ORIENTATION OF ABSOLUTE SPACE S^n

Vladimir Janković

Abstract. We consider one way of founding the orientation of absolute space S^n . Briefly, we show how the orientation can be introduced by using the first two groups of axioms: axioms of incidence and axioms of order. In [1] the orientation of E^2 is found in a similar way, but using an analytical method which needs all five groups of axioms.

1. Oriented Simplexes and Chaias

An oriented simplex is a simplex whose vertices are ordered. We shall consider only oriented simplexes and for the sake of simplicity we shall call them simplexes. By the simplex $A_0 A_1 \ldots A_n$ we shall mean the simplex whose first vertex is A_0 , whose second vertex is A_1 and so on.

Simplexes $A_0A_1...A^n$ and $B_0B_1...B_n$ are connected if $A_i=B_{i-1},\ i=1,\ldots,n$. A chain is a finite sequence of simplexes such that any two consecutive members are connected. A chain is closed if its initial and terminal members coincide. By the chain $A_0A_1...A^n$, (m>n) we shall mean the sequence of simplexes $A_iA_{i+1}...A_{i+n},\ i=0,1,\ldots,m-n$. By the closed chain $A_0A_1...A^n\ (m>n)$ we shall mean the sequence of simplexes $A_iA_{i+1}...A_{i+n}$ $i=0,1,\ldots,m$, where $A_{m+j}=A_j$ for $j=0,1,\ldots,n$. Chain C connects simplex S with simplex S' if it starts at S and if it terminates at S'.

Theorem 1. For any two simplexes S and S' there exists a chain which connects S with S'.

- *Proof.* Let $S = A_0 A_1 \dots A^n$ and $S' = B_0 B_1 \dots B^n$. Furthermore,
- let C_1 be a point which doesn't lie on the hyperplane $A_0 A_1 \dots A^n$, and which is distinct from the point B_0 ;
- let C_2 be a point which doesn't lie on the hyperplane $A_1A_2...A^nC_1$, and which doesn't lie on the lines C_1B_0 and B_0B_1 ;
- let C_3 be a point which doesn't lie on the hyperplane $A_3A_4...A^nC_1C_2$, and which doesn't lie on the planes $C_1C_2B_0$, $C_2B_0B_1$ and $B_0B_1B_2$;...

- let C_n be a point which doesn't lie. on the hyperplanes $A_nC_1\ldots C_{n-1}$, $C_1C_2\ldots,C_{n-1}B_0,\ldots C_{n-1}B_0\ldots B_{n-2}$ and $B_0B_1\ldots B_{n-1}$. It is obvious that the chain $C=A_0A_1\ldots A_nC_1\ldots C_nB_0B_1\ldots B_n$ connects the simplex S with the simplex S'. \blacksquare

2. Parity of Chains

A couple of connected simplexes $A_0 A_1 \dots A_n$ and $A_1 \dots A_n A_{n+1}$ is anti-oriented if the vertices A_0 and A_{n+1} lie on the same side of the hyperplane determined by the common side $A_1 \dots A_n$ for n odd, and if the vertices A_0 and A_{n+1} lie on the opposite sides of the hyperplane determined by the common side $A_1 \dots A_n$ for n even. A parity of a chain is the parity of the number of anti-oriented couples of consecutive members of that chain.

Theorem 2. Closed chains are even.

Proof for n=1. Suppose that the closed chain $A_0A_1 cdots A_{m-1}$ is given. The points $A_0, A_1, \ldots, A_{m-1}$ can be enumerated by the intogers $a_0, a_1, \ldots, a_{m-1}$ such that $(a_i - a_j)(a_j - a_k) > 0$ if and only if A_j lies between A_i and A_k . The couple of segments A_iA_{i+1} and $A_{i+1}A_{i+2}$ is anti-oriented if and only if $(a_i - a_{i+1})(a_{i+1} - a_{i+2}) < 0$. Since

$$\prod_{i=1}^{m-1} (a_i - a_{i+1})(a_{i+1} - a_{i+2}) = \prod_{i=1}^{m-1} (a_i - a_{i+1})^2 > 0,$$

the number of anti-oriented couples of consecutive members of the given chain is even, i.e. the given chain is even. \blacksquare

Let H be a hyperplane and let A and B be two points which don't lie on H. Let us define a(A, H, B) and b(A, H, B) as

$$a(A, H, B) = \begin{cases} 1, & A, B \stackrel{\dots}{\longrightarrow} H \\ -1, & A, B \stackrel{\dots}{\div} H \end{cases}$$
$$b(A, H, B) = \begin{cases} 1, & A, B \stackrel{\dots}{\div} H \\ -1, & A, B \stackrel{\dots}{\longrightarrow} H \end{cases}$$

