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ON THE TOPOLOGY OF RIEMANN SPACES
OF QUASI-CONSTANT CURVATURE

Sorin Dragomir and Renata Grimaldi

Abstract. We compute Betti numbers of certain Riemann spaces of g-constant curva-
ture such as conformally flat hypersurfaces of elliptic-space-forms, subprojective spaces and para-
Sasakian manifolds.

1. Harmonic forms on manifolds of quasi-constant curvature

Let (M™, g;;) be an n—dimensional space and V' a unit vector field on M™,
with (local) components v?. Let v; = g;;v7; if (M™, g;;) is conformally flat and for
some real valued smooth functions a,b € C*°(M") the curvature of (M™,g;;) is
expressed by:

(L.1) Ry = a{0rgji — 0} gri}
+ b{(&,’jvj — 6?vk)vi + (ngjz' — ngki)vh}

then (M™, g;;) is said to be a Riemann space of g-constant curvature, cf. [7], [8].
We suppose throughout that b # 0, (for b = 0, M™ falls into nothing but a real
space-form). Further contraction of indices in (1.1) gives the Ricci form:

(12) Rj,' = {(TL — 1)a + b}gji + b(n — 2)Uj1)i.

If &, ..i,, Bjr...j, are two p-forms on M™, we put as usual
<O[,/6> = a(ilmip)/@(h...ip) ’

|a|? = {a, a). We proceed by establishing the following:

THEOREM 1. Let (M™,g;;) be a compact orientable Riemann space of g-
constant curvature. The following relation holds:

[ Aol = p)a+Blof+
+(p—1)l(n —2p)b|i(V)a|’] +V; a,..;, Ve } 51 =0

(1.3)
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for each harmonic p-form a on M™.

Proof. Let (p!)tay,..i,dz™ A... Adz® be a differential p-form on M™. Note
that:

(1.4) vt = (i(V)a)iz...ip7

where (V) denotes the interior product with V. Taking into account (1.4), (1.2)
one obtains:

(1.5)  Rja?=af, ;. =p{(n—1)a+b}al* +(p—1)(n-2)bli(V)af*.
Using Rijks = gihRZsj and (1.1) one derives:

(1.6) Rijrnaliis-te okt . = 2ap!|al® + 4b(p — ! i(V)a|?

i3+ +dp

By (3.2.9) in [6, p. 88], if Aa = 0 then
(1.7) | ApFa(@) + Vi, Va1 o,
M’n

where the quadratic from Fp,(a) is given by (3.2.10) in [6]. Finally (1.5)—(1.6)
furnish:

(1.8) Fy(a) = pi{(n — p)a+ b}|al* + (p — 1)(n — 2p)b[i(V)a|*

and (1.7) leads to our (1.3), QED.

Betti numbers of conformally flat (compact, orientable) Riemann spaces are
known to vanish (cf. Th. 3.9.1. in [6, p. 118]) provided that the Ricci curvature is
positive definite. Yet, if M™ is a space of g-constant curvature, by (1.2) one has
Rjwivt = (n—1)(a+b), i.e. Rj; is degenerate along the distribution generated by
V, provided b = —a. As an application of Theorem 1 we get

THEOREM 2. Let M™ be a compact orientable connected Riemann space of
g-constant curvature, n > 2. If a =const.> 0 and db = V(b)v then M™ has the
homology type of S* x S™~1.

Proof. By aresult of Wang and Adati, i.e. Th. 2.3. in [8, p. 101], if a =const.
and b; = bjviv;, by = V;b, then b = —a and V is parallel. Therefore, since a > 0, the
coefficients in (1.8) are subject to (n—p)a+b >0, (n—2p)b > 0iff n/2 <p<n-—1.
If n is even, i.e. n = 2m, we have b,(M™) = 0 for all m < p < 2m — 1. By Poincaré
duality one obtains also b,(M™) = 0,1 < p < m. A similar argument for n odd
shows that all Betti numbers of M™ vanish except for by (M™) = b,,—1(M™). Since
v; is parallel, it is harmonic. Thus b (M™) > 1. Let 8 be any other harmonic 1-form
on M™. By applying the Hodge operator one obtains a harmonic (n — 1)-form */.
At this point we may use (1.8) to get

(1.9) Fpo1(+8) = (n = 1)!a+b)| * B|* = (n — 2)(n — 2)bli(V) * B
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Since b = —a and #f is harmonic, (1.3) or (1.7) furnishes i(V) * 8 = 0, which
by applying once more the Hodge operator gives v A 3 = 0 or 8 = fv for some
everywhere non-vanishing f € C°(M™). Since (3 is harmonic it is closed, so that
df N\v =0 or df = lv for some A € C®(M"). But S is coclosed, too, such
that (df,8) = (f,06) = 0, by (2.9.3) in [6, p. 74], i.e. df and 8 are orthogonal.
Thus 0 = (df,3) = Afvol(M™) yields A = 0; since M™ is connected one obtains
f =const., i.e. by (M™) = 1. Consequently, M™ has the same Betti numbers as the
product S' x S71 QED.

