PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série tome 46 (60), 1989, pp. 97-103

ABSOLUTE AND ORDINARY KOTHE-TOEPLITZ DUALS
OF SOME SETS OF SEQUENCES
AND MATRIX TRANSFORMATIONS

Eberhard Malkowsky

Abstract. We determine the ordinary Kothe-Toeplitz dual of the set Al (p) and the
absolute Kothe-Toeplitz duals of the sets Aleo(p), Aco(p) and Ac(p) defined by Ahmad and Mur-
saleen. Further we investigate matrix transformations in these spaces and give a characterization
of the class (Aloo(p),loo)-

1. Introduction

By w we denote the set of all complex sequences z = (z3)%2,. Throughout
the paper p = (pr)72, shall always be an arbitrary sequence of positive reals. The
following sets were introduced and investigated by various authors:

loo(p) := {z € w : sup |zx[P* < o0},
k

c(p) == {z € w: |z — I|P* — 0 for some complex I},
co(p) := {r € w: |z|** — 0},
I(p) = {w Ew: Z |zk|P* < oo} (cf. [2], [3], [5], and [7]).
k=1

Given any sequence z € w we shall write Az := (2} — zx+1). In a recent paper (cf.
[1]), Ahmad and Mursaleen defined the following sets:

Alo(p) :={z €w: Az € l(p)},
Ac(p) :={z € w: Az € ¢(p)},
Aco(p) ={z €ew: Az € co(p)}.

In the determination of the absolute Kothe-Toeplitz duals of Al (p) and Aco(p),
they applied some arguments which do not seem to hold:
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(i) x € Al (p) does not imply in general the existence of a finite number
N > supy, k~!|zx|, as the following counterexample will show: If we put py := k!
and zy := k% (k = 1,2,...) then |Azy|P* — 1 (k — oc), hence z € Al (p), and
supy k~zg| = oo.

(ii) If a is a sequence such that

oo
Zk|ak|N1/”’“ =oo for some N > 1, (1.1)
k=1

then the sequence z defined by x := kN'/P* sgn ay, is not in Al (p), in general. In
order to see this, we put py := k and a; := (—=1)¥ (k =1,2,...). Then a satisfies
(1.1) for all N > 1 and |Az|P* — oo, hence z &€ Al (p).

In this paper, we shall determine the absolute Kothe-Toeplitz duals of the sets
Al (p) and Acy(p), and give new proofs for the characterizations of the matrix
transformations considered in [1]. Further we shall state some new results.

2. Kothe-Toeplitz duals

For arbitrary set X of sequences, we define the ordinary and absolute K6the-
Toeplitz duals by

Xxt.= {a Ew: Zakxk converges for all z € X} and
k=1

xh.= {aew:2|akxk|<oofor allweX}
k=1

respectively; we shall write X1t := (X1t and Xl .= (Xt])1],

THEOREM 2.1. For every strictly positive sequence p = (py), we have

(o] o] k—1
(@) (Ale(®)" =DW ) = {a cw:=Y laxl Y NVP < oo},
N=2 k=1 j=1
00 k—1 -1
(b) (Aloo(p))lﬂ| =DP(p) := U {a € w : sup |a| [ZN”W] < oo},
N9 k>2 o
[eS] oo k—1
©  (Ae®)" =D @) = {a cw: > Jar] NP < oo},
N=2 k=1 j=1
o] k—1 -1
(d) (Aco(p))m' — D(()2)(p) = Qia Ew: 21;;2) |ak| L_Zl Nl/pj] < oo}.

(We adopt the usual convention that E;"Zl y; =0 (m < 1) for arbitrary y;.)
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Proof: (a) Let a € Dg))(p) and z € Alx(p). We choose N > max{1,
sup |Azg|P*}. Then

oo oo
Z larzr| < Z |ak|

k—1
E A.Z'j
k=1 k=1 j=1

oS} k—1 [e's)
< Z|ak| ZNI/”J' + |:U1|Z|ak| < 00.
k=1 7j=1 k=1

+ 1] ) x| (2.1)
k=1

(Note: Since Ef;ll N'/Pi > 1 for arbitrary N > 1 (k = 2,3,...), a € Dc(i,)(p)
implies > 72 | |ax| < 00.)

Conversely let a ¢ DY (p). Then we have Y7, |ax] Zf;ll N'Y/Pi = oo for
some integer N > 1.

We define the sequence z by zj := Z;:ll NY/?i (k =1,2,...). Then it is
easy to see that z € Al (p) and Y ;- |arzk| = 00, hence a ¢ (Aloo(p))m.

