ABSOLUTE AND ORDINARY KÖTHE-TOEPLITZ DUALS OF SOME SETS OF SEQUENCES AND MATRIX TRANSFORMATIONS

Eberhard Malkowsky

Abstract. We determine the ordinary Köthe-Toeplitz dual of the set $\Delta l_{\infty}(p)$ and the absolute Köthe-Toeplitz duals of the sets $\Delta l_{\infty}(p)$, $\Delta c_0(p)$ and $\Delta c(p)$ defined by Ahmad and Mursaleen. Further we investigate matrix transformations in these spaces and give a characterization of the class $(\Delta l_{\infty}(p), l_{\infty})$.

1. Introduction

By ω we denote the set of all complex sequences $x=(x_k)_{k=1}^{\infty}$. Throughout the paper $p=(p_k)_{k=1}^{\infty}$ shall always be an arbitrary sequence of positive reals. The following sets were introduced and investigated by various authors:

$$\begin{split} l_{\infty}(p) &:= \big\{ x \in \omega : \sup_{k} |x_{k}|^{p_{k}} < \infty \big\}, \\ c(p) &:= \big\{ x \in \omega : |x_{k} - l|^{p_{k}} \to 0 \text{ for some complex } l \big\}, \\ c_{0}(p) &:= \big\{ x \in \omega : |x_{k}|^{p_{k}} \to 0 \big\}, \\ l(p) &:= \left\{ x \in \omega : \sum_{k=1}^{\infty} |x_{k}|^{p_{k}} < \infty \right\} \quad \text{(cf. [2], [3], [5], and [7])}. \end{split}$$

Given any sequence $x \in \omega$ we shall write $\Delta x := (x_k - x_{k+1})$. In a recent paper (cf. [1]), Ahmad and Mursaleen defined the following sets:

$$\Delta l_{\infty}(p) := \{ x \in \omega : \Delta x \in l_{\infty}(p) \},$$

$$\Delta c(p) := \{ x \in \omega : \Delta x \in c(p) \},$$

$$\Delta c_{0}(p) := \{ x \in \omega : \Delta x \in c_{0}(p) \}.$$

In the determination of the absolute Köthe-Toeplitz duals of $\Delta l_{\infty}(p)$ and $\Delta c_0(p)$, they applied some arguments which do not seem to hold:

- (i) $x \in \Delta l_{\infty}(p)$ does not imply in general the existence of a finite number $N > \sup_k k^{-1}|x_k|$, as the following counterexample will show: If we put $p_k := k^{-1}$ and $x_k := k^2$ $(k = 1, 2, \dots)$ then $|\Delta x_k|^{p_k} \to 1$ $(k \to \infty)$, hence $x \in \Delta l_{\infty}(p)$, and $\sup_k k^{-1}|x_k| = \infty$.
 - (ii) If a is a sequence such that

$$\sum_{k=1}^{\infty} k|a_k|N^{1/p_k} = \infty \quad \text{for some } N > 1, \tag{1.1}$$

then the sequence x defined by $x_k := kN^{1/p_k}\operatorname{sgn} a_k$ is not in $\Delta l_{\infty}(p)$, in general. In order to see this, we put $p_k := k$ and $a_k := (-1)^k \ (k = 1, 2, ...)$. Then a satisfies (1.1) for all N > 1 and $|\Delta x_k|^{p_k} \to \infty$, hence $x \notin \Delta l_{\infty}(p)$.

In this paper, we shall determine the absolute Köthe-Toeplitz duals of the sets $\Delta l_{\infty}(p)$ and $\Delta c_0(p)$, and give new proofs for the characterizations of the matrix transformations considered in [1]. Further we shall state some new results.

