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Abstract. Making use the notion of generalized Euclidean algorithm (as in [1] or [5]) we
describe Euclidean rings whose algorithms satisfy the conditions (T°), (N) or (Z) below.

In this paper every ring has a unit-element (denoted by 1) and at least two
elements. The units group of a given ring A will be denoted by A* = U(4). If
S C A, then: S° =S8~ {0}, So =SuU{0}, K=U(A),.

Right Euclidean algorithm of a ring A is each mapping ¢: A — W of a ring
A into some well ordered set W so that the following is valid: for any a € A and
b € A, there exist ¢, € A such that

a=bg+r, Pr)<od).

Besides ¢(0) = min ¢(A) holds. A right Euclidean algorithm ¢ is monotone if,
for each a,b € A (ab # 0), ¢(ab) > ¢(a) is valid. Left (monotone) Euclidean
algorithm of a ring A is similarly defined. If ¢ is a right and a left Euclidean
algorithm of a ring A we say that ¢ is Fuclidean algorithm of that ring. An
Euclidean algorithm ¢ of a ring A is finite, if the type of the well ordered set ¢(A)
is not greater than w; otherwise algorithm ¢: A — W is said to be transfinite ([2]
or [5]).

A ring A is a right (left) Euclidean ring if it has at least one right (left) Eu-
clidean algorithm ¢. In that case the ordered pair (A, ¢) is called a right Euclidean
pair. Right Euclidean pairs (4, ¢) and (B, 1) are isomorphic if there is at least one
ring isomorphism f: A — B and at least one ordered isomorphism h: ¢(A) — ¢(B),
such that ho¢ =1 o f (Samuel [4], for A= B and f =1d4).

Since isomorphic Euclidean pairs have the same properties, we can limit our-
selves to Euclidean algorithms whose codomains are certain ordinaels. Each right
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Euclidean pair (A, ¢) is isomorphic to some right Euclidean pair (A, ) with mono-
tone Euclidean algorithm . If ¢ is a monotone right Euclidean algorithm of domain
A, then for each a,z € A° the following is valid:

$(0) < (@), ¢(1)=minp(4°), ¢(az)=¢(a) & € A" (1)

Let n be an ordinal and 7j = {—oco} U7 (with the usual meaning and the properties
of the symbol —o0). Each right Euclidean algorithm ¢: A — 7j of a given ring A
satisfying the conditions

¢(a+b) < max{¢(a), p(b)}  (a,b€ A) (M)
¢(a-b) = ¢(a) + H(b) (a,b€ A), (L)

is called the degree algorithm of the ring. Ring A having at least one degree al-
gorithm is an integral domain, and K = Uy(A) is an subfield of a ring A. From
the conditions (L) it follows that each degree algorithm is right (and left) mono-
tone. If a ring A has at least one finite right Euclidean degree-algorithm ¢, then
for K = Uy(A), there exists X € AN K such that A = K[X, f, ], where f is a
monomorphism, and § is a right f-derivation of field K. Then ¢(a) is just degree of
a (as a right polynomial with respect to X, with coeflicients from K) (Cohn [1]).
A similar assertion is valid if the condition (L) is substituted by the condition of
monotoneity of algorithm ¢ (which is weaker than (L)). In the present paper we
will deal more with the right Euclidean algorithms ¢: A — 7 (n being an ordinal)
satisfying some of the conditions:

$(a+b) < ¢(a) + 4(b), (T)
¢(a-b) = ¢(a) - H(b), (V)
¢(a) = ¢p(b) & (Jee A%)(a = be), (%)

where + and - at the right-hand sides in (T) and (N) denote the sum and product of
ordinals. It is obvious that for each right Euclidean algorithm ¢ the condition (T)
follows from the condition (M). The example of ring Z shows that integral domain
A can have an Euclidean algorithm satisfying all the conditions (T), (N) and (Z),
and have not Euclidean algorithm satisfying the condition (M) (because U(Z) is
not a subfield of the ring Z).

LEMMA 1. Let ¢: A — W be a monotone right Fuclidean algorithm, and
a € A right regular element of a ring A. If ¢(1) < ¢(a), then the sequence ¢(a™)
is strictly increasing.

