ON EUCLIDEAN ALGORITHMS WITH SOME PARTICULAR PROPERTIES

Gojko Kalajdžić

Dedicated to the memory of Profesor Duro Kurepa

Abstract. Making use the notion of generalized Euclidean algorithm (as in [1] or [5]) we describe Euclidean rings whose algorithms satisfy the conditions (T), (N) or (Z) below.

In this paper every ring has a unit-element (denoted by 1) and at least two elements. The units group of a given ring A will be denoted by $A^* = U(A)$. If $S \subset A$, then: $S^0 = S \setminus \{0\}$, $S_0 = S \cup \{0\}$, $K = U(A)_0$.

Right Euclidean algorithm of a ring A is each mapping $\phi: A \to W$ of a ring A into some well ordered set W so that the following is valid: for any $a \in A$ and $b \in A^0$, there exist $q, r \in A$ such that

$$a = bq + r, \quad \phi(r) < \phi(b).$$

Besides $\phi(0) = \min \phi(A)$ holds. A right Euclidean algorithm ϕ is monotone if, for each $a, b \in A$ $(ab \neq 0)$, $\phi(ab) \geq \phi(a)$ is valid. Left (monotone) Euclidean algorithm of a ring A is similarly defined. If ϕ is a right and a left Euclidean algorithm of a ring A we say that ϕ is Euclidean algorithm of that ring. An Euclidean algorithm ϕ of a ring A is finite, if the type of the well ordered set $\phi(A)$ is not greater than ω ; otherwise algorithm $\phi: A \to W$ is said to be transfinite ([2] or [5]).

A ring A is a right (left) Euclidean ring if it has at least one right (left) Euclidean algorithm ϕ . In that case the ordered pair (A, ϕ) is called a right Euclidean pair. Right Euclidean pairs (A, ϕ) and (B, ψ) are isomorphic if there is at least one ring isomorphism $f: A \to B$ and at least one ordered isomorphism $h: \phi(A) \to \psi(B)$, such that $h \circ \phi = \psi \circ f$ (Samuel [4], for A = B and $f = \mathrm{Id}_A$).

Since isomorphic Euclidean pairs have the same properties, we can limit ourselves to Euclidean algorithms whose codomains are certain *ordinals*. Each right

Euclidean pair (A, ϕ) is isomorphic to some right Euclidean pair (A, ψ) with monotone Euclidean algorithm ψ . If ϕ is a monotone right Euclidean algorithm of domain A, then for each $a, x \in A^0$ the following is valid:

$$\phi(0) < \phi(a), \quad \phi(1) = \min \phi(A^0), \quad \phi(ax) = \phi(a) \Leftrightarrow x \in A^*.$$
 (1)

Let η be an ordinal and $\tilde{\eta} = \{-\infty\} \cup \eta$ (with the usual meaning and the properties of the symbol $-\infty$). Each right Euclidean algorithm $\phi: A \to \tilde{\eta}$ of a given ring A satisfying the conditions

$$\phi(a+b) \le \max\{\phi(a), \phi(b)\} \qquad (a, b \in A) \tag{M}$$

$$\phi(a \cdot b) = \phi(a) + \phi(b) \qquad (a, b \in A), \tag{L}$$

is called the degree algorithm of the ring. Ring A having at least one degree algorithm is an integral domain, and $K = U_0(A)$ is an subfield of a ring A. From the conditions (L) it follows that each degree algorithm is right (and left) monotone. If a ring A has at least one finite right Euclidean degree-algorithm ϕ , then for $K = U_0(A)$, there exists $X \in A \setminus K$ such that $A = K[X, f, \delta]$, where f is a monomorphism, and δ is a right f-derivation of field K. Then $\phi(a)$ is just degree of a (as a right polynomial with respect to X, with coefficients from K) (Cohn [1]). A similar assertion is valid if the condition (L) is substituted by the condition of monotoneity of algorithm ϕ (which is weaker than (L)). In the present paper we will deal more with the right Euclidean algorithms $\phi: A \to \tilde{\eta}$ (η being an ordinal) satisfying some of the conditions:

$$\phi(a+b) \le \phi(a) + \phi(b),\tag{T}$$

$$\phi(a \cdot b) = \phi(a) \cdot \phi(b), \tag{N}$$

$$\phi(a) = \phi(b) \Leftrightarrow (\exists e \in A^*)(a = be),$$
 (Z)

where + and \cdot at the right-hand sides in (T) and (N) denote the *sum* and *product* of ordinals. It is obvious that for each right Euclidean algorithm ϕ the condition (T) follows from the condition (M). The example of ring \mathbb{Z} shows that integral domain A can have an Euclidean algorithm satisfying all the conditions (T), (N) and (Z), and have not Euclidean algorithm satisfying the condition (M) (because $U(\mathbb{Z})_0$ is not a subfield of the ring \mathbb{Z}).

Lemma 1. Let $\phi: A \to W$ be a monotone right Euclidean algorithm, and $a \in A$ right regular element of a ring A. If $\phi(1) < \phi(a)$, then the sequence $\phi(a^n)$ is strictly increasing.

Proof. Let $x = a^n$ and $q \in A$ so that $\phi(x - xaq) < \phi(xa)$. Then c = 1 - aq is not 0 and monotoneity of algorithm ϕ implies: $\phi(xa) > \phi(xc) > \phi(x)$.