2. Conformally flat real hypersurfaces

Let M™*!(k) be a real space-form, i.e. a Riemann space of constant sectional
curvature k. Let M™ be a conformally flat hypersurface of M"™t1(k). Let h be the
second fundamental form of the given immersion of M™ in M™*!(k). By a classical
result of J. A. Schouten, h = apg + Bov ® v, for some ag, Bo € C®°(M™) and some
unit tangent vector field V' = fv. Here § means raising of indices with respect to the
induced metric g on M™. Then, B. Y. Chen and K. Yano, [4], have shown (via the
Gauss equation, e.g. (2.6) in [3, p. 45]) that M™ is a space of g-constant curvature
with @ = k + a3, b = apfo and unit vector (V). This allows us to apply Theorem
1 to get

THEOREM 3. Let M™ be a conformally flat compact orientable real hypersur-
face of the real projective space IRP™"*1(k), k > 0. Then M™ is a real homology
sphere, provided aofy > 0.

Proof. Let a be a harmonic p-form on M™. By (1.8) we obtain a = 0 if
(n —p)(k + ad) + apfo > 0, and (n — 2p)agBy > 0. Under the hypothesis of
Theorem 3, it is sufficient to impose p < n/2. We finally use Poincaré duality to
prove that all Betti numbers of M™ vanish, QED.

3. Subprojective spaces

Cf. T. Adati, [1], if M™, n > 3, is conformally flat and the tensor field:

1
(3.1) L=l s T m—9)

Gji
is expressed by:
(3.2) Lj; = Rpgji + pjoi,

where p; = V;p, 0; = V;0 and o is a function of p, p # 0, then M™ is said to be
a subprojective space. Here R denotes the scalar curvature of (M™, g;;) cf. [8, p.
96], M™ follows to be a manifold of g-constant curvature with a = -2, b = —K,
v; = Y p;, where v = |dp|. Also if 0 = f(p), for some C%-smooth function f of
one variable, then (3.2) gives K = 72 f'(p). Using (1.3) we obtain:
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THEOREM 4. Let M™,n > 3 be a compact orientable subprojective space with
p <0 and o = f(p) for some C?-smooth decreasing function f:(—o00,0) — R.
Then M™ is a real homology sphere.

Proof. Using (1.3) for the harmonic p-form o on M™ we note that
2(n—p)p+7°f'(p) <0, (2p—n)y2f'(p) >0,
provided that p > n/2. Asin Th. 3, by separately analysing the cases n = odd and
n = even, and by Poincaré duality one obtains b,(M"™) = 0, for all p, QED.

4. Special para-Sasakian manifolds with vanishing D-concircular tensor

Let (M™,gi;) be a Riemann space, n > 3, and ¢ a given unit vector field
with V;¢&8 = E(—(S;.- +n;€Y), m; = 94!, e = £1. Then M™ carries a para-contact
metric structure (¢%, £, 1, 9i;), ¢5 = V;€%, [2]. On the other hand, cf. G. Chuman,
[5], one may consider the D-concircular tensor:

(4.1) Ulgji = Rl’clji + %{gkﬁf — 950k }—
_%{gkinjfh - gjmkﬁh + nwﬁf - 773‘771'5;’;}-
Consequently, if U,?ji = 0 then the curvature of M™ is expresed by (1.1) with

= %, = —%, v; = 1;. Using (1.3) one obtains:

THEOREM 5. Let M™ be a compact orientable special para-Sasakian manifold
with a vanishing D-concircular tensor. Then there exists Ry > 0 such that if
R > Ry then b,(M™)=0,1<p<n-—1.

Proof. Let a be a harmonic p-form on M"™. By (1.8) if (n — p)(R + 2(n —
1)) - (R+n(n—-1)) >0, (2p—n)(R+n(n—1)) > 0 then Fy(a) is positive

. R+n(n—1)
definite. Suppose R > 0. Define f,(R) = n R+2n=1)
increasing, fn(0) = n/2, imp_40 fn(R) = n — 1. This makes clear the contents
of the assumption on the scalar curvature in Theorem 5. Indeed, as R — + o0, i.e.
if R > Ry for some constant Ry > 0, the condition n/2 < p < n — 1 is equivalent
ton/2 <p< fu(R), QED.

Note that M™ in Theorem 5 is not necessarily conformally flat, but the form
(1.1) is sufficient for our purpose; by [8, p. 98], the additional condition R =const.
implies M™ is a space of g-constant curvature.

Then f, is strictly

If M™ is a space of g-constant curvature with R = const. # 0 and at the
same time an S-manifold (i.e. V,,V Ry, = V V. REji") then by (M™) > 1, since
from Theorem 3.3. in [8, p. 102] it follows that v; is parallel, and thus harmonic.
Nevertheless, this situation may not be used in our Theorem 5. Indeed, by a result
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of Wang, [7], a space of g-constant curvature is an S-manifold iff a + b = 0 (while
any special para-Sasakian manifold with U ,?ji =0hasa+b=-1).
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