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Abstract. The exact asymptotics of singular values of a fractional integral

operator
2 _ a—1
o _ / (x—y)>* dy
I'(e)
0

for 1/2 < « is found. The results related to asymptotic behavior of singular val-
ues of convolution operators similar to fractional integral operator are given. We
also obtained a result about the asymptotic behavior of convolution operators with
logarithm-singularity.

1. Introduction. In [7] Hille and Tamarkin obtained bounds for the eigen-
values of fractional integral operators (F.I1.O.). Chang [1] extended these results to
singular values of ordinary integral operators.

Faber and Wing [3] found an upper bound for the singular values of F.I.O.
and some other similar operators. They stated as an open problem to find the
precise asymptotics of the singular values of I for 0 < a < 1. Also, the following
is conjectured:

If K; and K5 are two convolution operators

Ki-=/ Ki(z—y)-dy; i=1,2
0

=1

K n(K
where K; are smooth functions on (0, 1] so that lim 1(2) =1, then lim 5n (K1)
z—0 KQ(.Q}) n— 00 Sn(KQ)

(sn(K;) are the singular values of K;).
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The conjecture is shown in the case
(%) Ki(z) = 2"ki(),

where k;(0) = 1 and n in a natural number.

In this paper we will prove the conjecture when K; are of the form (x) and n
is not a natural number. We will also find the exact asymptotics of singular values
of F.I.O. I for @ > 1/2. The case 0 < o < 1/2 was treated in [2]. The conjecture
with kernels K; having logarithm-singularity in the point = 0 will be proved.

Asymptotic behavior of singular values and singular functions of convolution
operators with sufficiently smooth kernels can be found in [5].

2. The singular values of F.I.O. Let H be a complex Hilbert space and
T a compact operator on H. The singular values of T (s,(T')) are eigenvalues of
the operator (T*T)'/? (or (TT*)'/?).

We will consider the operator 1% : L?(0,1) — L?(0,1) defined by

I*N@ = 573 / “(@— )" f(y)dy.

It is easy to prove that I® is compact [3].
THEOREM 1. If a > 0, then lim, o n%s,(I%) =7~ %.

The case 0 < a < 1/2 is proved in [2]. Before proving Theorem 1, we will
prove some lemmas.

LEMMA 1. Ifa€ (n,n+1/2)U(n+1/2,n+1) (n=0,1,2,...) and
B :L?(0,1) = L*(0,1) is defined by

e
Bf(.fl}) - A 2F(20é) cos Ckﬂ'f(y)d:lh

then lim n?®s,(B) = 72,
n—oo

In [11] and [13] are given some results about eigenvalues of integral operators
with kernels “close to” kernel of operator B. We give a new proof of Lemma 1.

Proof of Lemma 1. Let us consider the function

Caa®) = 2 Ky a(lal) - 2112
2a\L) = \/7_TF(05) 1/2—a T x )

where K, (-) is McDonald function. It is known that Gao(-) € L'(R) and

/ €t G ()dt = (1 + 2)—°
R
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(see [12]). By direct calculation we get

21/2—aﬁ - 1 |$|2a—1
2T'(a) cosamr  20-1/2T(a + 1/2)
21/2 a\/_ |2a+2k—1
) cos am Z k122k+o— 1/2F(k +a+1/2)

(1) Gaa(z) =

+ o ()

where ¢y is an even entire function.
Let B! : L?(—1,1) — L?(—1,1) be the operator defined by

- / Gaala =) W)y

According to Widom’s result [13, Theorem 1] we get
(2) sn(B.) ~ (2/n7)**, n — co.
Let D, : L?(—1,1) — L?(—1,1) be the operator

21/2—(1\/7_.‘. 1 |.’L' _ y|2a—1
2T (@) cosam J_; 20-1/20(a + 1/2)

D, f(z) = f(y)dy.

