ON p-VALENT ANALYTIC FUNCTIONS WITH REFERENCE TO BERNARDI AND RUSCHEWEYH INTEGRAL OPERATORS

K. S. Padmanabhan and M. Jayamala

Abstract. Let $T_n(h)$ be the class of analytic functions in the unit disk E of the form $f(z) = a_p z^p + \sum_{n=p+1}^{\infty} a_n z^n$, $p \geq 1$, which satisfy the condition, $\frac{(n+1)}{(n+p)} \frac{D^{n+1} f(z)}{D^n f(z)} \prec h(z)$, $z \in E$, where h is a convex univalent function in E with h(0) = 1. Then it is proved that f is preserved under the Bernardi integral operator under certain conditions. It is also shown that if $f \in T_0(h)$, it is preserved under the Ruscheweyh integral operator under certain conditions.

The Hadamard product (f*g)(z) of two functions $f(z)=\sum_{m=0}^\infty a_mz^m$ and $g(z)=\sum_{m=0}^\infty b_mz^m$ is given by $(f*g)(z)=\sum_{m=0}^\infty a_mb_mz^m$. Let

$$D^{\alpha}f(z) = \frac{z}{(1-z)^{\alpha+1}} * f(z), \ (\alpha \ge 1).$$

Ruscheweyh [7] observed that $D^n f(z) = z(z^{n-1}f(z))^{(n)}/n!$ when $n \in N \cup \{0\}$, where $N = \{1, 2, 3, ...\}$. This symbol $D^n f(z)$, $n \in N \cup \{0\}$ was called the *n*-th Ruscheweyh derivative of f(z) by Al-Amiri [1].

Let $S_p(A,B)$, denote the class of all functions of the form $f(z)=a_pz^p+\sum_{n=p+1}^{\infty}a_nz^n,\, p\geq 1$ which are regular in $E=\{z\colon |z|<1\}$ and satisfy the condition,

$$z\frac{f'(z)}{f(z)} = p\frac{1 + Aw(z)}{1 + Bw(z)}, \quad z \in E,$$

where $A, B \in \mathbb{C}$, $|A| \leq 1$, $|B| \leq 1$, $A \neq B$ and w(z) is regular in E and satisfies the Schwarz lemma conditions, that is w(0) = 0, |w(z)| < 1 in E.

The class $S_p(1,-1)$ is the class of p-valent starlike functions and $S_p(A,B)$ for $A, B \in \mathbf{C}$ will yield subclasses of spirallike p-valent functions. For A, B real and $0 \le A < B \le 1$, $S_p(A,B)$ will give a subclass of p-valent starlike functions.

For p=1 such classes were investigated by many authors and were introduced by Janowski [4], when A, B are real and by Stankiewicz, Waniurski [9] when A, B are complex. Bernardi [2] showed that the function g defined by,

$$g(z) = (e+1)z^{-c} \int_0^z t^{c-1} f(t) dt,$$

where c is a positive integer, belongs to the class $S_1(1,-1)$ if f belongs to $S_1(1,-1)$.

Lakshma Reddy and Padmanabhan $[\mathbf{6}]$ showed that the function g defined by the Bernardi operator,

$$g(z) = (c+p)z^{-c} \int_0^z t^{c-1} f(t) dt, \quad c = 1, 2, \dots,$$

belongs to the class $S_p(A, B)$, A, B-real, $-1 \le A < B \le -1$, if $f \in S_p(A, B)$.

Kumar and Shukla [5] obtained a generalization of the above result by considering the Ruscheweyh integral operator which is given by

$$g(z) = \left\{ (c + p\alpha)z^{-c} \int_0^z t^{c-1} f^{\alpha}(t) dt \right\}^{1/\alpha};$$

$$c \text{ and } \alpha \text{ real}, \ \alpha > 0, \quad c \ge -p\alpha \frac{1+A}{1+B}.$$

Ryszard Kowal and Jan Stankiewicz [8] obtained the solution of this problem in the case when A, B are complex numbers. We propose to study the more general problem when f satisfies the condition that $\frac{n+1}{n+p} \frac{D^{n+1}f}{D^nf}$ is subordinate to a convex univalent function h. We allow c to be complex and make use of the method of differential subordination introduced in [3].

