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GENERALIZED RANDOM PROCESSES
ON THE ZEMANIAN SPACE A

Z. Lozanov-Crvenkovié and S. Pilipovié

Abstract. We give several representation theorems for the generalized random processes
whose sample functions are generalized functions from Zemanian space A’. Using these repre-
sentations we give the characterizations of a sequence of generalized random processes on A that
converges almost surely (A’).

1. Introduction

The generalized random processes (g.r.p.) were studied by several authors
[1,3,4,5,7,8,10,11,12,13] and a variety of different viewpoints have been taken
to define g.r.p.. In this paper we follow the aproach of [1,4,7,10,12,13]. In
[1,3,7,8,12,13] spaces D and K{M,} were taken to be the spaces of test func-
tions and in [1,7,8,12,13] representation theorems for g.r.p. were given. In [7,8]
several types of convergences of g.r.p. were defined and investigated, and represen-
tation theorems for expectation and conditional expectation of g.r.p. were given as
well.

For a space of test functions we take the space A, whose elements have or-
thonormal expansions. The space A and its dual space A’ were introduced in [14].
Our construction of the spaces A and A’ is different from [14], and details are given
in [11].

Since elements from A and A’ have orthonormal expansions we are able to
give several representation theorems for g.r.p. on A. In Theorem 3.1 we give the
representation of a g.r.p. as an infinite series on a set of arbitrary large probability.
In Theorem 3.2 we give the conditions under which this representation is valid on
a set of probability one. In Theorems 3.3, 3.4, 3.5, we use generalized diferential
self-adjoint operator to represent a g.r.p..

In Section 4 we investigate almost sure convergence of g.r.p. on A. In Theo-
rem 4.1 we give the necessary and sufficient conditions for almost sure convergence
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of a sequence of g.r.p., and in Theorems 4.2, 4.3 and 4.4 we give the characteriza-
tion of such convergence using the representations obtained in Theorems 3.1, 3.4
and 3.5.

Our approach to the notion of almost sure convergence is motivated by the
papers of Kitchens [7,8].

2. Spaces A and A’

We shall use the notation from [14]. Let I be an open interval of the real line
R and L?(I) be the space of the equivalence classes of square integrable functions
with values in the set of complex numbers C with the usual norm. Denote by
C*(I) the set of infinitely differentiable (smooth) functions, by N the set {1,2,...}
and let Ng = N U {0}. Let R be a linear differential self-adjoint operator of the
form R = 6oD™6,...D™0, where D = d/dz, ny € No, k = 1,2,...,v; O,
k=0,1,...,v, are smooth functions without zeros on I. We suppose that there
exists a sequence of real numbers {\,,n € Ny}, and a sequence of smooth functions
{¢n,n € No} such that R, = Aythn, n € No. Furthermore, suppose that the
sequence {|\,|,n € No} monotonically tends to infinity and that {¢,,n € No}
is a complete orthonormal system (o.n.s.). We can enumerate v, and A, so that
Dol < M| < Ao] € oot Put Ay = Ay if Ay # 0, and X, = 1if X, = 0,
n € Ny. The sequence {\,,n € No} is nondecreasing and |A,| = 00, n — co. Let
REFL = R(RF), k € No, R® = G, S is the identity operator. In [11] the scale of
spaces Ay, k € Ny is defined in the following way.

A, {cp € LA(I Z AmYm, @l = Z |am|2)\2’C < oo} k € No.
m=0
Put
A= ﬂAk—{goeLQ Zamwm,VkeN Z|am|)\2k<oo}
k=0 m=0

The set Sr = {¢ = >0 _o(am +ibm)¥m : 5 € No, am,bm € Q, m € No}, (Q
is the set of rational numbers), is a countable dense set in each Ay, k € Ny, and
hence in A.

Let A’, (A},) be the dual space of the space A, (A;). We have A’ = [J7, Aj.-

From [14, ch. 9.3. and 9.6.] it follows that (R¥¢.,,¢) = (¥m,R¥p), n,k €
No, p € A, where for pE A fe Ala (f:SO) = <f7¢)

3. Generalized random processes on () x A

Let (2, F, P) be a probability space and P a complete measure. Throughout
the paper we shall assume that (Q, F, P) is fixed.
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Definition 3.1. A generalized random process is a mapping £ : @ x A — C
such that: (i) Vo € A, £(-,9) is a random variable; (ii) Vw € Q, &(w, -) is an
element from A'.