These two functions have the following two properties: a) If points A, B and C don't lie on the hyperplane H, then

$$a(A, H, B)a(B, H, C)a(C, H, A) = 1,$$

 $b(A, H, B)b(B, H, C)b(C, H, A) = -1.$

b) If three points A, B and C and the plane P of codimension 2 determine three distinct hyperplanes, then

$$a(A, BP, C)a(B, CP, A)a(C, AP, B) = -1,$$

 $b(A, BP, C)b(B, CP, A)b(C, AP, B) = 1.$

LEMMA. Let A_0, A_1, \ldots, A_m be points in S^n (n > 1). Then there exist points A'_0, A'_1, \ldots, A'_m in S^n such that no n + 1 of them lie on one hyperplane and such that

$$B(A'_i, A'_{k_1}, A'_{k_2}, \dots, A'_{k_n}, A'_j) \Leftrightarrow B(A_i, A_{k_1}, A_{k_2}, \dots, A_{k_n}, A_j) \tag{*}$$

provided the points, $A_{k_1}, A_{k_2}, \ldots, A_{k_n}$ determine a unique hyperplane and the points A_i and A_j don't lie on that hyperplane.

Proof. Let l_0 be a line passing through A_0 which doesn't lie on any hyperplane determined by n points among A_0, A_1, \ldots, A_m . Let A'_0 be a point lying on l_0 such that the segment $]A_0, A'_0]$ doesn't have a common point with any considered hyperplane. The points A'_0, A_1, \ldots, A_m satisfy the given condition. If i = 0, the condition (*) is satisfied because, according to the property a) of the function b,

$$b(A'_0, A_{k_1} A_{k_2} \dots A_{k_n}, A_j) = -b(A'_0, A_{k_1} A_{k_2} \dots A_{k_n}, A_0)b(A_0, A_{k_1} A_{k_2} \dots A_{k_n}, A_j)$$

and, according to the way point A'_0 is chosen,

$$b(A'_0, A_{k_1} A_{k_2} \dots A_{k_n}, A_0) = -1.$$

The case j=0 can be considered in the same way. If $k_1=0$, the condition (*) is satisfied, because, according to the property b) of the function b,

$$b(A_i, A'_0 A_{k_2} \dots A_{k_n}, A_j) = b(A'_0, A_i A_{k_2} \dots A_{k_n}, A_j) b(A_i, A_j A_{k_2} \dots A_{k_n}, A'_0),$$

$$b(A_i A_0 A_{k_2} \dots A_{k_n}, A_j) = b(A_0, A_i A_{k_2} \dots A_{k_n}, A_j) b(A_i, A_j A_{k_2} \dots A_{k_n}, A_0),$$

and the equalities

$$b(A'_0, A_i A_{k_2} \dots A_{k_n}, A_j) = b(A_0, A_i A_{k_2} \dots A_{k_n}, A_j),$$

$$b(A_i, A_j A_{k_2} \dots A_{k_n}, A'_0) = b(A_i, A_j A_{k_2} \dots A_{k_n}, A_0),$$

have been already proved. The cases $k_2 = 0, ..., k_n = 0$ can be considered in the same way.

Repeating the same procedure with the points A_1, \ldots, A_m , we shall get the points A'_0, A'_1, \ldots, A'_m which satisfy all of the needed conditions.

Proof of Theorem 2 for odd n > 1. The closed chain $A_0A_1 \ldots A_{m-1}$ is even if and only if -1 occurs an even number of times among the numbers $b(A_i, A_{i+1}A_{i+2} \ldots A_{i+n}, A_{i+n+1}), i = 0, 1, \ldots, m-1$, i.e., if and only if

$$\prod_{i=0}^{m-1} b(A_i, A_{i+1} A_{i+2} \dots A_{i+n}, A_{i+n+1}) = 1.$$

We shall prove our statement by induction on m.

For m = n + 1 the statement is valid, because all of the numbers $b(A_i, A_{i+1}, A_{i+1}, A_{i+n}, A_{i+n+1})$ are equal to -1 and m is even.

Let us suppose that the statement is valid for integer m > n. Suppose that the closed chain $A_0 A_1 \dots A_m$, is given. By the previous lemma, we can suppose

that no n+1 among the points A_0, A_1, \ldots, A_m belong to one hyperplane. By the induction hypothesis, the statement is valid for the closed chain A_0A_1, \ldots, A_{m-1} , and therefore P=1, where

$$P = \left(\prod_{i=0}^{m-n-2} b(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot b(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_0) \cdot \prod_{i=0}^{n-1} b(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1}, A_0 \dots A_j, A_{j+1}).$$

It remains to show that Q = 1, where

$$Q = \left(\prod_{i=0}^{m-n-2} b(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot b(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_m) \cdot \left(\prod_{j=0}^{n-1} b(A_{m-n+j}, A_{m-n+j+1} \dots A_m A_0 \dots A_{j-1}, A_j)\right) \cdot b(A_m, A_0 \dots A_{n-1}, A_n).$$