Let $T_n(h)$ be the class of analytic functions on E of the form $f(z) = a_p z^p + \sum_{n=p+1}^{\infty} a_n z^n$, $p \ge 1$ which satisfy the condition,

$$\left(\frac{n+1}{n+p}\right)\frac{D^{n+1}f(z)}{D^nf(z)} \prec h(z), \quad z \in E,$$

where h is a convex univalent function in E with h(0) = 1 and the symbol \prec denotes subordination.

Let $f \in T_n(h)$ and let g be given by,

(1)
$$g(z) = (c+p)z^{-c} \int_0^z t^{c-1} f(t) dt, \quad c \in \mathbf{C}.$$

Then we show that $g \in T_n(h)$ under certain conditions to be satisfied by c and h. In particular for n = 0, the class $T_0(h)$ consists of functions f of the form $f(z) = a_p z^p + \sum_{n=p+1}^{\infty} a_n z^n$, satisfying $(1/p)z f'(z)/f(z) \prec h(z)$.

Let $f \in T_0(h)$ and define F by

(2)
$$F(z) = \left[(c + p\alpha)z^{-c} \int_0^z t^{c-1} f^{\alpha}(t) dt \right]^{1/\alpha}, \quad c \in \mathbf{C}, \ \alpha > 0.$$

In this paper it is shown that F also belongs to $T_0(h)$ under certain conditions to be satisfied by c and h. We need the following theorem due to Eenigenburg, Miller, Mocanu and Reade.

Theorem A [3]. Let β , $\gamma \in \mathbb{C}$, $h \in H(E)$ be convex univalent in E with h(0) = 1 and $\operatorname{Re}(\beta h(z) + \gamma) > 0$, $z \in E$ and let $p \in H(E)$, $p(z) = 1 + p_1 z + \cdots$. Then

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z),$$

implies that $p(z) \prec h(z)$.

Theorem 1. Suppose $f \in T_n(h)$ and g is given by (1). Then $g \in T_n(h)$ provided $\text{Re}\{(n+p)h(z)+(c-n)\}>0$.

Proof: Differentiating (1) we get

$$g'(z) = -\frac{c(c+p)}{z^{c+1}} \int_0^z t^{c-1} f(t) dt + \frac{c+p}{z^c} z^{c-1} f(z),$$

which gives

$$zg'(z) + cg(z) = (c+p)f(z).$$

Therefore we have

(3)
$$D^n(zg'(z)) + D^n(cg(z)) = D^n((c+p)f(z)).$$

Using the fact that $D^n(zg'(z)) = z(D^ng(z))'$, (3) reduces to

$$z(D^n g(z))' + c(D^n g(z)) = (c+p)D^n f(z).$$

Again using the result

(4)
$$z(D^n g(z))' = (n+1)(D^{n+1} g(z)) - n(D^n g(z))$$

we get

(5)
$$(n+1)\frac{D^{n+1}g(z)}{D^ng(z)} + (c-n) = (c+p)\frac{D^nf(z)}{D^ng(z)}.$$

Set

(6)
$$P(z) = \frac{n+1}{n+p} \frac{D^{n+1}g(z)}{D^n g(z)}.$$

Then (4) takes the form

(7)
$$P(z) + \frac{c-n}{n+p} = \frac{c+p}{n+p} \frac{D^n f(z)}{D^n g(z)}.$$

Taking logarithmic derivatives and multiplying by z, we get,

$$\frac{zP'(z)}{P(z)+(c-n)/(n+p)}=z\frac{\left(D^nf(z)\right)'}{D^nf(z)}-z\frac{\left(D^ng(z)\right)'}{D^ng(z)}.$$

Using (4) and (6) this takes the form,

$$P(z) + \frac{zP'(z)}{(n+p)P(z) + (c-n)} = \frac{n+1}{n+p} \frac{D^{n+1}f(z)}{D^nf(z)} \prec h(z),$$

Since $f \in T_n(h)$.