Lemma 2. Let A be a domain and let $\phi: A \to W$ be a monotone right Euclidean algorithm satisfying the condition (M). Then for each $a,b \in A$ and $c \in A^0$ we have:

 1° $K = U(A)_0$ is a subfield of the ring A,

$$2^{\circ}$$
 $\phi(a) < \phi(b) \Rightarrow \phi(ca) < \phi(cb)$.

Proof. From (1) it follows that $K = \{a \in K : \phi a < \phi 1\}$, and for $a, b \in K$ we have $\phi(a-b) \leq \max\{\phi a, \phi b\}$, i.e. $a-b \in K$, so that K is a subfield of the ring A.

Let us prove the implication 2° . Clearly, 2° is valid for a=0 and each $b \in A$ and $c \in A^0$. Let us assume that 2° is valid for each $x \in A$ for which $\phi(x) < \alpha$ $(\alpha > 0)$ is the given element from W), and let $a, b, c \in A$ such that $\phi(a) = \alpha$ and $\phi(a) < \phi(b)$, $c \neq 0$. There exist $q, r \in A$ such that b = aq + r and $\phi(r) < \phi(a)$. Since $\phi(r) < \alpha$, we have $\phi(cr) < \phi(ca)$, and therefore

$$cb = caq + cr, \quad \phi(cr) < \phi(ca).$$
 (2)

It must be $q \neq 0$ (because on the contrary it would be $\phi b < \phi a$). Further, from $\phi a < \phi b$ it follows $\phi(a + b) \leq \phi(b)$ and

$$\phi(b) = \phi(a+b-a) \le \max\{\phi(a+b), \phi(a)\},\$$

so that $\phi(a+b) = \phi(b)$. In other words, the implication

$$\phi(a) < \phi(b) \Rightarrow \phi(a+b) = \phi(b)$$
 (P)

is valid. Since ϕ is right monotone, it will be $\phi(caq) \geq \phi(ca) > \phi(cr)$, and thus $\phi(caq+cr) = \phi(caq)$, which together with (2) yields $\phi(cb) \geq \phi(ca)$. If $\phi(cb) = \phi(ca)$, then from $\phi(caq) = \phi(ca)$ would follow $q \in A^*$, and thereby $\phi(b) = \phi(aq+r) = \phi(aq) = \phi(a)$, which is contrary to $\phi(a) < \phi(b)$. Summing up, we have: $\phi(cb) > \phi(ca)$.

If $\phi: A \to W$ is a right Euclidean algorithm of a ring A and $x \in A$, let us denote by $A(x, \phi)$ the subset of A determined by:

$$a \in A(x, \phi) \quad \Leftrightarrow \quad (\exists n \in \mathbb{N}) \left[\phi(a) \le \phi(x^n) \right].$$

So, for example, if K is a field and ϕ a degree algorithm of the ring A = K[X], then we have $A(1,\phi) = K$, $A(X,\phi) = A$. Similarly we have $\mathbb{Z}(1,\nu) = \{-1,0,1\}$ and $\mathbb{Z}(2,\nu) = \mathbb{Z}$, where $\nu(m) = |m|$ is the standard Euclidean algorithm of the ring \mathbb{Z} .

Lemma 3. Let $\phi: A \to W$ be a monotone right Euclidean algorithm of a domain A satisfying the condition (M), and let x be any element from $A \setminus K$ such that $B = \{b \in A: \phi b < \phi x\}$ is a subring of the ring A. Then $A(x, \phi)$ is a subring of the ring A, and $a \in A$ belongs to the set $A(x, \phi)$ if and only if it is uniquely expressible in the form

$$a = x^n a_n + \dots + x a_1 + a_0 \quad (a_i \in B).$$
 (3)

Proof. Let us put $V = A(x, \phi)$ and let us prove first that each $a \in V$ has (at least one) decomposition of the form (3). It is obvious that it is true for $a \in B$. If $a \in V \setminus B$, then for some $n \in \mathbb{N}$ we have

$$\phi(x^n) \le \phi(a) < \phi(x^{n+1}). \tag{4}$$

There exist $c, a_0 \in A$ such that $a = xc + a_0$ and $\phi a_0 < \phi x$. Since ϕ satisfies the condition (P), from $xc = a - a_0$ and $\phi a_0 < \phi x \le \phi a$ it follows $\phi(xc) = \phi(a)$, as well as $a_0 \in B$. If we prove that $\phi(c) < \phi(x^n)$, then the assertion will follow directly by induction with respect to n for which (4) holds. Let $c = x^n q + r$, $\phi(r) < \phi(x^n)$. If $q \ne 0$, then we have

$$\phi(x^{n+1}q) \ge \phi(x^{n+1}) > \phi(a).$$

On the other hand, by Lemma 2, from $\phi r < \phi x^n$ it follows $\phi(xr) < \phi(x^{n+1})$, and since ϕ also satisfies the condition (P), multiplying the equality $c = x^n q + r$ from the left-hand side by x, we get

$$\phi(xc) = \phi(x^{n+1}q + xr) = \phi(x^{n+1}q) \ge \phi(x^{n+1}),$$

i.e. $\phi(xc) > \phi(a)$, which is contrary to $\phi(xc) = \phi(a)$. Hence q = 0, and thereby $\phi(c) = \phi(r) < \phi(x^n)$. Therefrom c has a decomposition the form (3), so that from $a = xc + a_0$ and $a_0 \in B$ it follows that a is expressible in the form (3).