2a—1

N

.D — 1 ! 2a—1 d
af(x)—m/_l|$—y| f(y)dy

From (1), (2), Ky Fan’s theorem [6] and a theorem of Krein [6, p. 157] it follows
$n(Dgy) ~ sp(B2,) and so

Using the Legendre’s formula I'(2a) = T(a)T(a 4+ 1/2) we get

3) sn(Da) ~ (2/nm)*

The operator D, is selfadjoint, therefore from (3), using the substitution
r1 = (1+2)/2, 11» = (1+y)/2, we get s,(B) ~ (7n)"2%, n — oo. Lemma is
proved. O

Let 0 < 8 <1/2, ¢(t) = f+°°sﬂ Y14 s)%1ds, a =n + 8,

|z =y () (y —2); y>z
M(m’y)‘{|x—y|2a—1¢<y/(x—y)); a>y D /M“’

LEMMA 2. We have lim,, o m?*s,,(B;) = 0.
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Proof. Let ¢(t) = t>* '¢(1/t)y(t) = (1 — t)** '¢(t/(1 — t)). Expanding
functions ¢ and ¥ in series near the points t = 0 and ¢ = 1 we get
o0 =91 -0)=0;, v=0,1,...,2n—1

4
W PP (04) =91 -0),  B(0L) = HD(1-0).

From
w2 loy/z—1); y>z

Mz,y) = { Y (y/x); >y

and (4) it follows

0"M/0y" |y=s =0 forv=0,1,...,2n -1
0" M/0y" |y=s exist for v = 2n and v = 2n + 1.

Let 0 < § < 1and let Ps: L?(0,1) = L2(0,1) be the linear operator defined by

T ) =
P‘Sf(x):{g,( ) §<z<l
Then
(5) Bi = Bi(I = F5) + (I — P5)B1Bs + PsB1 .
From

Bi(I - P5)f(x) = /5 M(z,9)f(4)dy, and

62n+1 M

W <M6 for 5§y§1,3&'€[0,1],

according to Krein’s theorem [6, p. 157] we conclude

(6) sm(Bi(I — P5)) = o(m™2""%/%), m — oo
and from this

(7 $m((I — P5)B1Ps) = o(m™2"73/%) | 'm — .
We will show

(8) m**s,,(PsB1Ps) < Co - 0,

where Cj is a constant independent on both m and §.
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The operator PsB; P5 : L?(0,8) — L?(0,0) is given by

]
PsByPsf(z) = / Mz y)f@)dy  (0<z<8).

Let us write PsB; Ps = C + C* where

3
C:I20,6) » IX0,6),  Cf(a) = / M(z, ) (y)dy
C* : L*(0,8) — L*(0,0);  C*f(x) = /OwM(:v,y)f(y)dy-

(C* is the adjoint operator of C). Let I : L?(0,8) — L*(0,4) and I* : L2(0,6) —
L?*(0,6) be the operators defined by If(z) = [ f(s)ds and I* f(z) = f; f(s)ds.
Then s )

Cfa) = [ 175 o

[
— *2n 2a—2n—1_(2n) E _
/ =" f(y)z ¢ (w 1) dy

T

]
_ *2n 281, (2n) (Y _
—/z I f(y)z™" "o (m l)dy

= DI**" f(x),
where D : L2(0,8) — L?(0,) is the linear operator defined by

Df(z) = /: 22771 (L 1) £(y)dy.

The fact $,(I*) = sp,(I) = 6/7(n —1/2) [6, p. 155] implies that inequality (8) will
be proved if we prove

9) mwsm(D) <(Ci-4,

where the constant C is independent on both m and 4.
Let D* be the conjugate operator of the operator D in the space L2(0,4).

Then .
D* f(x) :/0 Yt (g - 1) fy)dy.
From
/z y?P 1 (E - 1) fly)dy = /z(wa)(y)A(w,y)dy, [12, pp. 42, 43],
0 Y 0
where

1 d T t2ﬂ—1(p(2n) (% _ 1)
Ao =~Fi gy |,
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it follows
(10) D*=F .18,

where

1271 12(0,8) » L2(0,8), I*°f(a) = % /0 “(@ - )P fly)dy

and F is the linear operator on L2(0,d) defined by F f(z) = fox Az, y) f(y)dy. We
will show that the operator F is bounded. It is easy to check that A(:,-) is the
homogeneous function of order —1. If

1; >0
e(w)z{ i
0; <0

then the function A(z,y)0(xz — y) is also homogeneous of order —1.
According to the inequality of Hardy and Littlewood [12, p. 28] from

oo 1
/0 JA(L,9)[[6(1 = y)|y~**dy = /0 y ™ ?lA(L y)ldy = L(a) < oo

it follows that the operator
| Ao =) dy s 12(0,00) - 220,00
0

is bounded with the norm not greater then L(«). But then the operator F is also
bounded and ||F|| < L(«).