THEOREM 3.1. Let & be a g.r.p. on Q x A. Then for every € € (0,1) there
exists a non-negative integer k = k(€), a set B € F with P(B) > 1 —¢, and a
sequence {cp,n € No} of random variables, such that

Ew,0) =) cn(w)(Wn,9), wEB, peA
n=0

=) _ 1/2
(Z |cn(w)|2)\;2k> <k, w € B.

n=0

Proof. The proof is similar to the proof of Lemma 4 and Theorem 1 of [13].
See also [1,12,10]. For every wy € Q we have that {(wp, -) € A’. So, there exist
C(wo) and k(wo) such that

|€(wo, )| < Clwo)llllk (o) p €A

Put

B (@) = {w € Q: 6w, ¢)| < Nlglly, N € No, o € A},

By = () Bn(p), N €N,.
pEA

We have that
By= () Bn(g), NeNo.
QES,

Since S, is a denumerable dense set in A it follows that By is a measurable set.
Furthermore, By C Byy1, N € Ny and 2 = U?VO:O Bpy. Hence, for a given € > 0
there exists k € Ny such that P(By) > 1 —e. If we put B = By we obtain that
[€(w, )| < Ellell; ¢ € A, w € B. For p € A, define

{(w,p), weB

@) awo={ 5 0]

Put, for w € Q,

R(w) = sup{|&(w,9)|, ¢ € A, |loll, <1}
= sup{|&1 (w,¢)|, ¥ € Sy, llell, <1}

We have that R(-) is a measurable function, R(-) < k, and

E1(w, 9) < RW)llelly,  p€A weB.
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According to the probabilistic Hahn-Banach theorem, [4], £ can be extended to
Ap. Denote this extension by &;. It follows that & (w, )| < R(w)ll¢lly, ¢ € Ak,
w € Q. A mapping from Q x Ay to Q x [2 defined by

i: (w,cp) ( {)‘kan} p= Zan¢n €A,

n=0

is an isometry of the spaces 2 x A and © = i(Q2 x Ag) C Q2 x 12 A gr.p. & on ©
is defined by

52(‘*}5 {Xia‘n}) = g1(w,<p), w e Qa p e -Ak;
where (w, {\¥a,}) = i(w, ) and

1/2
62w, (Xkan})| < R(w (Z|an| vk) . wen

According to the probabilistic Hahn-Banach theorem &, can be extended to
Q x I2. Denote this extension by ;. We have that

Ew, Man}) = LW, {Man)), (W, {Man}) €0,
&2(w, {ba})| < R@)[I{bn}ll2,  {bn}€?, weQ.

For every w € (, {?g(w, -) is a continuous linear functional on /2. Therefore, there
exists a sequence {¢,(w),n € No} such that

D en()? <o, and &(w,{bn}) = Z en(Wbn,  {ba}el?, weq.
In an obivous way we define, and denote by the same letters,

£:Ox LX) 5 C, &w,e) =&W, {b}), ¢= i:)obnzbn, {bn} €12,

Since §~2(-,<p) is a random variable for every ¢ € L?(I), it follows, putting

© = 1n, that ¢y (w) = &(w,1n) are random variables. Moreover, for the dual norm
we have

_ , 0 1/2
Bl oo = (L) =R, weon,

n=0
We have for w € B, p € A,

£, ) = & (w,9) = &1 (W, ) = E2(w {X’“an})zé(w,{i’;an})
= Z an = ch wna )
n=0

Define ¢, (w) = &, (w)Ak, n € Ny and the assertion follows.
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THEOREM 3.2. Let & be a g.r.p. on Q x A. Suppose there exist a random
variable r, a set Z € F with P(Z) = 0, and a non-negative integer k, such that
|&(w, )| < r(w)ll¢llg, forw e Q\ Z, ¢ € A. Then there exists a sequence {c,,n €
No} of random variables, such that

ch (Yn,0)  w€EN\Z, €A,

(i |Cn(uJ)|2X;2’“>l/2 < r(w), weN\Z

n=0

The proof is similar to the proof of Theorem 3.1, putting Q \ Z instead of B
n (3.1).