(b) Let a € D) (p) and z € (Aloo(p))‘ﬂ = DY (p), by part (a). Then for
some N > 1, we have

oo oo k—1 -1 k—1
Z |akg;k| = Z |ak| [ ZNI/PJ] |$k| ZNI/PJ'
k=2 k=2 j=1 j=1
k—1 —17 oo k—1
< sup[|ak| [ ZNI/W] ] S el 3NV < oo,
k22 j=1 k=2 j=1

Conversely let a ¢ D (p). Then for all integers N > 1, we have

k=1 -1
sup |ay| [ ZNI/”J‘] = 0.

k>2 e}

Hence there is a strictly increasing sequence (k(m)) of integers k(m) > 2 such that
k(m)—1

—1
|ak(m)|[ Z ml/”f] >m? (m=2,3,...).
j=1

We define the sequence x by

| ake ™t (k= k(m))
’ _{0 (k # k(m)) (m=12,3,...).
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Then for all integers N > 2, we have

k(m)—1
Z|$k|ZN1/pJ<Z|ak(m)| d NYri<
j=1
N—-1 k(m)—1 oo k(m)-1
<D lawgmy |t D0 NP ek T Y mt <
m=2 Jj=1 m=N j=1

k(m)—1

N-1
§Z|ak(m)| Z Nl/pj-l-zm < 00,
m=2

hence z € (Al (p))m, and

o [e)
D lawas| = D 1=
k=1 N=2

hence a ¢ (Aloo(p))lm.
(c) Let a € DM (p). Since |ag| < |ag|NVPL 5N N=VPi (k= 2,3,...),
we have 21311 lak| < oo. Let z € Aco(p). Then there is an integer ko such

that supys, |Azg[P* < N~!, where N is the number in D((Jl)(p). We put M =
Maxi<k<k, |ATk|P*, m := mini<p<w, Pr, L := (M + 1)N and define the sequence y
by yx := zxL=Y/™ (k = 1,2,...). Then it is easy to see that sup,, |Ay[P* < N~
and as in (2.1) with N replaced by N~1, we have

o oo
D lakae| = L™ Y fagys| < oo
k=1 k=1

Conversely, let a ¢ D((]l)(p). Then we can determine a strictly increasing sequence
(k(s)) of integers such that k(1) := 1 and

k(s+1)—1

M= Y |ak|2s+ VP ST (s=1,2,...).

k=k(s)

We define the sequence x by

s—1 k(l+1)—1
mpi=y Y. (I+1)7VPy Z (s + 1)1/
=1 k() i=k(s)

(k(s) <k <k(s+1)—1; s=1,2,...).

Then it is easy to see that |Azy|P* = 1/(s+1) (k(s) <k < k(s+1)—1; s =1,2,...)
hence z € Acy(p), and Y o2 |apzi| > D oo 1 =00, ie. a & (Aco(p))”'.
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(d) For N =2,3,..., we put

o0 k—1
Eyn = {a Ew: Z|ak|ZN_1/pf < oo}

k=1 j=1
k—1 -1
Fy := {aEw:sup|ak|[ZN1/”f] <oo}.
E>2 _

By a well known result (cf. [3, Lemma 4 (iv)]), we have to show Fy = E}I\’r{l
(N =2,3,...). The proof of this is standard and therefore omitted.

Now we shall give some new results:

THEOREM 2.2. For every strictly positive sequence p = (px), we have
(a) (Ac(p))lJr| =DW(p) := D(()l) N{a€w:Yy 1o, larlk < oo} and
1.
(b) (Aloo(p)) = Doo(p)

=) k—1 0
{aEw:Zak NY/?i converges and ZNl/pk|Rk|<oo},
N=2 k=1 j=1 k=1

where Ry := Y 07, a4, (k=1,2,...).

D}

Proof: (a) Let a € D (p) and = € Ac(p). Then there is a complex number
I such that |Azy —I|P* — 0 (k — o0). We define y by yr := 2z + 1k (k=1,2,...).
Then y € Acy(p) and

[e'S) [e's) k—1 [e's)
D ek <7 larl| D Ay | + 111 laslk < oo
k=1 k=1 j=1 k=1

by Theorem 2.1.(c) and since a € DM (p). Now let a € (Ac(p))”| C (Aco (p))lJr| =

D(()l) (p) by Theorem 2.1.(c). Since the sequence z defined by =y, :=k (k=1,2,...)
is in Ac(p) we have Y 2 | |ag|k < co.