From s,,(I%%) < Cy - 828 /m?P (with the constant Cy independent from both
m and §) and (10) we get s,,,(D) < CoL(a) -6 /m?? < CyL(a)d/m?#. This proves
the inequality (9) and so (8).

From (6), (7), (8) and the properties of the singular numbers of the summ of
operators it follows lim,, o, m%¥s,,(B1) = 0 and the lemma is proved. O

Let @ =n+1/2+ 5,0 < <1/2, ¢o(a) = [;7 s°1/2(1 + 5)°~%/2ds,

z
B41/2, B—1/2.

R(m,y) :|m_y|2n‘{$ Yy ; y>2zx

yﬂ+1/2xﬂ_1/2; y S T

2a0—1 do(z/(y—2)); y>=z
+ (/2= Bz~ '{¢o<y/<x—y>); >y

Let By : L?(0,1) — L%(0,1) be the linear operator defined by

Byf(z) = / R(z — ) (4)dy.
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Let 0 < d < 1and Ps: L?(0,1) — L?(0,1) be the linear operator

flx); 0<x<d
0; d<z<l

Psf(z) = {

Let Ty : L?(0,6) — L%(0,5) and S : L?(0,6) — L?(0,0) be the linear operators
given by
J 92n+1
0 R
TOf(x) = Y 6y2n+1 f(y)dy

si@ = [ "W — ) (@ — y)*" f(y)dy.

LEMMA 3.
a) 5, (To) < Cs-6/m?P, where the constant Cs is independent on both m and §.
b) m2®s,,(s) < Cy - §, where the constant Cy is independent on both m and §.
¢) limy, 00 m2®8y,(B2) = 0.

Proof. Let ¢ and 1 be the functions

p(t) = (t =172 1 (1/2 = B)(t = 1)** Mo (1/(t —1));  (¢> 1)
P(t) = (L= ) 712 1 (1/2 = B)(1 = 1)** T go(t/(1 — 1)); (¢t < 1)

e loy/r); y>z

R(z,y) = { 2oLy (y/z); = ; y.

It is easy to check that

(a1 {@Mu+n)=¢wu—n)=m forv=0,1,...,2n—1
(1 +0) =™ (1-0), for v=2n,2n+1, 2n + 2.

Like in Lemma 2 we use the fact that
By = BQ(I - Pg) + (I - Pg)BQP(; + PsB5 Ps.
It follows from (11) that 0YR/0y"|y=y = 0 for » = 0,1,... ,2n — 1 and that there

exist 0¥ R/Oy" |y=, for v = 2n, 2n + 1, 2n + 2. From |8*"T?R/0y*" 2| < M; < o0
ford<y<1,0<z<1and

1
By(I - P3)f(z) = /5 R(z,y)f (y)dy
it follows that

{ sm(Ba(I = Py)) = o(m~(rt2+1/2)
m — 00.

- (1 — Py)BE;) = o{m—(2n+2+1/2)
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We write the operator

)
PyByPy f(z) = /0 R(z,9)f(y)dy : I2(0,8) — L*(0,5)
in the form PsByPs = E 4+ E*, where
) z
Ef(z) = / R(z,y)f(y)dy; E*f(z) = / R(z,y)f(y)dy.
T 0

Using the partial integration 2n + 1 times and applying (11) we get

Ef((L‘) — I*2n+1f(.77) . 62nR/6y2n|y:$+0 + ToI*2n+1f(£L'),

and so

Ef(z) = M (1 40) - 222127 f(2) + To 27 f ().
Let 26 s

V@) = o / (y — )2 £ (y)dy - L*(0,8) — L*(0, ).