2. Köthe-Toeplitz duals

For arbitrary set X of sequences, we define the ordinary and absolute Köthe-Toeplitz duals by

$$\begin{split} X^\dagger &:= \left\{ a \in \omega : \sum_{k=1}^\infty a_k x_k \text{ converges for all } x \in X \right\} \quad \text{and} \\ X^{|\dagger|} &:= \left\{ a \in \omega : \sum_{k=1}^\infty |a_k x_k| < \infty \text{ for all } x \in X \right\} \end{split}$$

respectively; we shall write $X^{\dagger\dagger} := (X^{\dagger})^{\dagger}$ and $X^{|\dagger\dagger|} := (X^{|\dagger|})^{|\dagger|}$.

Theorem 2.1. For every strictly positive sequence $p = (p_k)$, we have

(a)
$$(\Delta l_{\infty}(p))^{|\dagger|} = D_{\infty}^{(1)}(p) := \bigcap_{N=2}^{\infty} \left\{ a \in \omega := \sum_{k=1}^{\infty} |a_k| \sum_{j=1}^{k-1} N^{1/p_j} < \infty \right\},$$

(b)
$$\left(\Delta l_{\infty}(p)\right)^{|\dagger\dagger|} = D_{\infty}^{(2)}(p) := \bigcup_{N=2}^{\infty} \left\{ a \in \omega : \sup_{k \geq 2} |a_k| \left[\sum_{j=1}^{k-1} N^{1/p_j} \right]^{-1} < \infty \right\},$$

(c)
$$\left(\Delta c_0(p)\right)^{|\dagger|} = D_0^{(1)}(p) := \bigcup_{N=2}^{\infty} \left\{ a \in \omega : \sum_{k=1}^{\infty} |a_k| \sum_{j=1}^{k-1} N^{-1/p_j} < \infty \right\},$$

(d)
$$(\Delta c_0(p))^{|\dagger\dagger|} = D_0^{(2)}(p) := \bigcap_{N=2}^{\infty} \left\{ a \in \omega : \sup_{k \ge 2} |a_k| \left[\sum_{j=1}^{k-1} N^{-1/p_j} \right]^{-1} < \infty \right\}.$$

(We adopt the usual convention that $\sum_{j=1}^m y_j = 0$ (m < 1) for arbitrary y_i .)

Proof: (a) Let $a \in D_{\infty}^{(1)}(p)$ and $x \in \Delta l_{\infty}(p)$. We choose $N > \max\{1, \sup |\Delta x_k|^{p_k}\}$. Then

$$\sum_{k=1}^{\infty} |a_k x_k| \le \sum_{k=1}^{\infty} |a_k| \left| \sum_{j=1}^{k-1} \Delta x_j \right| + |x_1| \sum_{k=1}^{\infty} |a_k|$$

$$\le \sum_{k=1}^{\infty} |a_k| \sum_{j=1}^{k-1} N^{1/p_j} + |x_1| \sum_{k=1}^{\infty} |a_k| < \infty.$$
(2.1)

(Note: Since $\sum_{j=1}^{k-1} N^{1/p_j} \ge 1$ for arbitrary N > 1 $(k = 2, 3, ...), a \in D_{\infty}^{(1)}(p)$ implies $\sum_{k=1}^{\infty} |a_k| < \infty$.)

Conversely let $a \notin D_{\infty}^{(1)}(p)$. Then we have $\sum_{k=1}^{\infty} |a_k| \sum_{j=1}^{k-1} N^{1/p_j} = \infty$ for some integer N > 1.

We define the sequence x by $x_k := \sum_{j=1}^{k-1} N^{1/p_j}$ (k = 1, 2, ...). Then it is easy to see that $x \in \Delta l_{\infty}(p)$ and $\sum_{k=1}^{\infty} |a_k x_k| = \infty$, hence $a \notin (\Delta l_{\infty}(p))^{|\dagger|}$.