If $m, n \in \mathbb{N}_0$, then for m > n and any elements $p \in B^0$, $q \in B$ we have $\phi(x^{m-n}p) \ge \phi(x) > \phi(q)$, and thereby $\phi(x^mp) > \phi(x^nq)$ the (by Lemma 2). Besides ϕ satisfies the condition (P), so that for each $a \in A$ of form (3) it holds $\phi(a) = \phi(x^n a_n)$. Particularly, in (3) for a = 0 we have $a_i = 0$ for each $i \ge 0$.

Let a be given by (3) and let $a=x^nb_n+\cdots+b_0$ be valid for some $b_i\in B$. If we put $c_i=a_i-b_i$, it will be $0=x^nc_n+\cdots+c_0$. But, since B is a subring of the ring A, together with $a_i,b_i\in B$ we have $c_i\in B$, so that from the last equality it follows that it must be $c_i=0$, and thereby $a_i=b_i$ for each $1\leq i\leq n$. On the other side, since $\phi(c)<\phi(x)$ ($c\in B$), by Lemma 2 we conclude that $\phi(x^nc)<\phi(x^{n+1})$ for each $c\in B$ and $n\in \mathbb{N}_0$. Hence for each a of the form (3) it follows $\phi(a)=\phi(x^na_n)<\phi(x^{n+1})$, and therefore $a\in V$. Thus $V=A(x,\phi)$ is a right B-modul (in a natural way) with the basis $\{x^n: n\in \mathbb{N}_0\}$.

Finally, let us prove that V is a subring of the ring A, i.e. that $ab \in V$ for each $a, b \in V$. Let at first be b = x. There exist $q, r \in A$ such that x = aq + r, $\phi(r) < \phi(a)$. Then $\phi(x) = \phi(aq)$. If $\phi(q) > \phi(x)$, then by Lemma 2 we have $\phi(x) = \phi(aq) > \phi(ax)$, and thus $ax \in V$. In the case $\phi(q) = \phi(x)$, let us put q = xu + s, $\phi(s) < \phi(x)$. From $\phi(q) = \phi(x) > \phi(s)$ it follows that $u \neq 0$, so that $\phi(xu) > \phi(s)$, and thereby $\phi(q) = \phi(xu) = \phi(x)$. Hence $u \in A^*$, and since $\phi(s) < \phi(x)$ implies $\phi(as) < \phi(ax) \le \phi(axu)$ (Lemma 2), we have

$$\phi(x) = \phi(aq) = \phi(axu + as) = \phi(axu) = \phi(ax),$$

and thereby $ax \in V$. At the end, if it were $\phi(q) < \phi(x)$, i.e. $q \in B$, then, together with $a, q, r \in B$, it would be $x = aq + r \in B$, a contradiction. Thus $ax \in V$ for each $a \in B$. Hence, by induction on n, we have $ax^n \in V$ $(a \in V, n \in \mathbb{N}_0)$. Hence, for any elements $a = x^r a_r + \cdots + a_0$ and $b = x^s b_s + \cdots + b_0$ $(a_i, b_i \in B)$ from V. the product ab is the sum of a finitely many summands of form $x^m(ux^n)v$ with $u, v \in B$, and thus $ab \in V$.

If, with the assumption and symbolism of Lemma 2, $B = K \neq A$ and x is any element from $A \setminus K$ such that $\phi(x) = \min \phi(A \setminus K)$, then $V = A(x, \phi)$ is

a subring of the ring A. If, besides the algorithm ϕ is finite (which will certainly be if the ring A is commutative), then it will be $a(x,\phi)=A$. Similarly to Cohn [1], we infer that for some monomorphism f and right f-derivation δ of field K we have $A(x,\phi)=K[x,f,\delta]$. Besides that, if ψ is the restriction of ϕ on V, and σ degree algorithm of the ring $K[x,f,\delta]$, then the right Euclidean pair (V,ψ) is isomorphic to the right Euclidean pair $(K[x,f,\delta],\sigma)$. In general, for the ring $V=A(x,\phi)$ from Lemma 2 it follows that there exist an endomorphism f and a right f-derivation δ of the domain B such that $V=K[x,f,\delta]$ and $f(B)\subset K$.

LEMMA 4. If a right Euclidean algorithm $\phi: A \to \eta$ of a ring A satisfies the conditions (N) and (T), then it satisfies the condition (M), iff $U(A)_0$ is a subfield of the ring A.

Proof. Since ϕ satisfies the condition (N), it is clear that A is an integral domain, that the algorithm ϕ is monotone, and that $\phi(0) = 0$, $\phi(1) = 1$ (η is some ordinal). It is obvious that the *condition* is necessary. Let us prove that it is sufficient. If $K = U(A)_0$ is a subfield of the ring A, then for each $a, b \in A$ we have

$$\phi(a) \le \phi(b) \quad \Rightarrow \quad \phi(a+b) \le \phi(b).$$
 (5)

Let at first, $\phi(a) = 1$, and thus $a \in K^0$. Since ϕ satisfies the condition (N), we have $\phi(a+b) = \phi(a(1+a^{-1}b)) = \phi(a)\phi(c)$, with $c=a^{-1}b$, and thereby $\phi(c) = \phi(a^{-1})\phi(b) = \phi(b)$. Hence for $\phi(a) = 1$ the implication (5) reduces to $1 \le \phi(c) \Rightarrow \phi(1+c) \le \phi(c)$ ($c \in A^0$). Since K is a field, we have $k1 \in K$, and thereby $\phi(kc) = \phi(k1)\phi(c) \le \phi(c)$ for each $k \in \mathbb{N}$. Besides, ϕ satisfies the condition (T) too, so: $(1+c)^n = \sum \binom{n}{r} c^r$ and

$$\left[\phi(1+c)\right]^n = \phi\left[(1+c)^n\right] \le \sum \phi(c)^r. \tag{6}$$

for any $n \in \mathbb{N}$ and each $c \in A^0$. Let us put $\phi(c) = \lambda$. Then $\lambda \geq 1$. If $\lambda < \omega$, then from (6) it follows that for each $c \in A^0$ and $n \in \mathbb{N}$ we have $\phi(1+c) \leq (1+n)^{1/n}$ (for $\lambda = 1$) and

$$\phi(1+c) \le \left(\frac{\lambda^{n+1}-1}{\lambda-1}\right)^{1/n} \quad \text{(for } \lambda \ne 1\text{)}.$$

