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ON p-VALENT ANALYTIC FUNCTIONS
WITH REFERENCE TO BERNARDI
AND RUSCHEWEYH INTEGRAL OPERATORS
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Abstract. Let T, (h) be the class of analytic functions in the unit disk E of the form
n+1

() D)

(n+p) D"f(z)

z € E, where h is a convex univalent function in E with h(0) = 1. Then it is proved that f is

preserved under the Bernardi integral operator under certain conditions. It is also shown that if

f € To(h), it is preserved under the Ruscheweyh integral operator under certain conditions.

f(2) = apzP? + 3207 1 anz™, p > 1, which satisfy the condition,

The Hadamard product (f * g)(z) of two functions f(z) = Y o _,amz™ and
9(2) =3 o o bmz™ is given by (f x 9)(2) = Yoo Gmbm2z™. Let

2
(1—z)ott

D*f(z) = *f(2), (@=1).

Ruscheweyh [7] observed that D" f(z) = z(z"_lf(z))(n)/n! when n € N U {0},
where N = {1,2,3,...}. This symbol D" f(z), n € N U {0} was called the n-th
Ruscheweyh derivative of f(z) by Al-Amiri [1].

Let S,(A, B), denote the class of all functions of the form f(z) = a,2? +
Y omept1@n2", p > 1 which are regular in E = {z:]2| < 1} and satisfy the condition,

f'(z) _ 1+ Aw(z)
T - PixBuiy P

where A, B € C, |A| <1, |B| <1, A# B and w(z) is regular in E and satisfies
the Schwarz lemma conditions, that is w(0) =0, |w(z)| < 1in E.

The class Sp(1, —1) is the class of p-valent starlike functions and S, (A, B) for
A, B € C will yield subclasses of spirallike p-valent functions. For A, B real and
0< A< B<1, S,(A,B) will give a subclass of p-valent starlike functions.
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For p = 1 such classes were investigated by many authors and were introduced
by Janowski [4], when A, B are real and by Stankiewicz, Waniurski [9] when A, B
are complex. Bernardi [2] showed that the function g defined by,

9(2) = (e + 1)z / “relie) at,

0

where c¢ is a positive integer, belongs to the class S1(1, —1) if f belongs to S; (1, —1).

Lakshma Reddy and Padmanabhan [6] showed that the function g defined by
the Bernardi operator,

g9(2) = (c+p)zc/ozt61f(t)dt, c=1,2,...,

belongs to the class S,(A4, B), A, B-real, -1 < A< B < —1,if f € S,(4, B).

Kumar and Shukla [5] obtained a generalization of the above result by con-
sidering the Ruscheweyh integral operator which is given by

92 = {4 p) [T dt}l/a;

1+ A
1+B°

cand areal, a >0, c¢> —pa

Ryszard Kowal and Jan Stankiewicz [8] obtained the solution of this problem
in the case when A, B are complex numbers. We propose to study the more
n+1DrtHlf
n+p Dnf
to a convex univalent function h. We allow ¢ to be complex and make use of the
method of differential subordination introduced in [3].

Let T, (h) be the class of analytic functions on E of the form f(z) = ap2? +
> mepi1@n2™, p > 1 which satisfy the condition,

n+1\ D" f(2)
(n+p) 0 < h(z), z€E,

where h is a convex univalent function in E with A(0) = 1 and the symbol < denotes
subordination.

Let f € T,,(h) and let g be given by,

general problem when f satisfies the condition that is subordinate

(1) g9(z) = (c —}—p)zfc/ te1f(t)dt, ceC.

0
Then we show that g € T,(h) under certain conditions to be satisfied by ¢ and
h. In particular for n = 0, the class To(h) consists of functions f of the form

f(2) = ap2? + 3507 1 an2™, satistying (1/p)zf'(2)/ f(2) < h(2).
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Let f € To(h) and define F' by

(2) F(z) = [(c + pa)z—°¢ /Oz temLFo(t) dt] 1/‘17 ceC, a>0.

In this paper it is shown that F' also belongs to To(h) under certain conditions to
be satisfied by ¢ and h. We need the following theorem due to Eenigenburg, Miller,
Mocanu and Reade.

THEOREM A [3]. Let B, v € C, h € H(E) be conver univalent in E with
h(0) = 1 and Re(Bh(z) +7) >0, 2 € E and let p € H(E), p(z) =1+ prz+---.
Then ()
z2p'(z
p(2) + ——=—— < h(2),
) Bp(z) +~ )
implies that p(z) < h(z).
TueoreM 1. Suppose f € Tp(h) and g is given by (1). Then g € Ty,(h)
provided Re{(n + p)h(z) + (¢ —n)} > 0.

Proof : Differentiating (1) we get

zc+1 2C

J(x) = -t / () dt+ SR e f (),

which gives
29'(2) + cg(z) = (c+p)f(2).

Therefore we have
®3) D™(2g'(2)) + D" (cg(2)) = D" ((c +p) f(2)).
Using the fact that D" (zg/(2)) = z(D"g(z))’, (3) reduces to

2(D"g(2))" +¢(D"g(2)) = (c +p) D" f(2).

Again using the result

) 2(D7g(2)) = (n+1)(D"g(2)) - n(D"g(2))
we get

" gty e =
Set

(6) P(z) = n+1D"Hg(z)
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Then (4) takes the form

c—n _c+pD"f(z)

@ P(z)+n+p_n+pD"g(z)'

Taking logarithmic derivatives and multiplying by z, we get,

2P'(2) _ (D"f()" (Dg(2)

PE)+(c—n)fm+p) ~ Df(z)  Drgle)
Using (4) and (6) this takes the form,

2P'(2) _n+1D"f(2)
(n+p)P(z)+(c—n) n+p Dnf(z)

P(z) + < h(2),
Since f € Ty(h).

Now, if Re{(n + p)h(z) + (¢ —n)} > 0, we can conclude by Theorem A that
P(z) < h(z), that is P € T,,(h).

Remark 1. For n = 0 the above theorem reduces to the following result,
namely, g € Ty(h), that is, (1/p)z¢’(2)/g(z) < h(z) whenever f € Ty(h) if
Re{ph(z) + ¢} > 0. For the choice of h(z) = (1 + Az)/(1 + Bz), this clearly
includes the result in [6].

THEOREM 2. Let f € To(h) and let F be given by (2). Then F € Ty(h)
provided Re(aph(z) + ¢) > 0.

Proof:
c+ pa
ZC

Foz) = /0 "1 o) at.

Differentiation gives
2F'(z) ¢ f(z) (c+ pa)

pFE) " ap F(z) pa
Setting, P(z) = zF'(z)/(pF(2)), this reduces to
P(z) + — 2 )

ap ~ pe g e L fa()de

Taking logarithmic derivatives and multiplying by z, we obtain, after some simpli-
fication,

zP'(2) _azxfi(z)

P& v oflop) - f@) PP
Pz 1)

PO P ve = »" 1)

< h(z).
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Provided Re(aph(z) + ¢) > 0, this implies that P(z) < h(z) by Theorem A.

Remark: If we choose h(z) = (14 Az)/(1+ Bz), A, B real with —1 < A <
B <1 and condition on ¢ and h reduces to

1-B’

Rec > —apReh(z) > —ap

This condition is clearly an improvement on the condition

o 144
C — P
= 7PTB
in [5].
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