(b) Let $a \in D_{\infty}^{(2)}(p)$ and $x \in (\Delta l_{\infty}(p))^{|\dagger|} = D_{\infty}^{(1)}(p)$, by part (a). Then for some N > 1, we have

$$\begin{split} \sum_{k=2}^{\infty} |a_k x_k| &= \sum_{k=2}^{\infty} |a_k| \left[\sum_{j=1}^{k-1} N^{1/p_j} \right]^{-1} |x_k| \sum_{j=1}^{k-1} N^{1/p_j} \\ &\leq \sup_{k \geq 2} \left[|a_k| \left[\sum_{j=1}^{k-1} N^{1/p_j} \right]^{-1} \right] \sum_{k=2}^{\infty} |x_k| \sum_{j=1}^{k-1} N^{1/p_j} < \infty. \end{split}$$

Conversely let $a \notin D_{\infty}^{(2)}(p)$. Then for all integers N > 1, we have

$$\sup_{k \ge 2} |a_k| \left[\sum_{j=1}^{k-1} N^{1/p_j} \right]^{-1} = \infty.$$

Hence there is a strictly increasing sequence (k(m)) of integers $k(m) \geq 2$ such that

$$|a_{k(m)}| \left[\sum_{j=1}^{k(m)-1} m^{1/p_j} \right]^{-1} > m^2 \quad (m=2,3,\ldots).$$

We define the sequence x by

$$x_k := \begin{cases} |a_{k(m)}|^{-1} & (k = k(m)) \\ 0 & (k \neq k(m)) & (m = 2, 3, \ldots). \end{cases}$$

Then for all integers $N \geq 2$, we have

$$\begin{split} \sum_{k=1}^{\infty} |x_k| \sum_{j=1}^{k-1} N^{1/p_j} & \leq \sum_{m=2}^{\infty} |a_{k(m)}|^{-1} \sum_{j=1}^{k(m)-1} N^{1/p_j} \leq \\ & \leq \sum_{m=2}^{N-1} |a_{k(m)}|^{-1} \sum_{j=1}^{k(m)-1} N^{1/p_j} + \sum_{m=N}^{\infty} |a_{k(m)}|^{-1} \sum_{j=1}^{k(m)-1} m^{1/p_j} \leq \\ & \leq \sum_{m=2}^{N-1} |a_{k(m)}|^{-1} \sum_{j=1}^{k(m)-1} N^{1/p_j} + \sum_{m=N}^{\infty} m^{-2} < \infty, \end{split}$$

hence $x \in (\Delta l_{\infty}(p))^{|\dagger|}$, and

$$\sum_{k=1}^{\infty} |a_k x_k| = \sum_{N=2}^{\infty} 1 = \infty,$$

hence $a \notin (\Delta l_{\infty}(p))^{|\uparrow\uparrow|}$

(c) Let $a \in D_0^{(1)}(p)$. Since $|a_k| \leq |a_k| N^{1/p_1} \sum_{j=1}^{k-1} N^{-1/p_j}$ (k = 2, 3, ...), we have $\sum_{k=1}^{\infty} |a_k| < \infty$. Let $x \in \Delta c_0(p)$. Then there is an integer k_0 such that $\sup_{k > k_0} |\Delta x_k|^{p_k} \leq N^{-1}$, where N is the number in $D_0^{(1)}(p)$. We put $M := \max_{1 \leq k \leq k_0} |\Delta x_k|^{p_k}$, $m := \min_{1 \leq k \leq k_0} p_k$, L := (M+1)N and define the sequence y by $y_k := x_k L^{-1/m}$ (k = 1, 2, ...). Then it is easy to see that $\sup_k |\Delta y|^{p_k} \leq N^{-1}$, and as in (2.1) with N replaced by N^{-1} , we have

$$\sum_{k=1}^{\infty} |a_k x_k| = L^{1/m} \sum_{k=1}^{\infty} |a_k y_k| < \infty.$$

Conversely, let $a \notin D_0^{(1)}(p)$. Then we can determine a strictly increasing sequence (k(s)) of integers such that k(1) := 1 and

$$M_s := \sum_{k=k(s)}^{k(s+1)-1} |a_k| \sum_{j=1}^{k-1} (s+1)^{-1/p_j} > 1 \quad (s=1,2,\dots).$$