Allowing that $n \to \infty$ we get $\phi(1+c) \le \lambda$. Hence $\phi(a+b) \le \phi(b)$ for each $a \in K$ and each $b \in A$ for which $1 \le \phi(b) < \omega$. If $\phi(b) = \lambda \ge \omega$, it will be $1 + \lambda = \lambda$, so that we have directly: $\phi(a+b) \le \phi(a) + \phi(b) = 1 + \lambda = \lambda = \phi(b)$.

Suppose now that (5) is valid for each $a \in A$ such that $\phi(a) < \alpha$ (α is a fixed ordinal, $\alpha > 1$), and let a be any element from A for which $\phi(a) = \min\{\phi(c) : c \in A, \phi(c) \ge \alpha\}$. There exist $q, r \in A$ such that b = aq + r and $\phi(r) < \phi(a)$. Hence a + b = r + c with c = a(1+q). If $1 + q \ne 0$, then we have $\phi(c) = \phi(a)\phi(1+q) \ge \phi(a) > \phi(r)$. Besides, since $\phi(r) < \alpha$, it will be $\phi(r+c) \le \phi(c)$, and for $q \ne 0$ we have $\phi(a+b) \le \phi(r+c) \le \phi(c)$ and $\phi(c) = \phi(a)\phi(1+q) \le \phi(a)\phi(q) = \phi(aq) = \phi(b-r)$, Finally, if $\phi(a) \le \phi(b)$, we have $\phi(r) < \phi(b)$, and then $\phi(a+b) \le \phi(b)$. \Box

Lemma 5. Let A be an integral domain which is not a field, $\phi: A \to \eta$ a right Euclidean algorithm satisfying the conditions (N) and (T), $K = U(A)_0$ and

x any element from $A \setminus K$ such that $\phi(x) = \min \phi(A \setminus K)$. Then each element $a \in A$ is expressible in the form

$$a = x^n a_n + \dots + x a_1 + a_0 \qquad (a_r \in K, \ n \in \mathbb{N}_0).$$
 (7)

Besides, a = 0 has exactly one decomposition of the form (7), and it is valid for each $a \in A$ provided that K is a subfield of A.

Proof. Let $\phi(a) = \alpha > 1$ and a = xb + c, $\phi(c) < \phi(x)$. Then $c \in K$. Since ϕ satisfies the conditions (N) and (T), we have $\phi(xb) = \phi(a-c) \le \phi(c) + \phi(a) \le 1 + \alpha$. Hence

$$\phi(x)\phi(b) \le 1 + \alpha. \tag{8}$$

If $\phi(b) \geq \alpha$, then $\phi(x)\phi(b) \geq (1+1)\alpha > 1+\alpha$, a contradiction. Thus $\phi(b) < \alpha$. Now by (transfinite) induction on $\alpha = \phi(a)$ it follows that each $a \in A$ is expressible in the form (7). Besides, for each $n \in \mathbb{N}_0$ and $a_r \in K$ we have

$$\phi(\alpha_0 + \dots + x^n a_n) < \phi(x^{n+1}). \tag{9}$$

Namely, if K is a field, then (9) follows directly by Lemma 4. If K is not a field, then $1 < \phi(u+v) \le \phi(u) + \phi(v) \le 2$ for some $u,v \in K$. Hence $\phi(x) = 2$, so that we have

$$\phi(\alpha_0 + \dots + x^n a_n) \le 1 + \phi(x) + \dots + \phi(x)^n < 2^{n+1}, \tag{10}$$

and thus (13) is proved. Now, by (10), for a=0, from (7) it follows $\phi(-x^n a_n) < \phi(x^n)$. Hence $a_n=0$, and similarly $a_r=0$ for each $0 \le r \le n$. If K is a field, then the remaining part of the assertion follows by lemmas 3,4.

By Lemma 5, each right Euclidean algorithm ϕ of a ring A, satisfying the conditions (N) and (T), is finite. Therefore for such algorithms we may restrict our attention to the case $\phi(A) \subset \mathbb{N}_0$.

Theorem 1. If a ring A has a right Euclidean algorithm $\phi: A \to \mathbb{N}_0$ satisfying the conditions (N) and (T), then for $K = U(A)_0$ we have

1° If K is a subfield of A, then either A = K, or, for some monomorphism f and some right f-derivation δ of the field K, the right Euclidean pair (A, ϕ) is isomorphic to the right Euclidean pair (B, σ) , where σ is a degree algorithm of the ring $B = K[X, f, \delta]$;

 2° If K is not a subfield of A, then the right Euclidean pair (A, ϕ) is isomorphic to the Euclidean pair (\mathbb{Z}, ν) , with $\nu(m) = |m|$.