Then E = ™ (14 0) -V 4 ToI*>*t! | and from this we get E* = (™ (14 0) -
V* 4+ " Tx. Therefore

(13) PsByPs = oW (14 0)(V + V*) 4 ToI*>"+! 4 Tp 2+,

Proof of part a) of Lemma 3 is the same as the proof of Lemma 2.
It follows from this that

(14) m>® s, (ToI**" T + T¢I+ < Cs - 6,
with C5 independent from both m and 4.

Note that V + V* = S + W, with W : L2(0,8) — L%(0, ) defined by

5
W) = / 2 (2 — y)*" £ (4)dy.

The operator W is an operator of the rang 2n + 1 and if part b) of Lemma 3 is
proved, we get

(15) m**sm(V +V*) < Cs - 6,

the constant Cg is independent from both m and §.

From (13), (14), (15) and from the properties of the singular values of the
summ of operators it follows

(16) m>®s,(PsByPs) < Cyr - 6,
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C7 is independent from m and §. But then from (12) and (16) it follows part ¢) of
Lemma 3.

We will prove the statement b). For that it is sufficient to prove that
m?2®5,,(S1) < Cy - § (Cy is independent from m, §), with

3
Sif(z) = / *° — 2*P)(z — y)*" f(y)dy : L*(0,6) — L*(0,5).

Set h(t) = (t*% —1)(t — 1)®". Then

sif@) = [ "ot (Y) f)ds

x

Note that
(17) R (140)=0, for v =0,1,...,2n and h®"*D (1 +0) = —23

Using (17), after 2n+1 partial integrations we get S; = DI*2"*! where D : L2(0,d)
— L2(0,6) is the linear operator defined by

Di@) = | e (%) rw)dy.

x

If we prove
(18) m*P s, (D) < Cgé (Cs is independent on m, §),

the part b) of Lemma 3 will be proved.
Using [12, pp. 42, 43] we conclude

D fia) = [y (5) fwy = [ DB

with

B 1 d T t2,6’71h(2n+1) (Z‘/t)
Blay) =~ —w)@/y R

The operator

R = | " Bla,y)f(v)dy

is bounded and its norm has an upper bound independent of §. The proof of this
fact is as in Lemma 2. This implies (18) and completes the proof. O

LEMMA 4. Let L :L?(0,1) — L2(0,1) be the linear operator defined by

Lf(z) = / (2 — 9)™ (/3 + /) f () dy.
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Then lim,, oo m?"t1s,, (L) = 0.

Proof. Considered the operator L in the form

14

i@ =3 (2”) (—1)*a" /2T, f ()

v=0
with

T, f(z) = / Y2 (VE + /5™ (v + /) £ (0)dy,

we conclude that it is enough to show that lim m?"*ls, (G;) = 0 for
m—r00

Gif(a) = / (VE + V5" In(VZ + Vi) f(y)dy.

To do this, it is sufficient to show that lim m2"*!s,(G) = 0, for the operator
m—o0

Gi(z) = / (2 + )" In(z + ) (4)dy.

By partial integrations we get

(19) G = finite rank operator + (2n)!H - I°™,
where
T 1
P @) = Gy [ =0 W 1@ = [ n@+ s

In [2] it was shown that lim ms,,(H) = 0 and thus from (19) the conclusion of
the lemma follows. O ™%

LEMMA 5. Let P: L%(0,1) — L%(0,1) be the linear operator defined by
1 2
(z —y)™"
P = ——1 - .
f@) = [ Chrmle =iy
Then lim m2"*ls, (P) =n 271,

m— o0

Proof. The function G;(z) = 7' Ko(|z|) € L' (R) (Ko is McDonald function
[12]) satisfies the relation

/ Gr (et dt = (1 + 22)"1/2,
R
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Diferentiating this relation 2n times we get

21

n itx nd 2\—1/2
/RGl(t)t2etdt:(—1) dm2n(1+$) /

Using Widom’s result [13] and having in mind that

d2n
d.’L'2"

(2n)!
1.2n+1

~

(14 22)~1/2 (x — o0)

