THE STRUCTURE ON A SUBSPACE OF A SPACE WITH AN f(3,-1)-STRUCTURE

Jovanka Nikić

Abstract. Let \mathcal{M}^n be a manifold with an f(3,-1)-structure of rank r and let \mathcal{N}^{n-1} be a hypersurface in \mathcal{M}^n . The following theorem is proved: If the dimension of $T(\mathcal{V}^{n-1} \cap f(T\mathcal{N}^{n-1}))_p$ is constant, say s, for all $p \in \mathcal{N}^{n-1}$, then \mathcal{N}^{n-1} possesses a natural F(3,-1)-structure of rank s. It is also proved that the naturally induced F(3,-1)-structure is integrable if the f(3,-1)-structure on \mathcal{M}^n is integrable and if the transversal to \mathcal{N}^{n-1} can be found to lie in the distribution M.

Introduction. Let \mathcal{M}^n be an *n*-dimensional C^{∞} manifold and f a tensor of type (1,1) such that $f^3 \pm f = 0$, and let the rank of f be constant, say r < n, on \mathcal{M}^n . We then say that \mathcal{M}^n has an $f(3,\pm 1)$ structure of rank r.

Yano and Ishihara [5] have shown that if \mathcal{M}^n is an almost complex manifold, then a submanifold of \mathcal{M}^n satisfying a certain property, possesses a natural f(3,+1)-structure. In particular, Tashiro [4] has shown that if the submanifold is a hypersurface, then the induced f(3,+1)-structure has a maximal rank (i.e. is an almost contact structure).

It is known that a hypersurface of an almost contact manifold possesses a natural f(3,+1)-structure, which does not have a maximal rank. In [2] Miyzawa proved that if the submanifold in the manifold with an almost product structure is a hypersurface, then the induced f(3,-1)-structure has a maximal rank. (i.e. is an almost paracontact structure.)

The purpose in this paper is to show that if \mathcal{M}^n has an f(3,-1)-structure, then a hypersurface of this manifold possesses a natural F(3,-1)-structure. In section 3 we shall study the integrability of the induced f(3,-1)-structure.

Prelimininaries. The (ψ, ξ, η) -structure is an almost paracontact structure if we have on \mathcal{M}^n a tensor field ψ of type (1,1), a vector field ξ , and a 1-form η satisfying:

$$\psi^2 = I - \eta \otimes \xi, \ \eta \psi = 0, \ \psi \xi = 0, \ \eta(\xi) = 1.$$

166 Nikić

In [2] the following theorem is proved:

THEOREM 1.1. Let $T(\mathcal{M}^n)_p$ denote the tangent space to \mathcal{M}^n at p. The almost product structure Φ induces the almost paracontact structure ψ on a hypersurface \mathcal{K}^n in the following way: $\Phi B = B\psi \oplus (\eta \oplus N)$, $\Phi N = B\xi$, where B is the differential of the immersion $i \mathcal{K}$ into \mathcal{M}^n , and $N \in (\mathcal{M}^n)_p$ $N \notin T(\mathcal{K})_p$, for all $p \in \mathcal{K}$.

THEOREM 1.2. If is an f(3,-1)-structure on, \mathcal{M}^n the operators $l=f^2$, $m=I-f^2$, I denoting the identity operator, applied to the tangent space at a point of the manifold, are complementary projection operators.

There exist complementary distributions L and M corresponding to the projection operators l and m, respectively.

2. The structure on the hypersurface. THEOREM 2.1 Let \mathcal{M}^n be a manifold with f(3,-1)-structure of rank r and let \mathcal{N}^m be a hypersurface in \mathcal{M}^n , m=n-1. It the dimnsion of $T(\mathcal{N}^m)_p \cap f(T(\mathcal{N}^m))_p$ is constant, say s, for all $p \in \mathcal{N}^m$, then \mathcal{N}^m possesses a natural F(3,-1)-structure of rank s.

Proof. Let C be a transversal defined on \mathcal{N}^m , i.e. $C \in T$ $(\mathcal{M}^n)_p$ but $C \notin T(\mathcal{N}^m)_p$ for all $p \in \mathcal{N}^m$. Let B be a differential of the imbedding of \mathcal{N}^m in \mathcal{M}^n . Then B is a map of $T(\mathcal{N}^m)$ into $T_R(\mathcal{M}^n)$, where $T_r(\mathcal{M}^n)$ denotes the restriction of $T(\mathcal{M}^n)$, the tangent bundle of \mathcal{M}^n to \mathcal{N}^m . Then we can find a locally 1-form C^* defined on \mathcal{N}^m such that:

$$B^{-1}B = I,$$
 $BB^{-1} = I - C^* \otimes C,$ $C^*B = B^{-1}C = 0,$ $C^*(C) = 1$.