Proof. 1° It is clear that A is a domain, that algorithm ϕ is monotone and that $\phi(0) = 0$, $\phi(1) = 1$. Since K is a subfield of A, by Lemma 4 the algorithm ϕ satisfies the condition (M), as well. Now by Lemma 3, $\phi(A) \subset \mathbb{N}_0$ implies that A = K or $A = A(x, \phi)$, so the assertion follows directly by Lemma 3.

 2° Since K is not a subfield of A, there exist u,v from K such that $1<\phi(u+v)\leq\phi(u)+\phi(v)\leq 2$. Hence for $e=u^{-1}v$ we have u+v=u(1+e), $e\in K^0$ and $2=\phi(u+v)=\phi(u)\phi(1+e)=\phi(1+e)$. It particularly means that $\phi(1+e)=2$ at least for one $e\in K^0$. For such an $e\in K$ let us put

$$a = 1 + e, \quad b = 1 - e, \quad c = 1 + e^2.$$
 (11)

Then $\phi(a) = 2$, $\phi(a^2) = \phi(a)^2 = 4$, $\phi(c) \le \phi(1) + \phi(e^2) = 2$. Since $a^2 = c + 2e$, it will be $4 = \phi(a^2) \le \phi(c) + \phi(2e) \le 2 + \phi(2e)$. Hence $\phi(2e) = \phi(c) = 2$. Further, for each $u \in K^0$ it holds 2u = (2e)v with $v = e^{-1}u$, so that

$$\phi(2u) = 2, \qquad (u \in K^0).$$
 (12)

Particularly, $\phi(1+1) = \phi(2\cdot 1) = 2$. Hence $1 \neq -1$. Let us prove that

$$K = \{-1, 0, 1\}$$
 and $K^0 = \{-1, 1\}.$ (13)

Let $e \in K^0$ and a, b, c be elements from A given by (11). Then from $ab = 1 - e^2$ it follows $\phi(a)\phi(b) = \phi(ab) = \phi(1-e^2) \le 2$. Hence $\phi(a) \le 2$ or $\phi(b) \le 2$. Let us prove that a = 0 or b = 0. If it were $\phi(a) = \phi(b) = 1$, because of (12) and $a^2 - b^2 = 4e = (2 \cdot 1)^2 e$ we would have $4 \le \phi(a^2 - b^2) \le \phi(a^2) + \phi(b^2) \le 2$, a contradiction. Suppose that $\phi(a) = 2$. Then $\phi(b) \le 1$. From $a^2 = c + 2e$ it follows $4 \le \phi(c) + 2 \le 4$. Thus $\phi(c) = 2$. Since $abc = 1 - e^4$ we have $\phi(a)\phi(b)\phi(c) = \phi(1-e^4) \le 2$. Besides, $\phi(a) = \phi(c) = 2$. Hence $4\phi(b) \le 2$, and thereby b = 0. Similarly, if $\phi(b) = 2$, then a = 0. Thus (13) is valid.

We denote the sum $r1 = 1 + \cdots + 1$ by \bar{r} $(r \in \mathbb{N})$. By (12), holds

$$\phi(\bar{r}) = r \tag{14}$$

for r=2. Let us prove that (14) is valid for any $r\in\mathbb{N}$. Let n>1 be a given natural number and suppose that (14) is true for each r< n. If n=pq (1< p,q< n), then it will be $\bar{n}=\bar{p}\bar{q}$. Hence $\phi(\bar{n})=\phi(\bar{p})\phi(\bar{q})=pq$. Let now n be a prime and n>2. Then n-1=2p and n+1=2q for some natural numbers p,q< n. If $m=n^2-1$, then $\bar{m}=4\bar{p}\bar{q}$, $\phi(\bar{p})=p$, $\phi(\bar{q})=q$, $\phi(\bar{4})=\phi(\bar{2})\phi(\bar{2})=4$ and $\phi(\bar{n})\leq n$. For $\phi(\bar{n})< n$, it follows that $\phi(\bar{4})\phi(\bar{p})\phi(\bar{q})=\phi(\bar{n}^2-\bar{1})\leq 1+\phi(\bar{n})^2\leq 1+(n-1)^2$, that is $n^2-1\leq 1+(n-1)^2$, a contradiction. Thus $\phi(\bar{n})=n$, and thereby $\phi(m1)=|m|$ for any $m\in\mathbb{Z}$. Hence the characteristic of the ring A is 0.

Finally, let us prove that

$$\phi(a) = r \implies a = \pm \bar{r} \tag{15}$$

is valid for each $a \in A$. For r=1 (15) is equivalent to (16). Let n>1 and suppose that (15) holds for any r< n. There exist $b,c\in A$ such that $a=\bar{n}b+c$, $\phi(c)<\phi(\bar{n})=n$. Since $\phi(c)=r< n$, it will be $c=\bar{r}$ or $c=-\bar{r}$. On the other hand, we have $n\phi(b)=\phi(\bar{n})\phi(b)=\phi(nb)=\phi(a-c)\leq\phi(a)+\phi(c)=n-r$, that is $\phi(b)\leq 1$. If b=0, then a=c, i.e. $n=\phi(a)=\phi(c)$, a contradiction. Hence $\phi(b)=1$, so that from (13) and $a=\bar{n}b+c$ it follows $a=\pm\bar{n}\pm\bar{r}$, that is $n=\phi(a)=|\pm n\pm r|$, and thereby r=0. Thus, we have $a=\bar{n}$ or $a=-\bar{n}$. Hence, by f(m)=m1 a ring isomorphism $f\colon \mathbb{Z}\to A$ is defined. Since $\phi: f=\nu$, the (right) Euclidean pair (A,ϕ) is isomorphic to the Euclidean pair (\mathbb{Z},ν) .