Now, if $Re\{(n+p)h(z)+(c-n)\}>0$, we can conclude by Theorem A that $P(z) \prec h(z)$, that is $P \in T_n(h)$.

Remark 1. For n=0 the above theorem reduces to the following result, namely, $g \in T_0(h)$, that is, $(1/p)zg'(z)/g(z) \prec h(z)$ whenever $f \in T_0(h)$ if $\text{Re}\{ph(z)+c\} > 0$. For the choice of h(z)=(1+Az)/(1+Bz), this clearly includes the result in $[\mathbf{6}]$.

Theorem 2. Let $f \in T_0(h)$ and let F be given by (2). Then $F \in T_0(h)$ provided $\operatorname{Re}(\alpha ph(z) + c) > 0$.

Proof:

$$F^{lpha}(z) = rac{c+plpha}{z^c} \int_0^z t^{c-1} f^{lpha}(t) dt.$$

Differentiation gives

$$\frac{z}{p}\frac{F'(z)}{F(z)} + \frac{c}{\alpha p} = \frac{f^{\alpha}(z)}{F^{\alpha}(z)}\frac{(c+p\alpha)}{p\alpha}.$$

Setting, P(z) = zF'(z)/(pF(z)), this reduces to

$$P(z) + \frac{c}{\alpha p} = \frac{z^c f^{\alpha}(z)}{p^{\alpha} \int_0^z t^{c-1} f^{\alpha}(t) dt}.$$

Taking logarithmic derivatives and multiplying by z, we obtain, after some simplification,

$$\begin{split} \frac{zP'(z)}{P(z)+c/(\alpha p)} &= \frac{\alpha zf'(z)}{f(z)} - \alpha pP(z), \\ P(z) &+ \frac{zP'(z)}{\alpha pP(z)+c} &= \frac{1}{p}z\frac{f'(z)}{f(z)} \prec h(z). \end{split}$$

Provided $\operatorname{Re}(\alpha ph(z) + c) > 0$, this implies that $P(z) \prec h(z)$ by Theorem A.

Remark: If we choose h(z) = (1+Az)/(1+Bz), A, B real with $-1 \le A < B \le 1$ and condition on c and h reduces to

$$\operatorname{Re} c > -\alpha p \operatorname{Re} h(z) > -\alpha p \frac{1-A}{1-B}.$$

This condition is clearly an improvement on the condition

$$c \ge -p\alpha \frac{1+A}{1+B}$$

in [5].

REFERENCES

- [1] H. S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math. 38 (1980), 87-94.
- [2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), p. 429-446.
- [3] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, General Inequalities 3 (1983), (Birkhäuser Verlag, Basel), 339–348.
- [4] W. Janowski, Some extremal problems for certain families of analytic functions, I, Ann. Polon. Math. 28 (1973), p. 297-326.
- [5] V. Kumar, S. L. Shukla, On p-valent starlike functions with reference to the Bernardi integral operator, Bull. Austral. Math. Soc. 30 (1984), p. 37-43.
- [6] G. L. Reddy, K. S. Padmanabhan, On analytic functions with reference to Bernardi integral operator, Bull. Austral. Math. Soc. 25 (1982), p. 387-396.
- [7] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
- [8] Ryszard Kowal, Jan Stankiewicz, On p-valent functions with reference to the Bernardi Integral operator, Zeszyty Naukowe Polytechniki Rzeszowskiej Folia Scientiarum Universitatis Technicae Resovienis NR 33 Matematyka 1 Fizyka Z4 (1986) 17-24.
- [9] J. Stankiewicz, J. Waniurski, Some classes of functions subordinate to linear transformation and their applications, Ann. Univ. Mariae Curie Sklodowska, Sec. A, 28 (1974), p. 85-94.

The Ramanujan Institute University of Madras Madras – 600 005, India (Received 21 12 1988)

Department of Mathematics Queen Mary's College Madras – 600 005, India