Using the properties b) and a) of the function b we get

$$Q = \left(\prod_{i=0}^{m-n-2} b(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot b(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_m) \cdot \left(\prod_{j=0}^{n-1} [b(A_m, A_{m-n+j} \dots A_{m-1} A_0 \dots A_{j-1}, A_j) \cdot b(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1} A_0 \dots A_j, A_m)] \cdot b(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_m) \cdot b(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1} A_0 \dots A_j, A_m)] \cdot b(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_m) \cdot b(A_m, A_{m-n} \dots A_{m-1} A_0) \cdot \prod_{j=0}^{n-1} [b(A_m, A_{m-n+j+1} \dots A_{m-1} A_0 \dots A_j, A_{j+1}) \cdot b(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1} A_0 \dots A_j, A_m)],$$

$$Q = \left(\prod_{i=0}^{m-n-2} b(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot (-b(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_0)) \cdot \prod_{j=0}^{n-1} (-b(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1} A_0 \dots A_j, A_{j+1})),$$

$$Q = \left(\prod_{i=0}^{m-n-2} b(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot b(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_0) \cdot \prod_{j=0}^{n-1} b(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1} A_0 \dots A_j, A_{j+1}),$$

$$Q = R - 1 \quad \blacksquare$$

Proof of Theorem 2 for n even. The closed chain $A_0A_1 \ldots A_{m-1}$ is even if and only if -1 occurs an even number of times among the numbers $a(A_i, A_{i+1}A_{i+2} \ldots A_{i+n}, A_{i+n+1})$, $i = 0, 1, \ldots, m-1$, i.e., if and only if

$$\prod_{i=0}^{m-1} a(A_i, A_{i+1} A_{i+2} \dots A_{i+n}, A_{i+n+1}) = 1.$$

We shall prove our statement by induction on m.

For m = n + 1 the statement is valid, because all of the numbers $a(A_i, A_{i+1}, A_{i+1}, A_{i+n}, A_{i+n+1})$ are equal to 1.

Let us suppose that the statement is valid for integer m > n. Suppose that the closed chain $A_0A_1...A_m$ is given. By the previous lemma, we can suppose that no n+1 among the points $A_0, A_1, ..., A_m$ belong to one hyperplane. By the induction hypothesis, the statement is valid for the closed chain $A_0A_1...A_{m-1}$, and therefore P = 1, where

$$P = \left(\prod_{i=0}^{m-n-2} a(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot a(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_0) \cdot \prod_{j=0}^{n-1} a(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1}, A_0 \dots A_j, A_{j+1}).$$

It remains to show that Q = 1, where

$$Q = \left(\prod_{i=0}^{m-n-2} a(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot a(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_0) \cdot \left(\prod_{j=0}^{n-1} a(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1}A_0 \dots A_j, A_{j+1})\right) \cdot a(A_m, A_0 \dots A_{n-1}, A_n).$$

Using the properties b) and a) of the function a we get

$$Q = \left(\prod_{i=0}^{m-n-2} a(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot a(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_m) \cdot \left(\prod_{j=0}^{n-1} \left[-a(A_m, A_{m-n+j} \dots A_{m-1}A_0 \dots A_{j-1}, A_j) \cdot a(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1}A_0 \dots A_j, A_m)\right]\right) \cdot a(A_m, A_0 \dots A_{n-1}, A_n),$$

$$Q = \left(\prod_{i=0}^{m-n-2} a(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot a(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_m) \cdot a(A_m, A_{m-n} \dots A_{m-1}A_0) \cdot \prod_{j=0}^{n-1} \left[a(A_m, A_{m-n+j+1} \dots A_{m-1}A_0 \dots A_j, A_{j+1}) \cdot a(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1}A_0 \dots A_j, A_m)\right],$$

$$Q = \left(\prod_{i=0}^{m-n-2} a(A_i, A_{i+1} \dots A_{i+n}, A_{i+n+1})\right) \cdot a(A_{m-n-1}, A_{m-n} \dots A_{m-1}, A_0) \cdot \prod_{j=0}^{n-1} a(A_{m-n+j}, A_{m-n+j+1} \dots A_{m-1}, A_0 \dots A_j, A_{j+1}),$$

$$Q = P = 1 \quad \blacksquare$$

Theorem 3. If the chains C and C' have the same origin and the same end, they have the same purity.