We define the differential operator ﬁk, k € Ny, on the set of g.r.p.’s by

'ﬁ,kf(W,QO) = §(W7chp)7 w € Q; pE A;
RMT=R(R*), keNy,, R°=3.

We shall denote R by R.

Next, we shall give representation theorems of a g.r.p. that are analogous to
the Theorem 9.6.2 from [14, Ch. 9.6]. Put A = {n € Ng: A, =0}, A°=Ng \ A.

THEOREM 3.3. Let & be a g.r.p. on Q x A. For every ¢ € (0,1) there exist
B € F with P(B) > 1 — ¢, a non-negative integer ko = ko(€), a g.r.p. & on
Q x L*(I), and random variables c,, n € A, such that

Ew,p) = R¥&G (W, 0) + Y cn(w)(Wns9),  wEB, peA

neA

Proof . From Theorem 3.1 it follows that there exist B C  with P(B) > 1—e¢,
and ko = ko(g) such that

ch (n, ), WEB, pEA,

where ¢, (w) are random variables with

1/2
(Z len (w )\ 2’“0) < ko, w € B.

Put
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We have that

o0

£0(w790) = Z bn(w)("ubn;‘;o)

n=0
is a g.r.p. on Q x L2(I). Namely & is determined by the function Xo(w,t) =
Yoo o bn(W)Yn(t), on Q x I, where, for fixed w € Q, X is in L?(I). We have that,
forwe N, g€ A,

R &o(w, ) = o(w, R9) =D bn(W)A (¥n, ©) = D, enl(w)(¥n, @)-
n=0 neAc

So,
Ew,p) = R*&(w,0) + D ca(w)(¥n,9). O

neA

Remark 3.1. From the proof of Theorem 3.3 we can conclude that instead
of ko and & Theorem 3.3 holds for every k > k¢ and the corresponding g.r.p. on
2 x L2 (I)7 fk-

Remark 3.2. The representation of £(w, ¢) in Theeorem 3.3 means that

£(w,p) = /IXo(w,t)R’““so(t) dt+Y cn(@)(¥ni9), wEB, pEA

neA
In the same way as in Theorems 3.2 and 3.3 we can prove the following

THEOREM 3.4. Let & be a g.r.p. on Q2 x A. Suppose there exist a random
variable r such that E(r) < oo, a set Z € F such that P(Z) = 0, a non-negative
integer ko such that |{(w, )| < r(w)llelly,, w € @\ Z, ¢ € A. Then for every
k > ko there exist a g.r.p. on Q x L2(I), & (w, ), and random variables c,,, n € A,
idependent of k, such that

§(w,cp) = Rk{k(w:(p) + Z Cn(w)(wn;‘p)

neA

= [ oR O dt+ T ca@)np), wERNZ pEd,
I

neA

where Xy, is the function on Q x I which determines .

Next we shall give a similar representation where X}, is a continuous random
process. By continuous stohastic process on {2 x I we shall mean the process which
for almost every w € 2 is a continuous function on I. In our next theorem we
shall suppose that sequences {¢,,n € No} and {A,,n € Ng} satisfy the following
conditions:

(*) there exist so € No and a constant K, such that sup{|i,(t) /2| n e No,
tel} <K,
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(#x) there exists po € Ny such that for p > po, >, cxc Ay %P < 00.

Conditions (*) and (*#) are not too restrictive. For example, Hermite, Fourier
and Laguerre complete orthonormal suystems satisfy these conditions. For other
o.n.s. which satisfy these conditions we refer to [14, ch. 9.8] and [2, ch. 10.18].

THEOREM 3.5. Let £ be a g.r.p. on Q x A. Suppose that there exist a random
variable r such that E(r) < oo, a set Z € F, such that P(Z) = 0, a non-negative
integer ko, such that [{(w, )| < r(W)llplly,, for w € Q\ Z, ¢ € A. Then, for
k > ko, there exist a continuous random process Xg(w,t) on Q x I, and random
variables c,, n € A, such that

E(w,p) = /katRk+p+s dt—l—ch (Yn, ), Yw €N\ Z, p€ A,
neA

where s > sg, So s from (%), and p > po, po is from (xx).

