2.2 (n = 3 and 7 = 1). Then (9) is reduced to (viii) 22 — 97y? = 16.
We now find that py < 22416 and g < 2275; 4 + 097 and 4757 4 48397 are the
fundamental solutions of (viii). Consequently, since 8 t (44 0) and 8 | (4757 + 483)
we obtain that m = (7655%6451 )zL + (7655%6451)21; k = (74757;‘\‘/1%m)zi -
(475727\;1%@)2{; /= (569\/%;;5604)%r + (569%5604)21; i = (6173%60797)21 +

(%\;&60797)21, which provides the class represented in Proposition 2 (39). [
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PROPOSITION 3. If ak, U 4Ky is integral with A =a+banda> (b+1)
then it belongs to one of the following three classes of integral graphs:

Ka+ 23 fa_ 22 +133 U 4Kb+ 230 b 22 +3&, by 230 b 22 +35
where z4 = 6224323426849 4 4480366040401/193 and 7 > 0; and

(10) ay = 12090568244623934-870298145798231/193 and

193

b — 179835915082455412044872487449v/193 .

+ = 386 4
0 __ 758972+54632/193 __ 56445+4063v193 .
(2%) @y = PG and by = TG

(30) ay = 92695388006569+6672360030889+/193

68937868230154+4962256337511/193
386 :

386

and by =

PROOF. We shall first consider the general positive integral solution of the
equation (8) for ni = 4. Clearly, n = 1 and = 4. In this case (8) is reduced to
(i) 22 — 193y? = 192. We now have (ii) v/193 = [13; 1,8,3,2,1,3,3, 1,2, 3,8, 1, 26 |;
(iil) 6224323426849 + 4480366040401/193 is the fundamental solution of the Pell
equation 22 — 193y? = 1 and (iv) pg < 24444530 and g < 1759555. Using (iv) we
find that 112+8v/193; 3362+2421/193; 87703 +6313v/193; 871862+62758/193 and
22743973 + 1637147/193 are the fundamental solutions of (i). Since 96 1 (112 + 8);
96 1 (3362 + 242); 96 1 (87703 4 6313) and 96 1 (871862 + 62758), these solutions do
not generate any integral graph with 5 = 4.

Thus, the general solution of (i) is reduced to the class which corresponds to
the fundamental solution 22743973+ 1637147+/193. Making use of (iii) and (5), (6),

we get implicitly that m = (126985\/19114;1764132)Zi + (126985\/1%3;)51764132)Zi and
__ (22743973+1637147/193 .4 _ (22743973—1637147v/193 .4 . : ) _
kE=( T )24 — ( Wi )z*, which provides that ¢ =
3668907v/193+50970085 \ . i 3668907+/193—50970085\ i . { __ (3414937+/193447441821 .4
( )24 +( )zlst = ( )24+
21193 + 21193 - 21/193 +
(3414937%47441821)21. So we arrive at the class of integral graphs represented

in Proposition3 (1°).

Consider the general positive integral solution of the equation (9) for nn = 4.
We shall distinguish the following three cases:

Case 1. (n =1 and n = 4). Then (9) is reduced to (v) x? — 193y? = 96.
We now find that py < 17284892 and oy < 1244193; 17 + /193, 403 + 29/193,
12142 + 874+/193 and 3148778 + 2266541/193 are the fundamental solutions of (v).
Of course, since 48 t (17 + 1); 48 1 (12142 + 874) and 48 t (3148778 + 226654),
these solutions generate no integral graph with 3 = 4. For 403 + 29193 we

have m = (9\/193+125)Zﬁ'r + (9\/193—125)22; k= (403-‘,—29\/193)23‘r _ (403—29\/193)Zi .

21/193 2/193 2,/193 2/193 -
__ (6511934903 i 65v/193—9031 _i . (121103416811 i 1211/193—16811 i
t= ( 21193 )Z+ +( 21/193 )Z* and ¢ = ( 21/193 )Z+ +( 21/193 )Z*’

which provides the class of integral graphs represented in Proposition 3 (2°).

Case 2. (n =2 and n = 2). Then (9) is reduced to (vi) 22 — 193y* = 48.
We now find that po < 12222265 and ¢o < 879777; 56 + 4193, 1681 + 121v/193
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and 435931+ 31379+/193 are the fundamental solutions of (vi). Consequently, since
24 1 (56 +4), 24 1 (1681 + 121) and 24 t (435931 4 31379), the equation (vi) does
not generate any integral graph with 8 = 4.