We define the sequence x by

$$x_k := \sum_{l=1}^{s-1} \sum_{j=k(l)}^{k(l+1)-1} (l+1)^{-1/p_j} + \sum_{j=k(s)}^{k-1} (s+1)^{-1/p_j}$$

$$(k(s) \le k \le k(s+1) - 1; \ s = 1, 2, \dots).$$

Then it is easy to see that $|\Delta x_k|^{p_k} = 1/(s+1) \ (k(s) \le k \le k(s+1)-1; \ s=1,2,...)$ hence $x \in \Delta c_0(p)$, and $\sum_{k=1}^{\infty} |a_k x_k| \ge \sum_{s=1}^{\infty} 1 = \infty$, i.e. $a \notin (\Delta c_0(p))^{|\dagger|}$.

(d) For N = 2, 3, ..., we put

$$\begin{split} E_N := \bigg\{a \in \omega : \sum_{k=1}^\infty |a_k| \sum_{j=1}^{k-1} N^{-1/p_j} < \infty \bigg\} \\ F_N := \bigg\{a \in \omega : \sup_{k \geq 2} |a_k| \bigg[\sum_{i=1}^{k-1} N^{-1/p_j}\bigg]^{-1} < \infty \bigg\}. \end{split}$$

By a well known result (cf. [3, Lemma 4 (iv)]), we have to show $F_N = E_N^{|\dagger|}$ ($N = 2, 3, \ldots$). The proof of this is standard and therefore omitted.

Now we shall give some new results:

Theorem 2.2. For every strictly positive sequence $p = (p_k)$, we have

(a)
$$(\Delta c(p))^{|\dagger|} = D^{(1)}(p) := D_0^{(1)} \cap \{a \in \omega : \sum_{k=1}^{\infty} |a_k| k < \infty\}$$
 and

(b)
$$(\Delta l_{\infty}(p))^{\dagger} = D_{\infty}(p)$$

$$:=\bigcap_{N=2}^{\infty}\bigg\{a\in\omega:\sum_{k=1}^{\infty}a_k\sum_{j=1}^{k-1}N^{1/p_j}\ \ converges\ \ and\ \ \sum_{k=1}^{\infty}N^{1/p_k}|R_k|<\infty\bigg\},$$

where $R_k := \sum_{\nu=k+1}^{\infty} a_{\nu} \ (k=1,2,...)$.

Proof: (a) Let $a \in D^{(1)}(p)$ and $x \in \Delta c(p)$. Then there is a complex number l such that $|\Delta x_k - l|^{p_k} \to 0 \ (k \to \infty)$. We define y by $y_k := x_k + lk \ (k = 1, 2, ...)$. Then $y \in \Delta c_0(p)$ and

$$\sum_{k=1}^{\infty} |a_k x_k| \le \sum_{k=1}^{\infty} |a_k| \Big| \sum_{j=1}^{k-1} \Delta y_j \Big| + |l| \sum_{k=1}^{\infty} |a_k| k < \infty$$

by Theorem 2.1.(c) and since $a \in D^{(1)}(p)$. Now let $a \in (\Delta c(p))^{|\dagger|} \subset (\Delta c_0(p))^{|\dagger|} = D_0^{(1)}(p)$ by Theorem 2.1.(c). Since the sequence x defined by $x_k := k \ (k = 1, 2, ...)$ is in $\Delta c(p)$ we have $\sum_{k=1}^{\infty} |a_k| k < \infty$.