Proof. Let z = a™ and q € A so that ¢(z — zaq) < ¢(xza). Then ¢=1-aq
is not 0 and monotoneity of algorithm ¢ implies: ¢(za) > ¢(zc) > @(z). O

LEMMA 2. Let A be a domain and let ¢: A — W be a monotone right
Euclidean algorithm satisfying the condition (M). Then for each a,b € A and
c € A we have:

1° K =U(A)o is a subfield of the ring A,
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2° ¢(a) <o(b) = ¢(ca) < p(ch).

Proof. From (1) it follows that K = {a € K: ¢a < ¢1}, and for a,b € K we
have ¢(a — b) < max{¢pa, pb}, i.e. a—b € K, so that K is a subfield of the ring A.

Let us prove the implication 2°. Clearly, 2° is valid for a = 0 and each b € A
and ¢ € A°. Let us assume that 2° is valid for each z € A for which ¢(z) < a
(a > 0 is the given element from W), and let a,b,c € A such that ¢(a) = a and
#(a) < ¢(b), ¢ # 0. There exist g,r € A such that b = ag+r and ¢(r) < ¢(a).
Since ¢(r) < a, we have ¢(cr) < ¢(ca), and therefore

cb=caqg+cr, ¢(cr) < é(ca). (2)

It must be ¢ # 0 (because on the contrary it would be ¢b < ¢a). Further, from
da < ¢b it follows ¢(a +b) < ¢(b) and

¢(b) = ¢p(a+b—a) < max{$(a+d), ¢(a)},
so that ¢(a + b) = ¢(b). In other words, the implication

¢(a) < p(b) = ¢(a+Db)=H(b) (P)

is valid. Since ¢ is right monotone, it will be ¢(caq) > ¢(ca) > ¢(cr), and thus
¢(caq + cr) = ¢(caq), which together with (2) yields ¢(cb) > ¢(ca). If ¢(cb) =
@(ca), then from ¢(caq) = ¢(ca) would follow g € A*, and thereby ¢(b) = ¢(ag +
r) = ¢(aq) = ¢(a), which is contrary to ¢(a) < ¢(b). Summing up, we have:
(cb) > ¢(ca). O
If : A - W is a right Euclidean algorithm of a ring A and =z € A, let us
denote by A(x,$) the subset of A determined by:

a€ Az, ¢) & (IneN)[g(a) < o).

So, for example, if K is a field and ¢ a degree algorithm of the ring A = K[X],
then we have A(1,¢) = K, A(X,¢) = A. Similarly we have Z(1,v) = {-1,0, 1}
and Z(2,v) = Z, where v(m) = |m| is the standard Euclidean algorithm of the ring
Z.

LEMMA 3. Let ¢: A — W be a monotone right Fuclidean algorithm of a
domain A satisfying the condition (M), and let x be any element from AN K such
that B ={be€ A : ¢b < ¢z} is a subring of the ring A. Then A(z, ) is a subring
of the ring A, and a € A belongs to the set A(z,d) if and only if it is uniquely
expressible in the form

a=2z"ap+ --+2xa1+a (a; € B). (3)
Proof. Let us put V = A(z, ¢) and let us prove first that each a € V' has (at

least one) decomposition of the form (3). It is obvious that it is true for a € B. If
a € V \ B, then for some n € N we have

#(z") < d(a) < g(z"+). (4)
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There exist ¢,ag € A such that a = zc+ ap and ¢ag < ¢z. Since ¢ satisfies the
condition (P), from zc = a—ag and ¢ag < ¢z < ¢a it follows ¢(zc) = ¢(a), as well
as ag € B. If we prove that ¢(c) < ¢(z™), then the assertion will follow directly by
induction with respect to n for which (4) holds. Let ¢ =x"q+r, ¢(r) < ¢(z™). If
q # 0, then we have
P(@"tq) > ¢(a™) > ¢(a).

On the other hand, by Lemma 2, from ¢r < ¢z™ it follows ¢(zr) < ¢(z™+!), and
since ¢ also satisfies the condition (P), multiplying the equality ¢ = ¢ + 7 from
the left-hand side by x, we get

$lac) = p(z" g +ar) = ¢z q) > p(a™),

ie. ¢(xzc) > ¢(a), which is contrary to ¢(xzc) = ¢(a). Hence ¢ = 0, and thereby
d(c) = ¢(r) < ¢(z™). Therefrom ¢ has a decomposition the form (3), so that from
a =zc+ ap and ag € B it follows that a is expressible in the form (3).