Theorem 2. Let $\phi: A \to \mathbb{N}_0$ be a monotone right Euclidean algorithm of an integral domain A, satisfying the conditions (T) and (Z). If $K = U(A)_0$ and $\phi(1) = 1$, then

1° If K is not a subfield of the ring A, then the (right) Euclidean pair (A, ϕ) is isomorphic to the Euclidean pair (\mathbb{Z}, ν) ;

- 2° If K is a subfield of the ring A with at least three elements, then A = K;
- 3° If K is a subfield of the ring A with two elements, and algorithm ϕ is two side monotone, then either A=K, or the ring A is isomorphic to the ring B=K[X]. Besides, the Euclidean pairs (A,ϕ) and (B,σ) are not isomorphic.

Proof. 1° Since K is not subfield of A, there exist units $u,v\in K^0$ such that $1<\phi(u+v)\leq\phi(u)+\phi(v)=2$, that is $\phi(u+v)=2$. Let us put $e=vu^{-1}$ and $a=1+e,\ b=1-e,\ c=1+e^2$. Then $2=\phi(u+v)=\phi[(1+e)u]$, i.e. $\phi(1+e)=\phi(a),\ \phi(b)\leq 2,\ \phi(c)\leq 2$. Let us prove that $\phi(2e)=2$. From $\phi(1)<\phi(a)$, by Lemma 1, it follows $2=\phi(a)<\phi(a^2)$. For 2e=0 we have $a^2=1+e^2$, and thereby $\phi(a^2)\leq 2$, a contradiction. Suppose now that $\phi(2e)=1$. Then $3\leq\phi(a^2)=\phi(c+2e)\leq 1+\phi(c)\leq 3$, i.e. $\phi(c)=3$. Since $acb=1-e^4$, we have $\phi(acb)\leq 1+\phi(e^4)=2$. For $\phi(acb)=2=\phi(a)$, by the condition (Z), there exists a unit $u\in K^0$ such that acb=au. Hence $c\in K^0$, which is contrary to $\phi(c)=2$. Since $\phi(a)=2$, then $\phi(acb)\neq\phi(1)$. Finally, if $\phi(acb)=0$, that is acb=0, then b=0 since $ac\neq 0$. Hence e=1. Then $2=\phi(a)=\phi(2e)$, which is contrary to $\phi(2e)=1$. Thus $\phi(2e)=2$. Let now $u\in K^0$ be any unit of the ring A. If $w=u^{-1}e$, we have $w\in K^0$ and $\phi(2u)=\phi(2uw)=\phi(2e)=2$ for any $u\in K^0$.

Let us put x=1+1. Then $\phi(x)=2=\min\phi(A\smallsetminus K)$. Let us prove that it must be $\phi(x^2)=4$. Indeed, since $2=\phi(x)<\phi(x^2)$ and $x^2=1+1+1+1$, we have $3\leq\phi(x^2)\leq4$. If $\bar{m}=m1$ $(m\in\mathbb{Z},\ 1\in A)$, it will be $x^2=\bar{4}$. Then $\phi(\bar{3})\leq3$. Since $\phi(\bar{3})\leq1$ implies $\phi(x^2)=\phi(\bar{3}+\bar{1})\leq1+1=2$, we conclude that $\phi(\bar{3})\geq2$. But, if $\phi(\bar{3})=2$, i.e. $\phi(\bar{3})=\phi(\bar{2})$, then there exist a $u\in K^0$ such that $\bar{3}=\bar{2}u$, i.e. 1=x(u-1), which is contrary to $\phi(x)=2$. Hence $\phi(\bar{3})=3$. Analogously we conclude that $\phi(\bar{4})\neq\phi(\bar{3})$. Thus $\phi(x^2)=4$.

Let us prove now that $K^0=\{-1,1\}$. Primarily, $\bar{2}\neq 0 \Rightarrow -1\neq 1$. For arbitrary $e\in K^0$ we put: $a=1+e,\ b=1-e,\ c=1+e^2$. Then a=0 or b=0, and thereby e=1 or e=-1. Namely, at first $\phi(a),\phi(b),\phi(c)\leq 2$. Since $4=\phi(\bar{4})=\phi(4e)=\phi(a^2-b^2)\leq\phi(a^2)+\phi(b^2)$, we conclude that $\phi(a)\neq 1$ or $\phi(b)\neq 1$. If $\phi(a)=\phi(b)=2$, then b=au for some $u\in K^0$, and thereby $1-e^2=ab=a^2u$. It means that $\phi(a^2)=\phi(a^2u)=\phi(1-e^2)\leq 2$, which is contrary to $\phi(a^2)>\phi(a)=2$. Finally, assume that $\phi(a)=2$ and $\phi(b)\leq 1$. Then, for some u from K^0 we have $a=\bar{2}u=2u$, so that $\phi(a^2)=\phi(4u^2)=\phi(\bar{4})=\phi(x^2)=4$. Hence $4=\phi(a^2)=\phi(c+2e)\leq\phi(c)+\phi(2e)=2+\phi(c)\leq 4$. Thus $\phi(c)=2$. On the other hand we have $\phi(acb)=\phi(1-e^4)\leq 2$. If $\phi(acb)=2=\phi(a)$, then there exists $u\in K^0$ such that acb=au, that is $c\in K^0$, which is contrary to $\phi(c)=2$. Similarly, $\phi(a)=2$) implies that $\phi(acb)\neq 1$. Hence acb=0, that is b=0 (because of $ac\neq 0$). Thus e=1. Similarly, for $\phi(a)\leq 1$ and $\phi(b)=2$ we have e=-1, so that $K^0=\{-1,1\}$.