Case 3. (n = 4 and n = 1). Then (9) is reduced to (vii) z? — 193y =
24. We now find that py < 8642446 and g < 622096; 6071 + 437/193 and
1574389+4113327+/193 are the fundamental solutions of (vii). Since 12 1 (6071+437)
and 12 | (1574389 + 113327), we obtain for 1574389 + 113327v/193 that m =

(140643/193+1953875) i | (140643VIIB_1953875 ) i 5y |, — (16TA389+113327V/I08) i
2V/193 + 2v/193 - 21193 +
(1574389;1113527\/193)22_. In this way we obtain that £ — (126985\/191;?764132)21 4
(126985V/1981764182 ) i oy § — (1891117V/193+26272237) iy (1891117V/103_26272237 i
V193 - 2v/193 + 2v/193 -
Using these relations we obtain Proposition 3 (3). O

Table 1 contains the set of all integral graphs® from the class ok, U BKp b,
whose order "o’ does not exceed 30. In this table an integral graph is described by
the parameters «, 8, a,b and ones presented in the class of integral graphs in Theo-
rem 1. The symbol "7’ denotes the identification number of the corresponding inte-
gral graph. In Table 1 (i) graphs with identification numbers 1,2, ..., 18 belong to
the classes represented by (2); (ii) graphs with identification numbers 19, 20, ...,47
belong to the classes represented by (3); and (iii) graphs with ¢ = 48,49,...,70
belong to the classes represented by (4). We note that there exist exactly 18, 29
and 23 non-isomorphic integral graphs from the classes described by (2), (3) and
(4), respectively. In this table® identification number 20 is related to the integral
graph with the largest eigenvalue 7i; = 2b+ 1 and a > (b + 1), while identification
numbers 4, 19 and 44 are related to the integral graphs with 77; = 2b+1 and a < b.
In Table 1 there exists just one integral graph* with 77; = (a+b) and @ > (b+1) and
its identification number is 64 — the first next one has 12545 vertices. Identification
numbers 24 and 50 are related to the integral graphs with 7i; = (a + b) and a < b.

There exist exactly 7556 non-isomorphic integral graphs which belong to the
class aK, U Ky, whose order does not exceed 300. In particular, the total number
of such integral graphs (obtained by using (2), (3) and (4)) is (1433 +888), (1265+
948) and (1736+1286), respectively, where m and n in the expression (m+n) are the
numbers of integral graphs with a > (b+1) and a < b, respectively. Table 2 contains
a distribution of those graphs with respect to their orders. In Table 2 the number n
in the symbol 0™ denotes the number of integral graphs of the corresponding order
o=1,2,...,300. In this table 0™ is omitted if the corresponding number n = 0.

2The data given in Tables 1 and 2 are obtained in two different ways: (i) they are generated
by using relations (2), (3) and (4); and (ii) by varying the parameters «, 3, a, b in all possible ways
in equation (1).

3In Tables 1 and 3 the number Tio denotes the second main eigenvalue of the corresponding
integral graph aKq U 8Ky p.

dFor any integral graph m with the largest eigenvalue iy = a + b we have (i)
I — 2Bab and (i) (a4 b)(a+ 2b+ 1) = 28b(2a + b) (see the proof of Theoreml).