If m,n € Ny, then for m > n and any elements p € B°, ¢ € B we have
d(x™ "p) > ¢(x) > ¢(q), and thereby ¢(z™p) > $(2"q) the (by Lemma 2).
Besides ¢ satisfies the condition (P), so that for each a € A of form (3) it holds
#(a) = ¢(z™ay,). Particularly, in (3) for a = 0 we have a; = 0 for each i > 0.

Let a be given by (3) and let a = x™b,, + - -- + by be valid for some b; € B.
If we put ¢; = a; — b;, it will be 0 = z™¢, + --- 4+ ¢o. But, since B is a subring
of the ring A, together with a;,b; € B we have ¢; € B, so that from the last
equality it follows that it must be ¢; = 0, and thereby a; = b; for each 1 <i < n.
On the other side, since ¢(c) < ¢(z) (¢ € B), by Lemma 2 we conclude that
B(z"c) < p(z™*!) for each ¢ € B and n € Ny. Hence for each a of the form (3)
it follows ¢(a) = ¢(z™a,) < ¢(z™*!), and therefore a € V. Thus V = A(z, ¢) is a
right B-modul (in a natural way) with the basis {z": n € Ng}.

Finally, let us prove that V is a subring of the ring A, i.e. that ab € V for
each a,b € V. Let at first be b = x. There exist ¢, € A such that z = aq + r,
o(r) < ¢(a). Then ¢(z) = P(aq). If ¢(q) > H(x), then by Lemma 2 we have
o(x) = ¢(aq) > é(ax), and thus ax € V. In the case ¢(q) = ¢(x), let us put
qg = zu+ s, ¢(s) < ¢(z). From ¢(q) = ¢(x) > ¢(s) it follows that u # 0, so
that @(zu) > ¢(s), and thereby ¢(q) = ¢(zu) = ¢(x). Hence u € A*, and since
#(s) < ¢(z) implies ¢(as) < ¢(az) < ¢p(azu) (Lemma 2), we have

¢(z) = #lag) = dlazu +as) = ¢(azu) = ¢(az),

and thereby az € V. At the end, if it were ¢(q) < ¢(x), i.e. ¢ € B, then, together
with a,q,r € B, it would be x = ag + r € B, a contradiction. Thus ax € V for
each a € B. Hence, by induction on n, we have az™ € V (a € V, n € Ny). Hence,
for any elements a = 2"a, +---+ag and b= 2°bs +---+ by (a;,b; € B) from V.
the product ab is the sum of a finitely many summands of form 2™ (uz™)v with
u,v € B, and thus ab € V. O

If, with the assumption and symbolism of Lemma 2, B = K # A and z is
any element from A~ K such that ¢(z) = min¢(A N\ K), then V = A(z,¢) is
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a subring of the ring A. If, besides the algorithm ¢ is finite (which will certainly
be if the ring A is commutative), then it will be a(z,¢) = A. Similarly to Cohn
[1], we infer that for some monomorphism f and right f-derivation § of field K
we have A(z,¢) = K[z, f,0]. Besides that, if ¢ is the restriction of ¢ on V, and
o degree algorithm of the ring K|z, f, ], then the right Euclidean pair (V,4) is
isomorphic to the right Euclidean pair (K[z, f,8],0). In general, for the ring
V = A(z,¢) from Lemma 2 it follows that there exist an endomorphism f and a
right f-derivation d of the domain B such that V = K|z, f,d] and f(B) C K.

LEMMA 4. If a right FEuclidean algorithm ¢: A — 1 of a ring A satisfies the
conditions (N) and (T), then it satisfies the condition (M), iff U(A)o is a subfield
of the ring A.

Proof. Since ¢ satisfies the condition (N), it is clear that A is an integral
domain, that the algorithm ¢ is monotone, and that ¢(0) = 0, ¢1) = 1 (n is
some ordinal). It is obvious that the condition is necessary. Let us prove that it is
sufficient. If K = U(A)o is a subfield of the ring A, then for each a,b € A we have

p(a) <o(b) = ¢(a+b) < ¢(b). ()
Let at first, ¢(a) = 1, and thus a € K°. Since ¢ satisfies the condition (N),
we have ¢(a + b) = ¢(a(l + a=1b)) = é(a)p(c), with ¢ = a~'b, and thereby
#(c) = p(a=') p(b) = ¢(b). Hence for ¢(a) = 1 the implication (5) reduces to
1< ¢dle) = d(1+c) < Ple) (c € A%). Since K is a field, we have k1 € K,
and thereby ¢(kc) = ¢(k1) ¢(c) < ¢(c) for each k € N. Besides, ¢ satisfies the
condition (T) too, so: (I1+¢)" =3 (")c" and