Proof. From Theorem 3.2 it follows that there exists a sequence of random
variables {c,,n € Ny} such that

ch (¥n,9), weN\Z, peA,

oo

(z

N 1/2
|cn<w)|2A;2’“) <), weN\Z
n=0

Let k > k. Define

Xe(w,t) = Y ealwA,FPHlg (1), we, tel
n€Ac

We have that for every w € Q\ Z, t € I,

Y lea@AFFPFIg )] S K Y [(ea(@)AF)(57))

neAe neAc
1/2 1/2
< K( D len(@)PA, 2’“) ( > ,\n’“’) < 0.
neAe neAe

It follows that for every w € Q\ Z, Xj(w,-) is a continuous function. Since
Xi(-,t), t € I, is measurable it follows that X} is jointly measurable on Q x I. For
0= an¥n € A we have that

Z |an |PA2EFPH) = O < 0.

Also,
1/2
(Z |en (w 2(’“+”+3)> <rw), weq.

neAe



208 Lozanov-Crvenkovié¢ and Pilipovié

Hence,

/Q\Z/I|Xk(w’t)Rk+p+s<,0(t)|dth(w)

<[ \Z{ ([ inpar) v ([imereegior dt>1/2} aP(w)

1/2 1/2
< [ ([ ten@Pr2t7) (5 lanpatre) L apio)
Q\Z

neAc neAc

<C |r(w)|dP(w) < oo.
o\Z

It follows from Fubini’s theorem that Xj (-, - )RFFP+3p(.) € LY((Q\ Z) x I)
and, again, from the Fubini theorem that

&(-p) = /I Xy (-, (YRFPFO (1) dt

is a random variable for every ¢ € A and hence a g.r.p. It is obvious that for every
w€ N\ Z and every p € A,

& (@, ) = Y en(@)AgFHPH) (g, REFPF ) = 3™ ¢, (w) (¢, )
neAc neAc

So, finally we have

'5(“),80) = Ek(wa(p) + Z Cn(w)(d)mSD)

neA

= [ 0RM 0t + Y ca@)np) wERNZ ped
I

neA

4. Almost sure convergence of a sequence of g.r.p. on A

Definition 4.1. A sequence {&,,n € N} of g.r.p. on A’ converges to a g.r.p. £
almost surely (A') if there exists a set Z € F such that P(Z) = 0 and for w € Q\ Z,
&n(w, -) converges to £(w, -) in A'.

Since &, — £ iff £, — & — 0 we shall consider the case &, — 0.

THEOREM 4.1. Let {£,,n € N} be a sequence of g.r.p. on A. The following
conditions are equivalent:

A. The sequence {£,} converges to zero almost surely (A').

B. (i) For every ¢ € A, £&u(-, ) = 0 almost surely, n — oo;

(ii) There exist a set Z € F such that P(Z) =0, and for every w € Q\ Z,
{én(w, -),n € N} is bounded in A'.
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C. (i) For every p € A, £,.(-,9) = 0 almost surely, n — o0;

(ii) For every € € (0,1) there exist a set B € F, a non-negative integer k,
both independent of n, such that P(B) > 1 — ¢, and for every w € B,

p €A, lkn(w, )| <kl

Proof. The proof is similar to the proof of Theorem 2.2 [7]. We shall prove
A= C = B = A

A = (C. Assume that &, — 0 almost surely (A'), then C(i) follows
immediately. We have that for each w € 2\ Z the sequence &, (w, -) is bounded, and
since A" = [, A}, it follows that there exists a non-negative integer k = k(w),
independent of n, such that £, (w, @) < k(w)ll¢lly(,), ¥ € A. Now, as in Theorem
3.1, put

An(p) = {w € Q: & (w,9)| < Nllglly}, v€A NeN,

pES,
We have that Ay € F, and that Q\ Z € Uxy_,; An, AN C Any1, N € N.
Thus, we obtain that for a given € € (0,1) there exist k € Ng such that P(A4y) >
1—¢. Put B = A, and C (ii) follows.

C = B. The conditions C (i) and B (i) are the same, and to show that
C (ii) = B (ii), choosee = 1/p, p € N. Then there exist B, and k, with P(B,) >
1 —1/p such that for w € By, |€a(w, 9)| < Kpllolly,, ¢ € A. Let Z = Q\ Uy By-
Then P(Z) =0 and B (ii) follows.