Let F be defined locally on $T(\mathcal{N}^m)$ by $F = B^{-1}fB$. Then:

$$F^{2}X = B^{-1}fBB^{-1}fBX = B^{-1}f(I_{C}^{*} \otimes C)f(BX) =$$

= $B^{-1}f^{2}(BX) - C^{*}f(BX)B^{-1}fC.$

If C is in distribution M, then fC = 0 we have that

$$\begin{split} (F^3 - F)X &= B^{-1}fBB^{-1}f^2BX - fBX = \\ &= B^{-1}f(I - C^* \otimes C)f^2BX - B^{-1}fBX = B^{-1}((f^3 - f)Bx) = 0 \end{split}$$

fur all X. On the other hand, suppose that C is in distribution L. Then:

$$(F^{3} - F)X = (B^{-1}fB)B^{-1}f^{2}(BX) - (B^{-1}fB)C^{*}(fBX)B^{-1}fC - B^{-1}fBX = B^{-1}(f^{3} - f)BX - C^{*}(f^{2}BX)B^{-1}fC - C^{*}(fBX)^{-1}f^{2}C + C^{*}(fBX)C^{*}(fC)B^{-1}fC = 0,$$

since $f^2C=C$ on L and $C^*B=B^{-1}C=0$, and since we can choose C^* so that $C^*(fC)=0$. Also $C^*(f^2BX)=C^*(BX+(f^2-1)BX)=0$.

Theorem 2.2. If (f, ξ, η) is an almost paracontact structure on \mathcal{M}^n then \mathcal{N}^{-1} possesses a natural F(3, -1)-structure if ξ is tangent to \mathcal{N}^{n-1} . The hypersurface \mathcal{N}^{n-1} possesses a natural almost product structure if 5 is not tangent to \mathcal{N}^{n-1} .

Proof. When ξ is not tangent to \mathcal{N}^{-1} , ξ can be chosen for a pseudonormal. Then we have from Theorem 2.1. that $T(\mathcal{N}^{-1}) \cap f(T(\mathcal{N}^{-1})) = T(\mathcal{N}^{-1})$, and rank $F = \dim \mathcal{N}^{-1} = n-1$. The almost paracontact structure F has a maximal rank, i.e. F is an almost product structure.

3. Integrability conditions. The structure f is integrable if [f, f] = 0; [f, f] denotes the Nijenhuis tensor of f, i.e.

$$[f, f](X, Y) = [fX, fY) - [fX, Y] - f(X, fY) + f^{2}[X, Y]$$

for all vector fields X an Y on \mathcal{M}^n .

In this section we shall assume that f is an f(3,-1)-structure on \mathcal{M}^n and that $F = B^{-1}fB$ is the naturally induced F(3,-1)-structure.

Theorem 3.1. Let \mathcal{N}^{-1} be a hypersurface in \mathcal{M}^n , and suppose f is integrable. If, locally, the transversal to \mathcal{N}^{-1} can be found to lie in the distribution M, then the induced F(3,-1)-structure on \mathcal{N}^{-1} is integrable.

Proof. We see that

$$\begin{split} [F,F](X,Y) &= [FX,FY] - F[FX,Y] - F[X,FY] + F^2[X,Y] = \\ &= B^{-1}[BB^{-1}fBX,BB^{-1}fBY] - B^{-1}f[BB^{-1}fBX,BY] - \\ &- B^{-1}f[BX,BB^{-1}fBY] + B^{-1}fBB^{-1}f[BX,BY] = \\ &= B^{-1}\{[f,f](BY,BY) - [C^*(fBX)C,fBY] - [fBX,C^*(fBY)C] + \\ &+ [C^*(fBX)C,C^*(fBY)C] + f[C^*(fBX)C,BY] + f[BX,C^*(fBYC] - \\ &- C^*(f[BX,BY])fC\}, \end{split}$$

where we have used the fact that B[X,Y)=[BX,BY], for vector fields X,Y on \mathcal{N}^{-1} , and that $BB^{-1}=I-C^*\otimes C$. If the transversal C lies in the distribution M, then the form C^* can be chosen so that $C^*f=0$. We see that: $[F,F](X,Y)=B^{-1}([f,f](BX,BY))=0$.

REFERENCES

- G. Luden, Submanifolds of manifolds with an f-structure, Kodai Math. Sem. Rep. 21 (1969), 160–166.
- [2] T. Miyzawa, Hypersurfaces immersed in an almost product Riemannien manifold, Tensor, (N.S.) 33 (1979), 114-116.
- [3] S. Sato, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976), 219-224.
- [4] Y. Tashiro, On contact structure of hypersurfaces in complex manifolds I, II, Tohoku Math. J. (2) 15 (1963), 62-78, 167-175.

168 Nikić

[5] K. Yano and S. Ishihara, The f structure induced on submanifolds of complex and almost complex spaces, Kodai Math. Sem. Rep. 18 (1966), 120-160.

[6] K. Yano, On a structure defined by a tensor field f of type (1,1) satisfying $f^2+f=0$, Tensor (N.S.) 14 (1963), 99–109.

Fakultet tehničkih nauka Institut za primenjene osnovne discipline Veljka Vlahovića 3 21000 Novi Sad Jugoslavija (Received 13 05 1985) (Revised 17 10 1985)