Now, by the condition (Z), for any $m, n \in \mathbb{Z}$ we have $\phi(\bar{m}) = \phi(\bar{n})$ if and only if $\bar{m} = \bar{n}$ or $\bar{m} = -\bar{n}$. Hence: $\phi(\bar{m}) = \phi(\bar{n}) \Leftrightarrow m = n \vee m = -n$. Namely,

the characteristic p of the ring A is not 2. If p > 2, then we have $x = 1 + 1 = 1^p + 1^p = (1+1)^p = x^p$, that is $x^{p-2}x = 1$, and thus $x \in K^0$, which is not true. Thus p = 0. Hence $\bar{m} = \bar{n} \Leftrightarrow m = n \vee m = -n$. Now, by induction on n, we conclude that $\phi(\bar{n}) = n \ (n \in \mathbb{N})$ is valid. It is clear that for each $m \in \mathbb{Z}$ the following holds: $\phi(\bar{m}) = |m|$, i.e. $\phi(\bar{m}) = \nu(m)$.

Finally, let $a \in A$ and let us put $\phi(a) = n$. Since $\phi(\bar{n}) = n$, for some unit $u \in K^0$ then $a = \bar{n}u$. Hence $a = \bar{n}$ or $a = -\bar{n}$. Thus, by $f(m) = \bar{m}$ is defined a ring isomorphism $f: \mathbb{Z} \to A$, and since $\phi: f = \nu$ is valid, the (right) Euclidean pair (A, ϕ) is isomorphic to the Euclidean pair (A, ϕ) .

2° Let 1 and e be different units of the ring A. Suppose that A = K is not true. We denote by x any element from A such that $\phi(x) = \min \phi(A \setminus K)$. Since ϕ satisfies the condition (T), we have

$$\phi(1+x) \le 1 + \phi(x). \tag{14}$$

Assume that $\phi(1+x)=\phi(x)$. Then, by the condition (Z), for some $u\in K^0$ we have 1+x=xu. Hence x(u-1)=1, that is $x\in K^0$, which is contrary to $x\in A\smallsetminus K$. If $\phi(1+x)<\phi(x)$, then $\phi(1+x)\leq\phi(1)$, i.e. $1+x\in K$, which is not possible because of $x\notin K$. Thus $\phi(1+x)\geq\phi(x)$, which with (14) gives $\phi(1+x)=1+\phi(x)$. It is clear that $\phi(1+x)=1+\phi(xv)$ ($v\in K^0$) is also valid. Hence for any $u\in K^0$ and $v=u^{-1}$ holds u+x=(1+xv)u and

$$\phi(u+x) = \phi(1+xv) = 1 + \phi(xv) = 1 + \phi(x). \tag{15}$$

From (15) it follows that $\phi(1+x) = \phi(e+x)$, that is e+x = (1+x)w for some $w \in K^0$. Since $1 \neq e$, we have $w \neq 1$. Hence $w-e \in K^0$, that is $x(1+w) \in K^0$, which is contrary to $x \in A \setminus K$. Thus A = K.

3° From $K^0=\{1\}$, by (Z), it follows that the mapping $\phi\colon A\to\mathbb{N}_0$ is an injection. Since 1+1=0, the characteristic of the ring A is 2. Assume that $A\neq K$ and let $x\in A\smallsetminus K$ such that $\phi(x)=\min\phi(A\smallsetminus K)$. Similarly as in the proof of the assertion 2°, we conclude that

$$\phi(1+x) = 1 + \phi(x). \tag{16}$$

Let $a \in A$. Then there exist $c, r \in A$ such that a = cx + r, $\phi(r) < \phi(x)$. From $\phi(r) < \phi(x)$ it follows that $r \in K$. Since the algorithm ϕ is two side monotone, we have

$$\phi(c) < \phi(xc) = \phi(a-r) < \phi(a) + \phi(r) < 1 + \phi(a).$$

Suppose that $\phi(a) \geq \phi(x)$. Then $c \neq 0$. If $\phi(c) = \phi(xc)$, it will be c = xc, that is x = 1, a contradiction. Hence $\phi(c) < \phi(xc) \leq 1 + \phi(a)$, i.e. $\phi(c) \leq \phi(a)$. Since $\phi(c) = \phi(a)$ implies $\phi(r) = \phi[(1-xu)a] \geq \phi(a)$, we conclude that $\phi(c) < \phi(a)$. Thus, for any $a \in A^0$ there exist $c, r \in A$ such that a = xc + r, $r \in K$, $\phi(c) < \phi(a)$. Hence, by induction on $n = \phi(a)$, it follows that any element $a \in A$ is expressible in the form

$$a = x^n a_n + \dots + x a_1 + a_0 \ (a_r \in K, n \in \mathbb{N}_0).$$
 (17)

Since K is subfield of the ring A, by (16) we conclude that each $a \in A$ is uniquely expressible in the form (17). Let B = K[X]. Hence by

$$F(a_0 + xa_1 + \dots + x^n a_n) = a_0 + Xa_1 + \dots + X^n a_n$$

is defined a ring isomorphism $F: A \to B$. However, the Euclidean pairs (A, ϕ) and (B, σ) are not isomorphic. Indeed, suppose that for some isomorphism $f: A \to B$ and some monomorphism h of the well ordered set $\phi(A)$ into the well ordered set $\sigma(B)$ we have $\sigma \circ f = h \circ \phi$. Since x is not a unit in the ring A, p = f(x) is not a unit in the ring B. Hence for such a p we have $\sigma(1+p) = \sigma(p)$, so that $(\sigma \circ f)(1+x) = (\sigma \circ f)(x)$, i.e. $(h \circ \phi)(1+x) = (h \circ \phi)(x)$. Since h is an injection, it follows that $\phi(1+x) = \phi(x)$, which is contrary to (16).