(because (1 +22)~%/2 = Y22 (71/%) 22~ & > 1) we obtain

@) s ([ GilemnE-ua) ~ O o)

But, on the other side

n|z| o= (z/2)%*
k=0

(4o is an even entire function). Therefore, using Ky-Fan’s theorem [6] and (20) we

conclude
([ il ol )
1 ™ (mm/2)2ntt

on ([ g )~ e

The last relation implies s,,(P) ~ 1/(mm)?**!. The lemma is proved. O

and thus

Proof of Theorem 1. By direct calculation we find the kernel Ko(z,y) of
the operator Ag = (I*)*I*:
T2(a) fy “(t+z—y)e o7, 1>0>y>0

I'2(a) Ol_y(t +x—y)e it ldt; 1>y>2>0.

K()((U,y) = {
The eigenvalues of the operator Ay are the same as the eigenvalues of the operator
A with kernel
K { T%(a) [yttt +y—2)*tdt; 1>y>2>0
TTAr ) [l e a -y 1222y >0,

We will use the formulae from [10]:

1
/a:”(l +z)ldz = 21+ 2)f P /a:p(l +2)7 Yde
21) ptq+1 ptqg+1
zP (14 z)1t! P
/:1:”(1 +z)ldz = - /a:p_l(l + z)dz.
ptq+1 ptqg+1
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From (21) we obtain

.’l]'a(l + :L.)afl xafl (1 + x)afl
20 —1 2(2a-1)

a-1 a—2 a—2
2(204—1)/33 (14 2)* “dx.

Icase: a=n+£,0<3<1/2,n=0,1,2,.... If we apply (21) n times, we

(22) /a:o"l(l +2)* tdr =

get

Ko(z,y) = kernel of a finite (2n) rank operator

()" (= —y)>"

+(2a—1)-...-(2a—2n

)’Cﬁ(m,y)-

In [2] it is shown that

/Ba]- _2/6)

with

TE@ - 19 (%5); v>e
“I2@) -y () 2>
(The function ¢ is introduced before Lemma, 2). Therefore

(=)"|z —y|**"'B(B,1 - 2)
K, (z, =
@9) = B a1 .. @a—2n)
+ kernel of a finite rank operator + C(a) - M (x,y)

G(.Z',y) =

= % + kernel of a finite rank operator + C(a)M (z,y).
From this it follows

(23) A = B + finite (2n) rank operator + C'(a) - By

From (23), Lemma 1, Lemma 2 and Ky-Fan’s theorem [6] it follows

sm(A) ~ (mm) 2%, (m = oo) and thus s,(I%) ~ (7m)~%, (m —= 00).

IT case: a =n+1/2+ 6,0 < B < 1/2. Similarly to the previous case we
obtain

Ko(z,y) = kernel of a finite rank (2n) operator

(=) (= —y)*"

+(2a—1)-...-(2a—2n

)/Cg+1/2 (z,y)
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Using (21) we get

gB+1/28-1/2

1 s Y27
IC5+1/2(£U,Z/) = T23L1/9) B+1/2,8-1/2
LB +1/2) | LT 5y

g B-1)2 * p-1)2 B—3/2
+ |z -y 2ﬂI‘2(ﬂ+1/2)/0 s (1+5s) ds

p—1/2 25
+ ==l =y
2
268 +1/2) 0<—$zy); T>y
Then
|z -y ,
Kao(z,y) = + kernel of a finite rank operator + ¢(a)R(z, y)

2T (a) cos am
From this it follows

(24) A = B + finite rank operator + ¢(a)Bs.

From (24), Lemma 1, Lemma 3 and Ky-Fan’s theorem [6] it follows

sm(A) ~ (mm)™2* and thus 8,(I%) ~ (7m)™%, m — occ.

ITI case: a = n + 1/2. From

_1\n _ 2n
Ka(z,y) = kernel of a finite rank operator + %Iﬁﬂ(m, y)

and
1 2
Kipp(@y) = ——lInjz —y|+ —In(vz +/3)

we conclude

2 (~1)"

A = finite rank operator + —
m (2n)!