[¢(1+0)]" = o[(1+0)"] < X o(o) (6)

for any n € N and each ¢ € A°. Let us put ¢(c) = A. Then XA > 1. If A\ < w, then
from (6) it follows that for each ¢ € A° and n € N we have ¢(1+¢) < (14 n)'/»
(for A\ =1) and

n+l _ 1/n
d(1+c) < (%) (for XA #1).

Allowing that n — oo we get ¢(1+c¢) < A. Hence ¢(a+b) < ¢(b) for each a € K
and each b € A for which 1 < ¢(b) <w. If ¢p(b) = A > w, it willbe 1+ X=X, so
that we have directly: ¢(a+b) < ¢(a) + ¢(b) =14+ A =X = ¢(b).

Suppose now that (5) is valid for each a € A such that ¢(a) < o (a is a fixed
ordinal, @ > 1), and let a be any element from A for which ¢(a) = min{¢(c):c € A,
¢(c) > a}. There exist ¢,r € A such that b = ag+r and ¢(r) < ¢(a). Hence
a+b=r+c with c=a(l1+¢q). If 14+ q # 0, then we have ¢(c) = ¢(a)p(1+q) >
¢(a) > ¢(r). Besides, since ¢(r) < a, it will be ¢(r + ¢) < ¢(c), and for g # 0 we
have ¢(a +b) < ¢(r +¢) < ¢(c) and ¢(c) = ¢(a)¢(1+ q) < ¢(a)p(q) = ¢(ag) =
&(b—r), Finally, if ¢(a) < ¢(b), we have ¢(r) < ¢(b), and then @(a+b) < ¢(b). O

LEMMA 5. Let A be an integral domain which is not a field, ¢: A — n a
right Euclidean algorithm satisfying the conditions (N) and (T), K = U(A)o and
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x any element from AN K such that ¢(x) = min ¢(A N\ K). Then each element
a € A is expressible in the form

a = z"a,+---+zas +ag (ar € K, n € Np). (7)

Besides, a = 0 has exactly one decomposition of the form (7), and it is valid for
each a € A provided that K is a subfield of A.

Proof. Let ¢(a) =a>1 and a =zb+c¢, ¢(c) < ¢(x). Then c € K. Since ¢
satisfies the conditions (N) and (T), we have ¢(zb) = ¢(a—c) < ¢(c)+¢(a) < 1+a.
Hence

P(z)¢(b) <1+ a. (8)
If ¢(b) > a, then ¢(z)p(b) > (1 + 1)a > 1+ a, a contradiction. Thus ¢(b) < a.
Now by (transfinite) induction on « = ¢(a) it follows that each a € A is expressible
in the form (7). Besides, for each n € Ny and a, € K we have

dlag + - +3"a,) < ¢(z"H). 9)

Namely, if K is a field, then (9) follows directly by Lemma 4. If K is not a field,
then 1 < ¢(u +v) < ¢(u) + ¢(v) < 2 for some u,v € K. Hence ¢(z) = 2, so that
we have
Plao + -+ 2"an) <1+ ¢(a) + - + ¢(x)" < 2", (10)
and thus (13) is proved. Now, by (10), for a = 0, from (7) it follows ¢(—z"a,) <
¢(z™). Hence a,, = 0, and similarly a, = 0 for each 0 < r < n. If K is a field,
then the remaining part of the assertion follows by lemmas 3, 4. O
By Lemma 5, each right Euclidean algorithm ¢ of a ring A, satisfying the
conditions (N) and (T), is finite. Therefore for such algorithms we may restrict our
attention to the case ¢(A4) C Np.

THEOREM 1. If a ring A has a right Euclidean algorithm ¢: A — Ny satis-
fying the conditions (N) and (T), then for K =U(A)o we have

1° If K is a subfield of A, then either A = K, or, for some monomorphism
f and some right f-derivation 0 of the field K, the right Fuclidean pair (A, @) is
isomorphic to the right Euclidean pair (B, o), where o is a degree algorithm of the
ring B = K[X, f,0);

2° If K is not a subfield of A, then the right Euclidean pair (A, ¢) is isomor-
phic to the Euclidean pair (Z,v), with v(m) = |m|.