Proof. Let C'' be a chain which connects the common end of C and C' with their common origin. If we extend C by C'' we get a closed chain. We thus conclude that the total number of anti-oriented couples of consecutive members of C and C'' is even. Therefore C and C'' have the same parity. In the same way we conclude that C' and C'' have the same parity. \blacksquare

3. Orientations

Simplex S has the same orientation as simplex S', or briefly $S \rightrightarrows S'$, if each chain which connects them is even. Simplex S has the opposite orientation to simplex S', or briefly $S \rightleftarrows S'$, if each chain which connects them is odd.

Theorem 4. Relation \Rightarrow is an equivalence relation which defines the partition of the family of simplexes into two equivalence classes.

Proof. This relation is reflexive because each closed chain is even.

Let $S \rightrightarrows S'$ and $S' \rightrightarrows S''$. Let C be a chain which connects S' with S'', and let C'' be the chain which is the extension of C by C''. The chain C'' is even, because chains C and C' are even. Therefore $S \rightrightarrows S''$. We conclude that the relation \rightrightarrows is transitive.

Let $S \rightrightarrows S'$. Let C be a chain which connects S with S', let C' be a chain which connects S' with S, and let C'' be the chain which is the extension of C by C'. Chain C' is even, because chains C and C'' are even. Therefore $S' \rightrightarrows S$. We conclude that the relation \rightrightarrows is symmetric.

Let $S \rightleftarrows S'$ and $S' \rightleftarrows S$. Let C be a chain which connects S with S', let C' be a chain which connects S' with S, and let C'' be the extension of C by C'. The chain C'' is even, because chains C and C'' are odd. Therefore $S \rightrightarrows S''$.

An orientation of n-dimensional absolute space S^n is any equivalence class with respect to the relation \Rightarrow . There are two opposite orientations of space S^n .

THEOREM 5. Let p be a permutation of numbers $0, 1, \ldots, n$. Simplex $A_{p_0} A_{p_1} \ldots A_{p_n}$ has the same orientation as simplex $A_0 A_1 \ldots A_n$ if and only if the permutation p is even.

Proof. First, let us prove that the statement is valid for the transposition (0,1). Let A be any inner point of the n-1-dimensional simplex $A1\ldots A_n$. Let us consider the chain $A_1A_0A_2\ldots A_nAA_0A_1\ldots A_n$ which connects the simplex $A_1A_0A_2\ldots A_n$ with the simplex $A_0A_1\ldots A_n$. The number of anti-oriented couples of consecutive members of this chain is 3 if n is odd, and it is n-1 if n is even. Therefore, this chain is odd, and so the simplex $A_1A_0A_2\ldots A_n$ has the opposite orientation to the simplex $A_0A_1\ldots A_n$.

Now, let us prove that the statement is valid for the cyclic permutation $(0,1,\ldots,n)$. It has the same parity as n. Let us consider the chain $A_1A_2\ldots A_nA_0$ $A_1\ldots A_n$ which connects the simplex $A_1\ldots A_nA_0$ with the simplex $A_0A_1\ldots A_n$. The number of anti-oriented couples of consecutive members of this chain is 0 if n is even, and it is n for n odd. Therefore, this chain has the same parity as n. So, the simplex $A_1\ldots A_nA_0$ has the same orientation as the simplex $A_0A_1\ldots A_n$ if and only if the cyclic permutation $(0,1,\ldots,n)$ is even.

Finally, let us prove that if the statement is valid for permutations p and q, then it is valid for their composition qp. Let S be an arbitrary simplex, let S' be the simplex obtained from S by reordering its vertices by the permutation p, and let S'' be the simplex obtained from S' by reordering its vertices by the permutation q. Simplex S'' arises from simplex S by reordering its vertices by the permutation qp. We shall consider four cases:

- 1. If the permutations p and q are even, the permutation qp is even. From $S \rightrightarrows S'$ and $S' \rightrightarrows S''$ it follows that $S \rightrightarrows S''$.
- 2. If the permutation p is even and if the permutation q is odd the permutation qp is odd. From $S \rightrightarrows S'$ and $S' \rightleftarrows S''$ it follows that $S \rightleftarrows S''$.
- 3. If the permutation p is odd and if the permutation q is even, the permutation qp is odd. From $S \rightleftharpoons S'$ and $S' \rightleftharpoons S''$ it follows that $S \rightleftarrows S''$.
- 4. If the permutations p and q are odd, the permutation qp is even. From $S \rightleftharpoons S'$ and $S' \rightleftharpoons S''$ it follows that $S \rightrightarrows S''$.

It remains to remark that the transposition (0,1) and the cyclic permutation $(0,1,\ldots,n)$ generate all permutations of numbers $0,1,\ldots,n$).

REFERENCES

 P.S. Modenov, A.S. Parkhomenko, Geometric Transformations, Vol. 1, Academic Press, New York, 1965.

Odsek za matematiku Prirodno-matematički fakultet Studentski trg 16 11000 Beograd (Received 05 10 1983)