Using (25), Lemma 4, Lemma 5 and Ky-Fan’s theorem [6] we obtain

L + (_1)n+1P

sm(A) ~ 1/(mm)*™ ™, m = 0o and thus s,,(I%) ~ 1/(mm)*, m — .

IV case: a = n, (n is a natural number). In this case the problem on
asymptotic behavior of singular numbers reduces to the problem on asymptotic
behavior of eigenvalues of a differential operator with regular boundary conditions.
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Asymptotic of eigenvalues of a differential operator with regular boundary
condition is known (see [8]) and therefore

Sm(I™) ~ 1/(mm)", m — oc.

Thisf completes the proof. O
THEOREM 2. Let K;: L?(0,1) — L?(0,1) (i = 1,2) be the operators defined
by
x
Kif@ = [ Kilo = )7 w)dy,
0

where

a—1
Kile) = Fry (1 +rit@), re€ 0.1, a>0, ri(0) =0,

[a] is the greatest integer wich is not greater than o. Then

. S (Kl)
l n =1
nl—>néo Sn(KQ)
Proof. 1t is sufficient to cinsider the case
ma—l ma—l
= ]_ =
Kl(m) F(O[) ( +’f'($)), ]C2(.’L') F(a)

re o), r)=0, r'(0)=0,

since from r'(0) # 0 it follows

by virtue of Theorem 1.

We will use the Keldysh—Krein’s result [9]: If A and B are compact operators
such that A = B(I 4+ T) for compact operator T such that —1 € p(T"), then

lim s,(A)/sn(B) = 1.

n—oo

For A = K1, B = K>, using the fractional integral operator we get (see [12]):

—1lel =



Asymptotic behavior of singular values of certain integral operators 97

with

z [o]
S =~ sy J, 0 g (@ =0 e - D)

From the conditions r € C'*+1[0,1], 7(0) = 0, /(0) = 0 it follows that the function
S is bounded on the set A = {(z,5) e R?:0<y <z, 0<z <1} and thus the
operator T is compact and Volterra. Therefore, according to quoted theorem we
have nlgr;g sn(K1)/sn(K2) =1. O

COROLLARY. Ifa > 0, r € ClH[0,1], r(0) # 0, k(z) = z* 'r(z) and
K : L?(0,1) = L?(0,1) is the linear operator defined by

Kf(z)= / " ke — 1) f (v)dy,

then s, (K) ~ r(0)T(a)(nm) %, n — oo.

Let us consider the kernels k;(z) = In® £~ (1 +7;(z)); i = 1,2 with 7;(0) = 0
and the operators

Kif(@) = [ ke~ 5@t
0
We will prove the following.

THEOREM 3. If1< B <2, r; € C3[0,1], d*r;/dz*|,—0 = 0 for k € {0,1,2}
then lim, oo $p(K1)/sn(Ks) = 1.

Proof. Like in Theorem 2, it is enough to consider the case
ki(@) =’ 27 (1 +7(z), ka(e) =027,

with r € C?[0,1], r(0) = r'(0) = r"(0) = 0.
If K1 and K, are operators with kernels k1 and ks, then, with A = K; and

B = K> in Keldysh—Krein theorem quoted in the proof of Theorem 2, we have
A= B(I+T) with

71w =P | " S(ay) f(y)dy

where P is a bounded operator and [12, p. 487]

r(t —y)dt.

d [* 1
S(z,y) = %/ pio,p(z — t) In? ;
Y

Changing the variable in the last integral we obtain

d

0
1
=__ In® — —  p(z—qy—t)dt.
S(z,y) dm/y_zﬂo,ﬁ(t)n z_y_f(“’ y —t)dt
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It is easy to prove, using the asymptotic behavior of the function pg s [12, p. 482],
that the operator 7' is Hilbert-Schmidt, and hence compact.

Reasoning as in the proof of Theorem 2 we conclude
lim s,(K1)/sn(K2) = 1.
n—o0

Theorem is proved. O

Remark. It remains as an open problem to find the exact asymptotic of
singular values of the operator K:L2(0,1) — L2(0, 1) defined by

Kf@%:lzmﬂ

fy)dy, B>0.

r—y
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