Proof. 1° It is clear that A is a domain, that algorithm ¢ is monotone and
that ¢(0) = 0, ¢(1) = 1. Since K is a subfield of A, by Lemma 4 the algorithm
¢ satisfies the condition (M), as well. Now by Lemma 3, ¢(A) C Ny implies that
A=K or A= A(z, ), so the assertion follows directly by Lemma 3.

2° Since K is not a subfield of A, there exist u,v from K such that 1 <
d(u +v) < ¢(u) + ¢(v) < 2. Hence for e = u='v we have u +v = u(l +e),
e€ K° and 2 = ¢(u +v) = ¢p(u)p(1+€) = ¢(1+e). It particularly means that
#(1+ e) =2 at least for one e € K°. For such an e € K let us put

a=1+e, b=1-e, c=1+¢ (11)
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Then ¢(a) =2, ¢(a®) = ¢(a)? =4, ¢(c) < ¢(1) + ¢(e?) = 2. Since a® = c+ 2e, it
will be 4 = ¢(a?) < ¢(c) + ¢(2e) < 2 + ¢(2¢). Hence ¢(2e) = ¢(c) = 2. Further,
for each u € K9 it holds 2u = (2e)v with v = e lu, so that

#(2u) = 2, (u € K°). (12)
Particularly, ¢(1+ 1) = ¢(2-1) = 2. Hence 1# —1. Let us prove that
K={-1,0,1} and K°={-1,1}. (13)

Let e € K° and a,b,c be elements from A given by (11). Then from ab = 1—e?it
follows ¢(a)p(b) = P(ab) = (1 — e?) < 2. Hence ¢(a) < 2 or ¢(b) < 2. Let
us prove that a = O or b = 0. If it were ¢(a) = ¢(b) = 1, because of (12) and
a? —b? = 4e = (2- 1)%e we would have 4 < ¢(a® — b?) < ¢(a?) + ¢(b?) < 2,
a contradiction. Suppose that ¢(a) = 2. Then ¢(b) < 1. From a? = ¢ + 2e
it follows 4 < ¢(c) +2 < 4. Thus ¢(c) = 2. Since abc = 1 — e* we have
#(a)p(b)p(c) = ¢(1 — e*) < 2. Besides, ¢(a) = ¢(c) = 2. Hence 4¢(b) < 2, and
thereby b = 0. Similarly, if ¢(b) =2, then a = 0. Thus (13) is valid.

We denote the sum 71 =1+---+1 by 7 (r € N). By (12), holds
p(r) =r (14)

for r = 2. Let us prove that (14) is valid for any » € N. Let n > 1 be a given natural
number and suppose that (14) is true for each r < n. If n = pg (1 < p,q < n),
then it will be i = pg. Hence ¢(7) = #(p)¢(q) = pg. Let now n be a prime and
n > 2. Then n—1 = 2p and n + 1 = 2¢ for some natural numbers p,q < n. If
m =n?—1, then m = 4pq, ¢(p) = p, $(q) = ¢, $(4) = $(2)¢(2) = 4 and ¢(n) < n.
For ¢(n) < n, it follows that ¢(4)d(p)d(q) = ¢(n? —1) <1+ ¢(n)%2 < 1+ (n—1)2,
that is n2 — 1 < 1+ (n — 1)2, a contradiction. Thus ¢(7i) = n, and thereby
¢(m1) = |m| for any m € Z. Hence the characteristic of the ring A is 0.

Finally, let us prove that
¢la)=r = a==F (15)

is valid for each a € A. For r = 1 (15) is equivalent to (16). Let n > 1 and
suppose that (15) holds for any r < n. There exist b,c¢ € A such that a = b+ ¢,
¢(c) < ¢(A) = m. Since ¢(c) = r < m, it will be ¢ = F or ¢ = —F. On the
other hand, we have ng(b) = ¢(n)p(b) = ¢(nb) = ¢(a — ¢) < ¢(a) + ¢(c) =n —r,
that is ¢(b) < 1. If b = 0, then a = ¢, i.e. n = ¢(a) = ¢(c), a contradiction.
Hence ¢(b) = 1, so that from (13) and a = 7Ab + ¢ it follows a = £7 + 7, that
is n = ¢(a) = | £ n £ r|, and thereby r = 0. Thus, we have a =7 or a = —f.
Hence, by f(m) = m1 a ring isomorphism f:Z — A is defined. Since ¢: f = v,
the (right) Euclidean pair (4, @) is isomorphic to the Euclidean pair (Z, v). O