(b) Let @ € Dy(p) and z € Al(p). Then there is an integer N >
max {1, sup,, |[Azy|P*}. We have

n n—1 n—1 n
Zakmk = —ZA:L’]-R]- +RHZA£BJ' + 1z Zak (n=1,2,...). (2.2)
k=1 j=1 j=1 k=1

Obviously the last term on the right in (2.2) is convergent. Since > 72, |Az;|
x |Rj| < 3252, N'/Pi|R;| < oo, the first term on the right in (2.2) is absolutely
convergent. Finally by Corollary 2 in [4], the convergence of > -, ay Ef;ll N1/pi
implies lim,—c0 Rp Zf;ll N/Pi = 0. Conversely let a € (Al (p))Jr Since e :=
(1,1,...) € Al(p) and z = [Zf;ll Nl/pf] € Al (p), we conclude the convergence
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of Ypo,ar and Y o0 ak Zf;ll N/Pi respectively. Applying Corollary 2 in [4]
again we have
k-1

: 1/p; _
lim R, NYPi=0.
j=1
From (2.2), we obtain the convergence of Y ;7 Az Ry, for all z € Al (p). Since
r € Aly(p) if and only if y := Az € lo(p), this implies R € If (p), hence
S re NYPe|Ry| < oo for all N > 1 by a well known theorem (cf. [2, Th. 2]).

3. Some matrix transformations

For any complex matrix A = (ank), we shall write A, := (ank)x for the
sequence in the n-th row of A. Given A we define the matrix B by

bnk = Qnk — Qn41,k (n,k = 1,2, .. )

Let X,Y be two subsets of w. By (X,Y’) we denote the class of all matrices A such
that the series A,z := Zzozl ankxy, converge for all x € X (n =1,2,...) and the
sequence Az := (A,z) isin Y for all z € X.

The following is obvious and therefore stated without proof:

LeMMA 3.1. Let X,Y be linear sequence spaces. We put AY = {y € w :
Ay €Y}. Then A € (X,AY) if and only if B € (X,Y) and A; € X1

Lemma 3.1 and well known results together yield for instance the characteri-
zation of the following classes for strictly positive sequences g € I : (I(p), Alos(q)),
(i), Aco(@), (I(p),Ac(q)), (cf. [5, Th. 5 (i), (ii) and ()] if 0 < pp < 1
(k=1,2,...),[5, Th. 8 and Th. 9] if 1 < py < H < oo (k = 1,2,...)). Now
we give a characterization for the class (Al (p),loo):

THeEOREM 3.1.  For every strictly positive sequence p, we have A €
(Al (p),loo) if and only if the following three conditions hold:

o0 k—1
(i) Mi(N) :=sup ZankZNl/pf < oo forall N >1,
m =1 =1
o0 oo
(ii) My(N):= sup[ ZNl/p" Z Ank ] <oo forall N >1,
n v=1 k=v+1
(i) Mz :=sup Zank < 0.
=1

Proof: Let conditions (i), (ii) and (iii) be satisfied. Then A, € (Al (p))lr
(n = 1,2,...) by Theorem 2.2.(b). Hence the series A,z converge for all x €
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Al(p) (n = 1,2,...). Further as in the proof of Theorem 2.2.(b), we have for
z € Al (p) such that sup,, |Azy|P* < N:

oo o0 o o
D anpze| <Y ONYP ST ang| + @] | Y ank| < Ma(N) + |1 | M
k=1 v=1 k=v+1 k=1

n=12,...),

hence Az € l.

Conversely let A € (Aloo(p),loo). The necessity of conditions (i) and (iii)
follows from the fact that (z) := [Ef;ll N/ pﬂ'] and e are in Al (p). In order to
show the necessity of condition (ii), we assume that M5(N) = oo for some N > 1.

Then for the matrix C defined by

oo
Cny = Z ane (n,v=12,...),
k=v+1

we have C € (loo(p),loo). (cf. [2, Th. 3]) Hence there is a sequence z €
lw(p) such that sup, |z,["» = 1 and > 07, ¢z, # O(1). We define the se-
quence y by y, = —E;;ll zj+z1 (v = 1,2,...). Then y € Aly(p) and
o Gy = Doy CavTy + T1 Y 0wy Gy # 0(1), a contradiction to the assump-
tion A € (Aloo(p),loo). Therefore we must have M>(NN) < oo for all N > 1.
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