(b) Let $a \in D_{\infty}(p)$ and $x \in \Delta l_{\infty}(p)$. Then there is an integer $N > \max\{1, \sup_{k} |\Delta x_{k}|^{p_{k}}\}$. We have

$$\sum_{k=1}^{n} a_k x_k = -\sum_{j=1}^{n-1} \Delta x_j R_j + R_n \sum_{j=1}^{n-1} \Delta x_j + x_1 \sum_{k=1}^{n} a_k \quad (n = 1, 2, \dots).$$
 (2.2)

Obviously the last term on the right in (2.2) is convergent. Since $\sum_{j=1}^{\infty} |\Delta x_j| \times |R_j| \leq \sum_{j=1}^{\infty} N^{1/p_j} |R_j| < \infty$, the first term on the right in (2.2) is absolutely convergent. Finally by Corollary 2 in [4], the convergence of $\sum_{k=1}^{\infty} a_k \sum_{j=1}^{k-1} N^{1/p_j}$ implies $\lim_{n\to\infty} R_n \sum_{j=1}^{k-1} N^{1/p_j} = 0$. Conversely let $a \in (\Delta l_{\infty}(p))^{\dagger}$. Since $e := (1,1,\ldots) \in \Delta l_{\infty}(p)$ and $x = \left[\sum_{j=1}^{k-1} N^{1/p_j}\right] \in \Delta l_{\infty}(p)$, we conclude the convergence

of $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} a_k \sum_{j=1}^{k-1} N^{1/p_j}$ respectively. Applying Corollary 2 in [4] again we have

$$\lim_{n \to \infty} R_n \sum_{j=1}^{k-1} N^{1/p_j} = 0.$$

From (2.2), we obtain the convergence of $\sum_{k=1}^{\infty} \Delta x_k R_k$ for all $x \in \Delta l_{\infty}(p)$. Since $x \in \Delta l_{\infty}(p)$ if and only if $y := \Delta x \in l_{\infty}(p)$, this implies $R \in l_{\infty}^{\dagger}(p)$, hence $\sum_{k=1}^{\infty} N^{1/p_k} |R_k| < \infty$ for all N > 1 by a well known theorem (cf. [2, Th. 2]).

3. Some matrix transformations

For any complex matrix $A = (a_{nk})$, we shall write $A_n := (a_{nk})_k$ for the sequence in the *n*-th row of A. Given A we define the matrix B by

$$b_{nk} := a_{nk} - a_{n+1,k} \quad (n, k = 1, 2, \dots).$$

Let X, Y be two subsets of ω . By (X, Y) we denote the class of all matrices A such that the series $A_n x := \sum_{k=1}^{\infty} a_{nk} x_k$ converge for all $x \in X$ (n = 1, 2, ...) and the sequence $Ax := (A_n x)$ is in Y for all $x \in X$.

The following is obvious and therefore stated without proof:

Lemma 3.1. Let X,Y be linear sequence spaces. We put $\Delta Y:=\{y\in\omega:\Delta y\in Y\}$. Then $A\in (X,\Delta Y)$ if and only if $B\in (X,Y)$ and $A_1\in X^{\dagger}$.

Lemma 3.1 and well known results together yield for instance the characterization of the following classes for strictly positive sequences $q \in l_{\infty} : (l(p), \Delta l_{\infty}(q)), (l(p), \Delta c_0(q)), (l(p), \Delta c(q)), (cf. [5, Th. 5 (i), (ii) and (iii)] if <math>0 < p_k \le 1$ (k = 1, 2, ...), [5, Th. 8 and Th. 9] if $1 < p_k \le H < \infty$ (k = 1, 2, ...). Now we give a characterization for the class $(\Delta l_{\infty}(p), l_{\infty})$:

THEOREM 3.1. For every strictly positive sequence p, we have $A \in (\Delta l_{\infty}(p), l_{\infty})$ if and only if the following three conditions hold:

(i)
$$M_1(N) := \sup_{n} \left| \sum_{k=1}^{\infty} a_{nk} \sum_{j=1}^{k-1} N^{1/p_j} \right| < \infty \text{ for all } N > 1,$$

(ii)
$$M_2(N) := \sup_{n} \left[\left. \sum_{\nu=1}^{\infty} N^{1/p_{\nu}} \right| \sum_{k=\nu+1}^{\infty} a_{nk} \right| \right] < \infty \quad \text{for all } N > 1,$$