B = A. From B (i) it follows that for each ¢ € S, there exists a set
Z, € F such that P(Z,) = 0 and for each w € Q\ Z,, & (w,9) — 0. Let
7' =Z U (U,es, Zy), (where Z is from B (ii)). Then P(Z') = 0. For each ¢ € S,
and w € Q\ 7', &, (w, ) — 0. Since from B (ii) we have that for each w € Q\ Z’
{&n(w, -)} is bounded on A, it follows by the Banach-Steinhaus theorem that for

every w € Q\ Z', &, (w, -) = 0, that is, &, converges almost surely (A'). O

THEOREM 4.2. Let {&,} be a sequence of g.r.p.’s on A. Then &, — 0 almost
surely (A") iff for every € € (0,1) there exist a set A € F, with P(A) > 1—¢, and
a non-negative integer kg such that for k > ko and w € A

(4.1) sup [ép(w, )] =0, n — occ.
llell, <1

Proof. From Theorem 4.1, part C(ii) it follows that for a given € € (0,1)
there exist B € F, P(B) > 1 — ¢, and a non-negative integer ky such that, for
weB,peA neN,[{(w )| < kollelly,- Then, from Theorem 3.1 it follows
that for every n € N there exists a sequence of random variables {c¢,,, : m € No}
such that for every w € B, ¢ € A,

(4.2) én(w, ) = Z Cm,n(w)@pma‘;o):
m=0
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and, for every n € N,
1/2
(43) ( > fema DPR) <0 K2k wen

Since &, — 0 almost surely (A'), there exists Z € F, P(Z) = 0, such that for
w€N\Z, & (w,p) = 0, for every ¢ € A. Put A= B\ Z. Then P(A) >1—¢
since P(-) is a complete measure. Putting ¢ = 9, m € Ny, in (4.2) we obtain for
w €N

(4'4) fn(wa¢m) = Cm,n(w) =0, n— o0, me Ny

Let k > ko be fixed. We have (cp = Amtm € A)

1/2
‘ Z cmn |)\ | k|Am|kam‘ S (Z |Cmn | /\_2k) ”90”]9

Further,
> ~
Z |em,n( )‘ 2 = Z |em,n( ’\ 2+ )‘m0+1 Z |Cm,n(w)|2/\7_nz(k_1)a
m=mo+1

where my is chosen so that for C from (4.3)
N2, <e2/202.

From (4.4) it follows that there exists ng = ng(e) such that
Z|cmn A2k<6/2, n > no.

Thus, we have that, w € A, o € A, k > ko,

&n(w, @)| < ellol];

o (4.1) follows.

Conversely, C (ii) follows immediately. For each integer p choose ¢ = 1/p.
There exist A, and k, with P(A4p) > 1—1/p, such that

sup |&p(w, )| = 0, w € Ap.
lelly, <1

Let Z = Q\U,2, 4p, then P(Z) = 0 and for w € 2\ Z there exists p(w) such that

w € Ay, and there exists k() such that

p(w p(w

sup  |&n(w, )] = 0
1l () <1
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Thus, for given ¢ € A, and for w € Q\ Z

ln(w, @)l < sup  [&n(w, @)l llelly

, = 0.
”‘P”lep(u)ﬂl

p(w

So C (i) follows.

THEOREM 4.3. Let {{,} be a sequence of g.r.p. on A. Then &, — 0 almost
surely (A") iff for every ¢ € (0,1) there exist a set B € F with P(B) > 1 —¢,
an integer kg € No, (where B and ko are independent of n), for each m € A a
sequence of random variables {cm,n,n € N}, and for every k > ko a sequence of
functions Xy, on Q x I, n € N, such that, for n € N

(4.6)
n(w, o) = /Xk,n(w,t)R’“sO(t) dt+ Y Cmn(@)(Wm,p), wEB, p€ 4
I meA
(4'7) ||Xk,n(wa ')||L2 < ka w e 93
(4.8) | Xk,n(w, )2 = 0, n—oo, weN\Z;
(4.9) Zcm,n(-)—)o, n— o0, we€B\Z

meA

where B is the set from Definition 4.1.