THEOREM 2. Let ¢: A — Ny be a monotone right Euclidean algorithm of
an integral domain A, satisfying the conditions (T) and (Z). If K = U(A)o and
¢(1) =1, then



On Euclidean algorithms ... 131

1° If K is not a subfield of the ring A, then the (right) Euclidean pair (A, @)
is isomorphic to the Euclidean pair (Z,v);

2° If K is a subfield of the ring A with ot least three elements, then A = K ;

3° If K is a subfield of the ring A with two elements, and algorithm ¢ is
two side monotone, then either A = K, or the ring A is isomorphic to the ring
B = K[X]. Besides, the Euclidean pairs (A, $) and (B, o) are not isomorphic.

Proof. 1° Since K is not subfield of A, there exist units u,v € K°® such
that 1 < ¢(u +v) < ¢(u) + ¢(v) = 2, that is ¢(u +v) = 2. Let us put e = vu !
and a = 1+e, b=1—e, ¢ = 1+¢e? Then 2 = ¢(u +v) = ¢[(1 + e)u],
ie. ¢(1+e) = ¢(a), ¢(b) <2, ¢(c) < 2. Let us prove that ¢(2e) = 2. From
#(1) < ¢(a), by Lemma 1, it follows 2 = ¢(a) < ¢(a?). For 2¢ = 0 we have
a? = 1+ €2, and thereby ¢(a?) < 2, a contradiction. Suppose now that ¢(2e) = 1.
Then 3 < ¢(a?) = ¢(c+2e) < 1+ ¢(c) < 3,ie. ¢(c) = 3. Since ach = 1 — e,
we have ¢(ach) < 1+ ¢(e*) = 2. For ¢(ach) = 2 = ¢(a), by the condition (Z),
there exists a unit u € K° such that achb = au. Hence ¢ € K, which is contrary
to ¢(c) = 2. Since ¢(a) = 2, then ¢(ach) # ¢(1). Finally, if ¢(achb) = 0, that is
acb = 0, then b = 0 since ac # 0. Hence e = 1. Then 2 = ¢(a) = ¢(2e), which
is contrary to #(2e) = 1. Thus ¢(2e) = 2. Let now u € K° be any unit of the
ring A. If w = u le, we have w € K° and ¢(2u) = ¢(2uw) = ¢(2e) = 2 for any
u € K°.

Let us put £ = 1+ 1. Then ¢(z) = 2 = min (A N\ K). Let us prove that it
must be ¢(z?) = 4. Indeed, since 2 = ¢(z) < ¢(z?) and 22 = 1+ 1+ 1+ 1, we
have 3 < ¢(2?) < 4. If m=ml1 (m € Z, 1€ A), it will be 22 = 4. Then ¢(3) < 3.
Since ¢(3) < 1 implies ¢(2?) = #(3+ 1) <1+ 1 = 2, we conclude that ¢(3) > 2.
But, if ¢(3) = 2, i.e. ¢(3) = ¢(2), then there exist a u € K° such that 3 = 2u,
i.e. 1=x(u— 1), which is contrary to ¢(z) = 2. Hence ¢(3) = 3. Analogously we
conclude that ¢(4) # ¢(3). Thus ¢(z?) = 4.

Let us prove now that K° = {—1,1}. Primarily, 2 # 0 = —1 # 1. For
arbitrary e € K we put: a = 1+e, b=1—¢, ¢c = 1+¢€2 Then a = 0or
b = 0, and thereby e = 1 or e = —1. Namely, at first ¢(a),d(b),d(c) < 2.
Since 4 = ¢(4) = ¢(4de) = ¢(a® — b?) < ¢(a?) + ¢(b?), we conclude that ¢(a) # 1
or ¢(b) # 1. If ¢(a) = ¢(b) = 2, then b = au for some v € K, and thereby
1—e? = ab = a®u. It means that ¢(a?) = ¢(a?u) = ¢(1—e€?) < 2, which is contrary
to @(a?) > ¢(a) = 2. Finally, assume that ¢(a) =2 and ¢(b) < 1. Then, for some
u from K° we have a = 2u = 2u, so that ¢(a?) = ¢(4u?) = ¢(4) = ¢(2?) = 4.
Hence 4 = ¢(a?) = ¢(c + 2e) < ¢(c) + ¢(2e) = 2 + ¢(c) < 4. Thus ¢(c) = 2).
On the other hand we have ¢(ach) = ¢(1 —e?) < 2. If ¢(ach) = 2 = ¢(a), then
there exists u € K° such that acb = au, that is ¢ € K°, which is contrary to
¢(c) = 2. Similarly, ¢(a) = 2) implies that ¢(acb) # 1. Hence acb = 0, that is
b = 0 (because of ac # 0). Thus e = 1. Similarly, for ¢(a) <1 and ¢(b) = 2 we
have e = —1, so that K° ={—1,1}.