(iii)
$$M_3 := \sup_n \left| \sum_{k=1}^{\infty} a_{nk} \right| < \infty.$$

Proof: Let conditions (i), (ii) and (iii) be satisfied. Then $A_n \in (\Delta l_{\infty}(p))^{\dagger}$ (n = 1, 2, ...) by Theorem 2.2.(b). Hence the series $A_n x$ converge for all $x \in$

 $\Delta l_{\infty}(p)$ $(n=1,2,\ldots)$. Further as in the proof of Theorem 2.2.(b), we have for $x \in \Delta l_{\infty}(p)$ such that $\sup_{k} |\Delta x_{k}|^{p_{k}} < N$:

$$\left| \sum_{k=1}^{\infty} a_{nk} x_k \right| \le \sum_{\nu=1}^{\infty} N^{1/p_{\nu}} \left| \sum_{k=\nu+1}^{\infty} a_{nk} \right| + |x_1| \left| \sum_{k=1}^{\infty} a_{nk} \right| \le M_2(N) + |x_1| M_3$$

$$(n = 1, 2, \dots),$$

hence $Ax \in l_{\infty}$.

Conversely let $A \in (\Delta l_{\infty}(p), l_{\infty})$. The necessity of conditions (i) and (iii) follows from the fact that $(x_k) := \left[\sum_{j=1}^{k-1} N^{1/p_j}\right]$ and e are in $\Delta l_{\infty}(p)$. In order to show the necessity of condition (ii), we assume that $M_2(N) = \infty$ for some N > 1.

Then for the matrix C defined by

$$c_{n\nu} := \sum_{k=\nu+1}^{\infty} a_{nk} \quad (n, \nu = 1, 2, \dots),$$

we have $C \notin (l_{\infty}(p), l_{\infty})$. (cf. [2, Th. 3]) Hence there is a sequence $x \in l_{\infty}(p)$ such that $\sup_{\nu} |x_{\nu}|^{p_{\nu}} = 1$ and $\sum_{\nu=1}^{\infty} c_{n\nu} x_{\nu} \neq O(1)$. We define the sequence y by $y_{\nu} := -\sum_{j=1}^{\nu-1} x_j + x_1$ ($\nu = 1, 2, \ldots$). Then $y \in \Delta l_{\infty}(p)$ and $\sum_{\nu=1}^{\infty} a_{n\nu} y_{\nu} = \sum_{\nu=1}^{\infty} c_{n\nu} x_{\nu} + x_1 \sum_{\nu=1}^{\infty} a_{n\nu} \neq O(1)$, a contradiction to the assumption $A \in (\Delta l_{\infty}(p), l_{\infty})$. Therefore we must have $M_2(N) < \infty$ for all N > 1.

REFERENCES

- [1] Z. U. Ahmad and Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd) 42 (56) (1987), 57-61.
- [2] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Cambridge Phil. Soc. 68 (1970), 99-104.
- [3] C. G. Lascarides, A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer, Pacific J. Math. 38 (1971), 487-500.
- [4] H. Kizmaz, On certain sequence spaces, Canadian Math. Bull. 24 (1981), 169-176.
- [5] I. J. Maddox, Continuous and Köthe-Teplitz duals of certain sequence spaces, Proc. Cambridge Phil. Soc. 65 (1967), 471-475.
- [6] I. J. Maddox and M. A. L. Willey, Continuous operators on paranormed spaces and matrix transformations, Pacific J. Math. 53 (1974), 217-288.
- [7] S. Simons, The sequence spaces $l(p_{\nu})$ and $m(p_{\nu})$, Proc. London Math. Soc. 15 (1965), 422-436.

Mathematisches Institut Justus-Liebig-Universität Iheringstraße 6 D-6300 Gießen West Germany (Received 26 05 1988) (Revised 29 05 1989)