Example 1. Let $K = \{0, 1\}$ be a field of two elements and A = K[X]. If $a \in K$, then let \tilde{a} denote the integer 0 for a = 0, and the integer 1 for a = 1. Then the mapping $\phi: A \to \mathbb{N}_0$ defined by

$$\phi(a_0 + Xa_1 + \dots + X^n a_n) = \tilde{a}_0 + 2\tilde{a}_1 + \dots + 2^n \tilde{a}_n$$

is an Euclidean algorithm of the ring A, satisfying the conditions 3° of Theorem 2. Indeed, let σ be a degree algorithm of A. Since $\phi(a_0 + \cdots + X^n a_n) < 2^{n+1}$, then, for $a,b \in A$ we have $\phi(a) < \phi(b)$, if and only if $\sigma(a) < \sigma(b)$. Hence the function ϕ is also an Euclidean algorithm of A. Since each $m \in \mathbb{N}_0$ is uniquely expressible in the form $m = \tilde{a}_0 + \cdots + 2^n \tilde{a}_n$, where $\tilde{a}_r \in \{0,1\}$, it follows that ϕ is an injection. Besides, $K^0 = \{1\}$, so the algorithm ϕ satisfies the condition (Z). Further, since for $u, v \in A$ and w = u + v holds $\tilde{w} \leq \tilde{u} + \tilde{v}$, we conclude that $\phi(a + b) \leq \phi(a) + \phi(b)$ $(a, b \in A)$. Thus the algorithm ϕ also satisfies the condition (T).

Theorem 3. If for a ring A there exists a mapping $\phi: A \to \mathbb{N}_0$ satisfying the conditions (T), (N) and (Z), then A is either field, or (A, ϕ) is an Euclidean pair isomorphic to Euclidean pair (\mathbb{Z}, ν) .

Proof. By the condition (Z) we have $\phi(0) \neq \phi(1)$, so that the mapping ϕ is not constant. Since $\phi(a) = \phi(a1) = \phi(a) \cdot \phi(1)$, it must be $\phi(1) = 1$. Now $\phi(0) = \phi(0)\phi(0)$ implies $\phi(0) = 0$, and hence $\phi(a) = 0 \Leftrightarrow a = 0$. Further, by the condition (Z) holds $\phi(a) = \phi(1) \Leftrightarrow a \in K^0$, where $K = U(A)_0$. Finally, since ϕ satisfies condition (N), we conclude that A is an integral domain, that $\phi(ab) > \phi(a), \phi(b)$, and that, $\phi(a^n) < \phi(a^{n+1})$ for $\phi(a) > 1$.

If K is subfield of A, then A=K. Namely, in the case that K has at least three elements, similarly as in the proof of Theorem 2 under 2° , we conclude that $A \setminus K = \emptyset$. Suppose now that $K = \{0,1\}$ and $A \setminus K \neq \emptyset$. If $x \in A$ and $\phi(x) = \min \phi(A \setminus K)$, similarly as in the proof of Theorem 2 under 3° we get $\phi(1+x) = 1 + \phi(x)$. Hence, by the condition (N), for $\phi(x) = n$ we have $\phi[(1+x)^2] = [\phi(1+x)]^2 = [1+\phi(x)]^2 = (1+n)^2$. On the other hand, by the condition (T), we have $\phi[(1+x)^2] = \phi(1+x^2) \leq 1 + \phi(x^2) = 1 + n^2$. Hence $(1+n)^2 < 1 + n^2$, i.e. $\phi(x) = n = 0$, a contradiction. Thus A = K.

Suppose now that K is not a subfield of A. Similarly as in the proof of Theorem 1 we conclude that $K^0 = \{-1, 1\}$, with $-1 \neq 1$, and that $\phi(m1) = |m|$

for every $m \in \mathbb{Z}$. Hence for every $a \in A$ and $\phi(a) = n$ we have $\phi(a) = \phi(n1)$, so that a = n1 or a = -n1 by condition (Z). Therefore $A = \{m1: m \in \mathbb{Z}\}$, and since the characteristic of the ring A is 0, we conclude that the Euclidean pair (A, ϕ) is isomorphic to the Euclidean pair (\mathbb{Z}, ν) .

REFERENCES

- [1] P.M. Cohn, On a generalization of the Euclidean algorithm, Proc. Cambridge Phil. Soc. 57 (1961), 18–30.
- [2] P.M. Cohn, Ring with a transfinite weak algorithm, Bull. London Math. Soc. 1 (1969), 55-59.
- [3] P.M. Cohn, Free Rings and their Relations, London-New York, 1971.
- [4] A.V. Jategaonkar, Left Principal Ideal Rings, Lecture Notes in Mathematics. No. 123, Springer-Verlag, Berlin, 1970.
- [5] P. Samuel, About Euclidean Rings, J. Algebra 19 (1971), 282-301.

Matematički fakultet Studentski trg 16 11000 Beograd, p.p. 550 Yugoslavia (Received 01 02 1995)