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ON CESARO MEANS IN HARDY SPACES
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Abstract. In the case 1/2 < p < 1 we generalize the Hardy-Littlewood
theorem on (C,a) means in H?, o > 1/p — 1, by proving that Mp(cSu,r) <
Cp,aMp(u,7), 0 < r < 1, where v is a harmonic function such that 4(k) = 0
for k < —2n. In the case p < 1/2 such a generalization is not possible, but the above
estimate is valid if o5« are replaced by Riesz type means.

1. Introduction and results

Let H? denote the usual Hardy space of analytic functions on the unit disc
(cf. [1]). A result of Hardy and Littlewood [3] states that

(1) londller < Cpallllar  (0<p<1, a>1/p-1),

where 02¢ are the Cesdro means of order « of the Taylor series of ¢. Gwilliam [2]
extended this result to the case of harmonic functions by proving that

(2) sup My (oau,r) < Cpo sup Mp(u,r),
r<l r<l

where p and « are as in (1), and

2 1/p

My(u,r) = / fu(reit)p & r>0.
P\™ 2 ’ =

0

If u is the Poisson kernel, then M,(u,r) = 0 (r — 17), when p < 1, which shows
that (2) cannot be improved to obtain, for an arbitrary harmonic function wu,

(3) Mp(oguﬂ') < Cp,aMp(uar) O<r<1).
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In the case p < 1/2 the situation is even worse because then there exist harmonic
polynomials u,, deg(u,) < n, such that M,(¢%,1)/My(un,1) = 00 (n = 00) (see
Theorem 3 below). However, if 1/2 < p < 1, then (3) holds provided 4(k) = 0 for
k < —2n. We state this fact in the following form.

THEOREM 1. Let f € L1(0,2x) be such that f(k) =0 for k < —2n, where n
is a positive integer. If 1/2<p <1 and a >1/p—1, then
(4) llog fllp < Cpall£llp,

where Cp, o is a constant depending only on p and .

Here
1/p

2w
1
Wfllp =4 5= [ [fF@®)FdE
27rb/

and f is the Fourier transformation of f € Ly = Ly (0, 2).

We will deduce Theorem 1 from the following result by using the known
estimates for Fejer’s kernels [5].

THEOREM 2. Letn >1,0<p < 1 and f,g € Ly be such that f(k) = 0 for
k< —n and §g(k) =0 for k > n. Then

(5) 15 glly < Cpn /P I £ llpllgll,-

Here f x g denotes the convolution of f and g. Under the conditions of
Theorem 2 this is a trigonometric polynomial of degree < n; we have (f * g) (k) =

F®)g(k).
In Section 4 we will show how (1) can easily be deduced from another impor-
tant result of Hardy and Littlewood (cf. [1]):

(6) 6(n)] < Cpn /P Mlgllm,  (pE€HP, 0<p<1).

(Here ¢(n) are Taylor’s coefficients of ¢.) Although (6) is contained in (5) we will
deduce (5) from (6) very simply.
Theorem 2 will be used to prove part of the following.

THEOREM 3. Let n and f be as in Theorem 1 and a > 1. Then
(7) llos fll1/2 < Ca(log(2m))?(| fl1/2
(8) o fllp < Cpan P2 fll, (0 <p<1/2).

These inequalities are the best possible in the sense that there are (nontrivial)
trigonometric polynomials fp, independent of p, a, such that deg(fn) <n/2 and

9) llos fallijz > callfall1/2(logn)
(10) log falls > epallfalln'? (0 <p<1/2).
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As a further application of Theorem 2 we shall prove that Theorem 1 is true
for all p < 1 if the Cesaro means are replaced by the Riesz (spherical) means. The
latter are defined as

) (mymr=230—(§)>f@w% n2l.

[k|<n

THEOREM 4. If f is as in Theorem 1, 0 <p <1 and a >1/p—1, then

(12) IR fllp < Cp,all fllp-

COROLLARY. If f € HP, 0 < p < 1 and a > 1/p—1, then ||RSf|lur <
Cp,all fllze-

Proof of Theorems 2, 1 and 4

Proof of Theorem 2. Assuming, as we may, that f and g are trigonometric
polynomials we define the analytic polynomials F and G by F(k) = f (k—n) and
G(k) = g(n — k), k > 0. Tt follows from the hypotheses that g(—t) = e~/ G(e)
and f(t) = e J F(e®). Now write f % g as

2

S

(fxg)(t) =

I

fn —k)g(n — k)eih—mt
0

2

3

G(k)F(2n — k)eltk—m)t,

Hence, for a fixed t, we have that (f * g)(t) = ¢(2n)e~/, where ¢ is the analytic
function defined by

Now we apply (6) to obtain

(£ OF < Cyn)» [[[G (e047) (e do

0
27

=yt~ [ lg(—t-0)@)Fab.
0

‘ p

Integrating this over the interval 0 < ¢ < 27 and using Fubini’s theorem we get (5).
O
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Remark. Somewhere we use C' to denote constants which may vary from line
to line.

