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1-FACTORIZATION OF THE COMPOSITION
OF REGULAR GRAPHS

Tomaz Pisanski, John Shawe-Taylor, Bojan Mohar

Abstract. 1-factorability of the composition of graphs is studied. The followings sufficient
conditions are proved: G[H]| is 1-factorable if G and H are regular and at least one of the following
holds: (i) Graphs G and H both contain a 1-factor, (ii) G is 1-factorable (iii) H is 1-factorable.
It is also shown that the tensor product G ® H is 1-factorable, if at least one of two graphs is
1-factorable. This result in turn implies that the strong tensor product G ®' H is 1-factorable, if
G is 1-factorable.

1.0 Introduction. The source of inspiration for this paper is rightfully
Kotzig’s [3]. His simple sufficient conditions for the cartesian product of graphs to
be 1-factorable naturally raise the question of when other well known products of
graphs are 1-factorable.

In this paper we give analogous results for the composition of graphs and par-
tial results for the tensor and strong tensor products, which extend those announced
in [5].

We will leave the basic definitions of graph theory to any standard textbook,
for example Harary’s Graph Theory [2], and will limit ourselves to defining only
lesser known terms and those which may cause confusion.

2.0 Definitions. If u and v are adjacent vertices of a graph, then we write
u ~ v and denote with uv the edge joining them.

For a graph G, let V(G) denote the vertex set of G and E(G) denote its edge
set.

The composition, also known as the lexicographical product, of graphs G and
H is defined as the graph G[H] with the vertex set V(G[H]) = V(G) x V(H) and
the edge set E(G[H]) = {(u,v)(u',v'): either (u =u' and v ~v') or u ~ u'}.
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The tensor product of graphs G and H is defined as the graph G ® H with
vertex set V(G) x V(H) and the edge set

E(G® H) ={(u,v)(u,v") :u ~u' and v ~0v'}

If by deg(v) we denote the degree of a vertex v, then for (u,v) a vertex in
G ® H we have deg((u,v) = deg(u) - deg(v). Thus if G and H are regular, so is
G®H.

The graph G{m} is defined as G ® K,,, where K,, is the complete graph on
m vertices.

If G and H have the same vertex set V = V(G) = V(H), and disjoint edge
sets, E(G) N E(H) = §, then the sum G ® H is the graph having the vertex set
V(G® E(H) =V and the edge set E(G® H) = E(G) U E(H).

Several authors have defined G(m) as G[mK;] [1,4]. Mohar and Pisanski
studied 1-factorability of G(m) in [4]. Here we only note that G(m) and G{m} are
connected by the relation G(m) = G{m} ® mG.

The graph G[H] can be expressed as the sum of the standard cartesian prod-
uct G x H and the graph G{|V (H)|}:

G[H] = (G x H) ® G{|V (H)]}-
If G is the sum of a series of graphs:
G:Flc@Fz@"'@Fk,

we can readily verify the following results:

G = Fi{m}® F{m} & --- & Fy{m},
GeoH=FeH) o(FReH) o - (F,®H).
If each graph F; is d-factorable, it is also clear that G is d-factorable, as it can be
written as the sum of all the d-factors of the F;.
The strong tensor product G ®' H is defined on the vertex set V(G) x V(H)

as

GR'H=GH)® (Gx{v}UGx{v2}U---UG x {vn}),

where V(H) = {v1,v2,...,0m }

3.0 Known results. We first restate in our own words Kotzig’s result for
the cartesian product of regular graphs.

3.1 THEOREM (Kotzig 1979, [3]): If G and H are two regular graphs for which
at least one of the following conditions holds:

(i) Both G and H contain 1-factor,

(ii) G is 1-factorable,
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(iii) H is 1-factorable,
then the cartesian product G x H 1-factorable.

Kotzig also showed that these conditions, though being sufficient are not
necessary. In particular he showed that for any cubic graph G and any cycle
of length n,n greater than three, the cartesian product G x C, is 1-factorable [3,
Theorem 7]. We shall in turn use this to show that our conditions for 1-factorability
of G[H] are also not necessary.

Finally we shall require the 1-factorability of K, the complete graph on an
even number of vertices, and Konig’s well known theorem that a regular bipartite
graph is 1-factorable. These theorems can be found in Harar ’s book [2 Theorems
9.1, 9.2].