Mo = a+b
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il Y 2| o a B a b| T t k £ m n| o Ty
46(-1 -1 103 2 1 12 3|6 2 2 1 3 1]20 -6
4711 0 2|3 14 2 1 4|1 1 2 1 4 1| 271 -3
48| 1 0 1/ 8 2 1 1 3,1 1 1 1 3 1 5 2
491 0 -1 1/13 1 4 5 1] 1 1 1 1 1 1| 10 -4
50/ -1 -1 0|14 1 1 2 6|1 1 1 2 3 1 8 -3
500 0 1 1|16 1 2 12 1| 3 2 2 1 1 1 8 6
52/ 1 0 1|16 4 1 1 6|1 1 2 1 6 1| 11 -3
531 0 -1 1|17 1 4 9 1] 3 2 1 1 1 2| 12 -6
54/ 1 0 2|17 5 2 1 3/ 1 1 1 1 3 1| 14 -2
5/ 0 -1 1|18 1 1 14 2| 7 4 1 2 1 1 8 -7
56/ 1 2 0|19 1 2 7 3/ 1 1 1 1 3 1| 14 -6
5700 -1 1/20 1 6 & 1] 1 1 2 1 1 1| 16 -6
58-5 -2 -1/22 2 1 3 8|1 1 2 1 8 1| 15 -5
59/ 1 0 1|22 12 1 1 5|1 2 1 1 5 1| 19 -4
60 1 0 1|23 3 1 1 10| 1 1 2 2 5 1| 14 -3
61| 1 0 1|24 6 1 1 9| 1 1 3 1 9 1| 17 -4
62/ 1 0 1|24 4 2 1 5|1 1 1 1 5 2| 19 =2
63| 1 0 3|26 8 3 1 3/ 1 1 1 1 3 1| 23 2
64| 0 -1 1|27 1 2 15 3| 5 3 1 3 1 1| 18 -10
65| 0 -1 1|27 1 & 11 1| 1 1 3 1 1 1| 22 -8
66| 0 1 1/28 1 4 20 1| 5 3 2 1 1 2| 16 10
67 0 -1 2128 2 9 5 1|1 1 1 1 1 1| 25 -4
68/ -3 -2 0|29 3 2 3 5|1 1 1 1 5 1| 24 -4
69 0 -1 113 1 2 22 211 6 1 2 1 2| 16 -11
70/-4 -1 -1/3 3 1 2 12| 1 2 1 4 3 1| 20 -5
TABLE 1. (continued)
007°t  008°Y  009°' 010°%2 013° 014% 015°2 016° 017°2 018°% (1992
020 021°% 022°° 023 024% 026°° 027°% 028°7 029° 030° 031%°
0321° 033%% 03421 035°% 036°7 037°2 038'' 039°2 040 041°% (42°°
0437 044'°  045°° 046** 0472 048" 049°° 050" 051 052" 053"
054'"  055%%  056'° 057°° 05822 059°¢ 060'® 061'° 062*7 063°¢ 064'°
065% 066'"  067°7 068'° 069%° 070" 071" 072'* 073% 074*° 075%
076%*  077%* 078%% 079°7 080%° 081%¢ 082%° 083°¢ (08422 (85%* (862
087°% 08822 089'° 09022 091%° 09226 093'4 0943 095'2 (0963' (97%°
09833 099%° 1002 101°7 10237 103'% 104%° 105°7 106% 107! 108%°
109" 110* 111t 112% 113 114%7 115% 116 117°7 118* 119"

TABLE 2
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120%° 12112 1223% 123'2 124%2 125!t 12630 127!l 128%° 12915 13037
13198 13236 13312 134%% 135!2 136%° 13713 138 13915 140%° 141!
142°0 14313 1443 145'0  146%?  147°7 148% 149" 150%° 15199 152%°
153'6 15433 155" 156% 157 15877 159 160" 161'° 1627 163"
164%° 1651 16657 1671 168%° 169'° 1703 17199 17253 17310 17450
175% 17650 17799 17850 179'0 1803%° 181'% 18235 18317 184%7 185°7
18649 187'2 188°% 189'7 190°% 191'7 192 193" 1945 1950 196°3
19729 198% 199'° 20033 201'% 20261 203 2047 205'° 206> 207'®
208%° 20913 210%! 211! 21258 213'2 214% 215 216%" 21712 218%°
21914 220%% 22114 22265 22313 92440 99517 29659 22718 92848 92916
230%° 2312° 23247 23318 23450 93518 936%° 23720 23854 23913 240°°
24124 24204 24313 244" 24513 24698 2471 24856 249%° 2507 25116
25253 25320 25408 25522 25657 25710 25873 25916 26057 26122 262%°
263'7  264%  265'¢ 266°° 267'2 268°¢ 269'* 270°' 271'7 27257 273
2747 27519 27633 27717 2785 2792%  280°% 2817 2827 28320 928434
28520 28672 28719 288%0 28915 29062 29123 29266 29310 29477 295!6
29680 29713 29870 299'* 30057
TABLE 2. (continued)

a b 0 oy Iz

7865 585 12545 8450 —4356

53492 5676 87548 59168 —30789

7024874 745390 11497214 7770264 —4043315

127230675 13500094 208231239 140730769 —73230300

480286984490 35719102710 766039806170 516006087200 —265972368231

12529086263859 931792310790 19983424750179 13460878574649 —6938332399120

TABLE 3

Table 3 contains the integral graphs aK, U Ky with 1, = a +b and a >

(b+ 1), obtained from the classes represented in Propositions2 and3 for i = 0. We
note that any graph in this list is an integral graph with the minimal number of

vertices for the corresponding class. The first, second, ..., sixth integral graph in
List 3 belongs to the class described in Proposition m (n"), where (m,n) = (3,2),
(2,2), (2,3), (2,1), (3,3) and (3,1), respectively.
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