Proof. Assume that &, — 0 almost surely (A’) and let £ € (0,1) be given.
From C (ii) of Theorem 4.1 it follows that there exist aset B € F, with P(B) > 1—¢,
a positive integer ko, both independent of n, such that |, (w, ¢)| < koll¢ll;,, w € B,
@ € A. Then, from Theorem 3.2 it follows that for every n € N and for k > kg
there exist a function Xy, ,, on 2 x I, and random variables ¢, ,, m € A, such that
(4.6) and (4.7) hold.

Now, since

supygy <1 [n(w,9)|, weB

Xt Mg = { o Coh

from Theorem 4.2, (4.8) follows. O

As in Theorem 4.2 we obtain that ¢y n(-) = 0, w € B\ Z, m € Ny. Since A
is finite, (4.9) follows. O

Suppose that the conditions (x) and (x*) are satisfied.

THEOREM 4.4. Let {&,,n € N} be a sequence of g.r.p. on A. If &, — 0 almost
surely (A"), then for every e € (0,1) there exist a set B € F, with P(B) > 1 —¢,
an integer kg € No, (where B and n are independent of n), for each m € A a
sequence of random variables {cmn,n € N}, and for every k > ko, o sequence of
continuous random processes X p, on 0 X I, such that for n € N
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(4.10)  &u(w, o) /an w, YRFFPE p(t) dt + D comn(w) (P, 9),

meA
w € B, ¢ € A, where s> sg, p> po;

(4.11) Xen(ws e <k, we D
(4.12) for eachw € Q\ Z, Xy p(w,-) >0 0n I, n — oo;
(4.13) {Xkn(w, -)} is equicontinuous on I, w € N\ Z;
(4.14) for eacht € I, X n(-,t) >0 0n Q\ Z, n — oo;
(4.15)

Zcm,n(-)—)o, n— oo, w€B\Z,
meA

where Z is the set from Definition 4.1.

Proof.. Theorem 3.3 and C (ii) of Theorem 4.1 imply (4.10) and (4.11) where
for n € Ng and k > kg

S (@A TPy (1), weB, tel

Xk n(w,t) =
en(w,1) {0, wgB, tel

Now let t € I. For w ¢ B, X, ,(w,t) =0 and for w € B\ Z,
|anWt|—‘zcmn )\ (k+p+s)¢ ()
<KZ|cmn )\ (k+p)|<s n > no(e),

in the same way as in Theorem 4.2, since k + p > ko, hence (4.12) follows. (4.15)
follows in the same way as in Theorem 4.3.
To establish (4.13) observe that from the condition (x) it follows that for
P> Do, Do /\ 2P = A < co. We can choose [y such that
( min A2 ) < e?/(4AK?k?).

m>lo

{/\n,n € Ny} is monotone sequence, hence )\2 = mlnm>l0 . Since ¥, (t), m €
Ny, are continuous functions, for every ¢,t' € I and every € > 0 there exists d(e, t)

such that
lo—1 2

X om0 = bR < o,

if |t —¢'| < d(e,t). Now we have for t,t' € I, |t —t'| < §(e,t), w € B

| Xk (@,8) = X (@, )] <3 Jemn(@)] A [TEFH) by (8) — 9hn (2]

m=0
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1/2

3 ad 1/2
: (Z 'Cmm<w)l2liml2’“) (Z o (2) - ¢m<t')|2Xm2<p+s>>
m=0 =0

lo—1 " o 1/2
<k (Wm(t) — P ()X 2K Y /\m2p>
m=0

m=lg

2 OK2 . . 1/2 2 e2 \ /2
< - 4= —2(p—1) < S L= —
_k(2k2+ = > ) _k(2k2+2k2> £

lo Tn:lo

So (4.13) follows. Further on, for ¢, € I

| Xk,n(5t0)| = [Xkn (- t0) = X (5 1) + X (-, 1)]
S |Xk,n('7t0) - Xk,n(at)| + |Xk,n(7t)|

We have from (4.13) that | X n(-,t0) — Xgn(-,t)| < /2 when |t — ¢o] <

0(e, to), and, from (4.12) | X} »(-,1)| < &/2, for n > ng(e); so (4.14) follows.

(1]
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