Proof of Theorem 1. Recall that o f = K& x f, where K7 are Fejer’s kernels,

B(a,n +1) ikt
nBan+1—|k|) ’

(13)

where B is the Euler Beta function. By Theorem 2, inequality (4) follows from the
inequality ||K2|, < Cn'~'P (1/2 < p < l,a > 1/p—1). If 0 < a < 1, this is
easily obtained by integration from

|K5(t)] < Cgmin (n,n Plt| 771)  (0<B< Lt <)

(see [5, p. 48]). If & > 1, we use the formula
ZAa 2Al Kl /Ag7

where, for g > —1,

B
(14) Aﬁ: (nl—ﬂ) N% (n = o0)

(see [5, p. 42 and Ch. 3.13]). Combining these relations we find that |[K2(t)| <
Can~1t|=2 (Jt| < m). Since also |[K2(t)| < 2n + 1 (by (13)) we obtain

(15) | KX ()] < Cq min(n,n ' [t|?) (a>1, |t| <m).

Now integration yields the desired estimate for ||K,||,. This completes the proof
of Theorem 1. O

Proof of Theorem 4. In this case we have RYf = T2 x f, where
n [e3 «@
k k -
T;{‘(t):Z(l—;) <1+;> ekt
—-n

Hence T} is the convolution of the functions
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where 7, =1 —1/(n + 1). Hence, by Theorem 2,
T3 % fllp < Con™ P HITZ Il £llp < Con® 2[RI 11 f |-
So it suffices to prove that ||h||, < Cpan'~'/?, for 0 <p<1,a > 1/p—1. We have
B(t) = " n e g(ret),
where
o0
$(z) = D k*2F,
k=1
and hence
Al < Cn™%My(¢, 7).
Now we use two familiar estimates,
6(2)| < Call =2 =1 (]z] < 1)

and
27

/|1—Teit|—ﬂdt§0ﬂ(1_r)1—,@ (ﬂ>1),
0
to obtain
M;g(d)a rn) S Cp,a(]- — T‘n)l_(a'i'l)l"

Combining these inequalities we conclude the proof. O

3. Proof of Theorem 3

Inequalities (7) and (8) follow from Theorem 2 and (15). To prove the rest
define trigonometric polynomials f, by fn(k) = n(k/n), where 7 is an even C°°-
function on the real line such that n(z) = 1 for |z| < 1/4 and n(z) = 0 for
|z| > 1/2. Tt is easily shown (see, for example, [4, p. 177]) that || f.||, < Cpn'=1/P.
So it remains to prove that

(16) lo fallp > can™" (logn)®  (p=1/2)
(17) llon fully > cpan™ (P <1/2),
where ¢, and c¢p,  are positive constants.

Let
(18) F,(z) = n(z/n) —0 <z < oo,

B(a,n+1—|z|)’

Galt) = (1 - €)* 3" Fu(k)ei*.
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We will show that there exists a constant A > 0 such that

(19) IGn(t)| > A 0>t (n> A, A/n<t<m),
which will imply

(20) |0 f(t)] > cqn™'t™2 (A/n <t<m)

because
o fn(t) = (1 —e")B(a,n + 1)Gn(t).

Inequalities (16) and (17) are immediate consequences of (20).

To prove (19) observe first that G, is a trigonometric polynomial of degree
< n/2+ 3. The coefficients of G,, are given by

Gn(k) = Fo(k) —3F,(k—1) + 3F,(k — 2) — F,,(k — 3).
Using this we get
Gn(1)e + Gr(2)e* = (4F, (1) — 3F,(0) — Fn(2))e (1 — ™).
Since, by (18), for n > 4,

a-+n) n

— 3( a—1
4F, (1) — 3F,(0) — F,(2) = (4 - a+n_1> B > e
we see that
(21) |Gn(1)el + Gn(2)e?™| > can® tt|  (Jt| < 7).

On the other hand, if ¥ # 1,2 and |k| < n/2 + 3, then we can apply Lagrange’s
theorem for symmetric differences to obtain

|G (k)| < sup{|F" (2)]:0 < |z| < n/2 + 3}.

(It follows from (18) that F))'(x) exists for z # 0.) The formula

1
d " _ a—1 n—z 1 "
(%) B(a,n+1—m)—/t 1-1) (IOgl—t) dt
0

(0 < z < n+ 1) together with the inequality log(1/(1 —1¢)) <t/(1—1),0<t < 1,
shows that

(d/dz)"B(a,n+1—z) < Bla+m,n+1+m—1z) <Con %™
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for m = 1,2,3 and 0 < z < n/2 + 3, n > 10. Using this we can show, after an
elementary but rather long computation which we omit, that |F.(z)| < Can®~3.
Hence |G, (k)| < Can®~3 and hence

‘ Z én(k)eikt‘ < Cyn®2.
E#£1,2
Combining this with (21) we obtain
|Gn(t)] 2 can® ] = Can®™*  (Jt] <),

which implies (19). This completes the proof of Theorem 3. O

4. Remarks

(A) A simple proof of (1) can be given by using the identity
$(zO1—2) " =D AR, |l <1, [ =1,
k=0

where A is defined by (14). From this and an obvious modification of (6) it follows
that

2w
r"P|AS (o @) ()P < Cpn' P / |p(re?¢)[P|1 — ret|~ (et P gy
0

Now let r =1 — 1/n and integrate over the circle |(| =1 to obtain (1).

(B) Inequality (1) can also be deduced from (5) by considering o2%¢ as the
convolution of the functions ¢(r,e®), r, =1 —1/(n + 1), and

n B(Oé n + ].) b ikt y .
Blanti—mm e =m" — —it\—(a+1) ,int
k:z_oo B(a,n+1—k)r” e™ =r,"Bla,n+ 1)a(l —re ™) eint
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