Now, by the condition (Z), for any m,n € Z we have ¢(m) = ¢(n) if and
only if m =7 or m = —fi. Hence: ¢(m) = ¢(i) & m =n V m = —n. Namely,
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the characteristic p of the ring A is not 2. If p > 2, then we have x = 1+ 1 =
1P + 1P = (14 1)? = 2P, that is # 2z = 1, and thus = € K°, which is not true.
Thus p = 0. Hence m =7 < m =n V m = —n. Now, by induction on n, we
conclude that ¢(n) = n (n € N) is valid. It is clear that for each m € Z the
following holds: ¢(m) = |m|, i.e. ¢(m) = v(m).

Finally, let a € A and let us put ¢(a) = n. Since ¢(7) = n, for some unit
u € K then a = nu. Hence a =n or a = —n. Thus, by f(m) = m is defined a
ring isomorphism f:Z — A, and since ¢: f = v is valid, the (right) Euclidean pair
(A, ¢) is isomorphic to the Euclidean pair (Z, v).

2° Let 1 and e be different units of the ring A. Suppose that A = K is not
true. We denote by z any element from A such that ¢(z) = min ¢(A \ K). Since
¢ satisfies the condition (T), we have

d(1+2z) <1+ ¢(z). (14)

Assume that ¢(1+2z) = ¢(x). Then, by the condition (Z), for some u € K° we have
1+ 2z = zu. Hence z(u — 1) = 1, that is x € K°, which is contrary to z € AN K. If
d(1+1x) < ¢(x), then ¢(1+2x) < ¢(1), i.e. 1+x € K, which is not possible because
ofx ¢ K. Thus ¢(1+z) > ¢(z), which with (14) gives ¢(1 +z) =1+ ¢(=). It is
clear that ¢(1+ z) = 1+ ¢(zv) (v € K°) is also valid. Hence for any u € K° and
v=u"! holds u+z = (1+2v)u and

dlu+z) = d(1+2v) = 1+ ¢(av) = 1+ ¢(x). (15)

From (15) it follows that ¢(1 + z) = ¢(e + x), that is e + z = (I + z)w for some
w € K°. Since 1# e, we have w # 1. Hence w — e € K9, that is z(1+ w) € K°,
which is contrary to z € AN K. Thus A = K.

3° From K° = {1}, by (Z), it follows that the mapping ¢: A — Nj is an
injection. Since 1+ 1 = 0, the characteristic of the ring A is 2. Assume that
A # K and let x € AN K such that ¢(z) = minp(A N\ K). Similarly as in the
proof of the assertion 2°, we conclude that

d(1+z) =1+ ¢(z). (16)

Let a € A. Then there exist ¢,r € A such that a = cx +r, ¢(r) < ¢(x). From
o(r) < ¢(x) it follows that r € K. Since the algorithm ¢ is two side monotone, we
have
p(c) < ¢(ac) = dla—71) < ¢(a) +¢(r) < 1+ ¢(a).