4.0 Lemma and main theorems. We fist of all state a lemma concerning
the graph G(2m).

4.1 LEMMA. If graph G is regular, then G{2m} is 1-factorable.
Proof. In section 3 we mentioned that Ko, is 1-factorable. Using this result,

let graphs Fi, F5, ..., Fyy,—1 be 1-factors of Ks,,, which together make up a 1-
factorisation: Ko = F1 @ F, @ --- @ Fopy 1.

Now we have
G{2m} =G Ky, =(GRF) D (GRF)®---®(GQ Far—1)
and since F; = mKsy (1 < i < 2m), it follows that the tensor product G x F' can
be written as G ® F; = m(G ® K3) = mG{2}.

But the graph G{2} is bipartite, since it has vertices on two levels G x {1}
and G x {2}, and edges pass only between these two disjoint sets. It is also reregular
since G is regular, and thus it is 1-factorable (cf. Section 3).

Since the tensor product G ® F; is mG{2}, it is also 1-factorable for each .
This in turn means that the sum

GR)®(GFR)®- @ (G® Fapy_1) = G{2m}

is 1-factorable.

The main theorem follows readily:

4.2 THEOREM. If G and H are two regular graphs for which at least one of
the following holds:

(i) both graphs G and H contain 1-factor,

(ii) G is 1-factorable,

(iii) H is 1 factorable,
then the composition G[H| of G and H is I-factorable.

Proof. We use the identity G[H] = G x H & G{|V(H)|}.

By Theorem 3.1 G x H is 1-factorable in cases (i), (ii) and (iii).
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In cases (i) and (iii) H has at least one 1-factor and thus the number of
vertices V(H) is even. This means that G{|V (H)|} is 1-factorable by Lemma 4.1
and thus G[H] is 1-factorable.

There remains only case (ii) when G is 1-factorable. Let G = F1 ® Fo®- - - D F,
be a 1-factorisation of G. Thus F; is nK,, where G has 2n vertices. Now let H
have m vertices, giving

G{IV(H)|} = G{m} = Fi{m} @ Fa{m} @ --- ® Fi{m}.

Considering the structure of the F;, we have F;{m} = n(K2{m}).

The graph Ko{m} is a regular bipartite graph of degree m — 1 and so is 1-
factorable. This means that F;{m} is 1-factorable and so in turn are G{|V(H)|}
and G[H]. The theorem is proved.

That the conditions of this theorem are not necessary is demonstrated by the
following theorem.

4.3 THEOREM. Let G be a cubic graph and n greater than three. Then Cy|G]
is 1-factorable.

Proof. Cp, x G = G x C, is 1-factorable by Kotzig’s theorem [3, Theorem 7]
concerning the cartesian product of cubic graphs and cycles of length greater than
three and C,{|V(GQ)|} is 1-factorable by Lemma 4.1 since G has an even number
of vertices.

If n is odd and G has no 1-factor, neither graph has a 1-factor and the
conditions of Theorem 4.2 are certainly not satisfied. This counter-example is by
no means unique. Other such graphs are for instance G(2m) for graph G cubic or
regular of even degree but not 1-factorable [4].

Let us now consider the tensor products.

4.4 THEOREM. If G and H are regular graphs at least one of which is 1-
factorable, then the tensor product G ® H is 1-factorable.

Proof. Since the tensor product is commutative, we can without loss of gen-
erality take G to be 1-factorable. Let

G = FioplusF> @ --- @ Fy,
be a 1-factorisation of G. Thus F; = nK,, where G has 2n vertices. This gives
GeoH=FcH) e (FHeoH) ® -0 (F,®H)

and Fo ® H = n(K, ® H) = nH{2}. By Lemma 4.1 H{2} is 1-factorable, this
means that F; ® H is 1-factorable and so also is G ® H.
For the strong tensor product we derive the following results.

4.5 THEOREM. If G is a I-factorable and H o regular graph, then the strong
tensor product G @' H is 1-factorable.
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Proof. We can write the strong tensor product G®'H as G®' H = (GQ H) ®
nG, where n is the number of vertices of graph H. By Theorem 4.4, the tensor
product G ® H is 1-factorable, if G is 1-factorable. That nG is 1-factorable is also
immediate. Thus G ®' H is 1-factorable.

5.0 Concluding remarks. A question of interest is whether there exist
simple necessary conditions for the different products of regular graphs to be 1-
factorable. These are, however, likely to be difficult to find inasmuch as it is harder
to disprove 1-factorability than to construct 1-factorisations for various classes of
regular graphs.
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