Suppose that ¢(a) > ¢(x). Then ¢ # 0. If ¢(c) = ¢(zc), it will be ¢ = zc, that
is = 1, a contradiction. Hence ¢(c) < ¢(zc) < 1+ ¢(a), i-e. ¢(c) < ¢(a). Since
¢(c) = ¢(a) implies ¢(r) = ¢[(1 — zu)a] > ¢(a), we conclude that ¢(c) < ¢(a).
Thus, for any a € A° there exist ¢,r € A such that a = zc+r, r € K, ¢(c) < ¢(a).
Hence, by induction on n = ¢(a), it follows that any element a € A is expressible
in the form

a=z"an+- - +za1+ay (ar € K, n €Np). (17)
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Since K is subfield of the ring A, by (16) we conclude that each a € A is uniquely
expressible in the form (17). Let B = K[X]. Hence by

F(ap +xay + -+ 2"an) = ao + Xag +---+ X"a,

is defined a ring isomorphism F: A — B. However, the Euclidean pairs (A4, ¢) and
(B, o) are not isomorphic. Indeed, suppose that for some isomorphism f: A — B
and some monomorphism h of the well ordered set ¢(A) into the well ordered set
o(B) we have oo f = ho¢. Since z is not a unit in the ring A, p = f(x) is
not a unit in the ring B. Hence for such a p we have o(1 + p) = o(p), so that
(6o f)(1+2) = (0o f)(x), i.e. (ho@p)(1+z)=(hog¢)(x). Since h is an injection,
it follows that ¢(1+ x) = ¢(z), which is contrary to (16). O

Ezample 1. Let K = {0,1} be a field of two elements and A = K[X]. If
a € K, then let a denote the integer 0 for a = 0, and the integer 1 for a = 1. Then
the mapping ¢: A — Ny defined by

dlap + Xa1 + -+ X"a,) = o +2a1 + - +2"a,

is an Euclidean algorithm of the ring A, satisfying the conditions 3° of Theorem 2.
Indeed, let o be a degree algorithm of A. Since ¢(ag + - -+ + X"a,) < 2", then,
for a,b € A we have ¢(a) < ¢(b), if and only if o(a) < o(b). Hence the function ¢
is also an Euclidean algorithm of A. Since each m € Ny is uniquely expressible in
the form m = ao + - - - + 2"a,,, where a, € {0,1}, it follows that ¢ is an injection.
Besides, K° = {1}, so the algorithm ¢ satisfies the condition (Z). Further, since for
u,v € A and w =wu+v holds & < @+ 0, we conclude that ¢(a +b) < ¢(a) + ¢(b)
(a,b € A). Thus the algorithm ¢ also satisfies the condition (T).

THEOREM 3. If for a ring A there exists a mapping ¢: A — Ng satisfying the
conditions (T),(N) and (Z), then A is either field, or (A, ¢) is an FEuclidean pair
isomorphic to Euclidean pair (Z,v).

Proof. By the condition (Z) we have ¢(0) # ¢(1), so that the mapping ¢
is not constant. Since ¢(a) = ¢(al) = ¢(a) - ¢(1), it must be ¢(1) = 1. Now
#(0) = ¢(0)¢p(0) implies ¢(0) = 0, and hence ¢(a) = 0 < a = 0. Further, by
the condition (Z) holds ¢(a) = ¢(1) & a € K° where K = U(A)o. Finally,
since ¢ satisfies condition (N), we conclude that A is an integral domain, that
¢(ab) > ¢(a), $(b), and that, ¢(a") < ¢(a™*?) for ¢(a) > 1.

If K is subfield of A, then A = K. Namely, in the case that K has at
least three elements, similarly as in the proof of Theorem 2 under 2°, we conclude
that AN K = @. Suppose now that K = {0,1} and ANK # @. If x € A
and ¢(z) = min @¢(A \ K), similarly as in the proof of Theorem 2 under 3° we
get ¢(1+ z) = 1+ ¢(z). Hence, by the condition (N), for ¢(z) = n we have
A1+ 2)?] = [p(1+2)]?> = [1+ ¢(@)]> = (1 + n)2. On the other hand, by the
condition (T), we have ¢[(1+ z)?] = ¢(1 + z2) < 1 + ¢(2?) = 1 +n?. Hence
(1+n)2 <1+n?, ie. ¢(x) =n =0, a contradiction. Thus A = K.

Suppose now that K is not a subfield of A. Similarly as in the proof of
Theorem 1 we conclude that K® = {—1,1}, with —1 # 1, and that ¢(m1) = |m)|



134 Gojko Kalajdzi¢

for every m € Z. Hence for every a € A and ¢(a) = n we have ¢(a) = ¢(nl), so
that a =nl or a = —nl by condition (Z). Therefore A = {m1: m € Z}, and since
the characteristic of the ring A is 0, we conclude that the Euclidean pair (4, @) is
isomorphic to the Euclidean pair (Z, v). O
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