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A UNIFIED CLASS OF POLYNOMIALS*

Hukum Chand Agrawal**

Summary. In this paper we propose to study the polynomial set { f,ga) (z) satisfying

the functional relation
1
T(2a) {HV@} = 11 @),  n=1,23,..,
where f(a)n(z) is the polynomial of degree n in x and T is the operator of infinite order defined
by

T(8a) = 30 Ak, 1) 20,
k=0
in which Ao {f(a)} = f(a+ 1) — f(a).

1. Introduction. In his recent communication the author [1] studied the
polynomial set { (@) (;v)} satisfying the condition

A{pP @)} =pn -1 (@), =123, (1.1)

A list of twelve polynomials is given which satisfy the above functional rela-
tion. In this paper we study another classification of polynomials which includes
the class above as a particular case.

Consider the polynomial set { # (z) }; () (z) are the polynomials of degree

n in x, and the infinite operator

T(A) =T =Y YA B £0, (1.2)
k=0

in which Ay{f(a)} = f(a+1) — f(a).

*This work has been done under a fellowship of University Grants Commission, India.
**On study leave from Bundel Khand Post-graduate College, Jhansi (U. P.), India.
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We are concerned here with those polynomials fT(ba) (z) which satisfy the con-
dition
T{f@}=1"@), n=123,... (1.3)
Obviously, for A\*) =1 and A{*) = h{*) = ... = 0 the condition ( 1.3) reduces
o (1.1).
2. Certain Fundamental Properties of T—Operators.

THEOREM 1. If fT(ba)(:v) is a simple set of polynomials in «, then there exists
a unique difference operator of the form

T=3 hPAkH, B £0 (2.1)
k=0
where hsﬁa) is a polynomial of degree < k in «, for which
T{f@} =@,  nx1, (2:2)
Proof. From (2.1) and (2.2), we have
n—1
SoaPAR @)} = 1250 @). (2.3)
k=0

The above equation shows that hia) is uniquely defined and is of degree < k,
because f( ot )(a:) is of degree n — 1 for each n(n # 0).
One can easily show that

THEOREM 2. A necessary and sufficient condition that the simple sets of

polynomials fr(ba) () and m(a)( ) belong to the same operator T is that there exist
polynomial coefficients by, (x) of degree < k in z and independent of a and n, such
that

£ (2) Z b bo(z) # 0. (24)

Definition. Let f(a)( ) be the simple set of polynomials belonging to the
operator T defined by (1.2). If the maximum degree of the coefficient h,(ca) in « is
m, we say that the set fy, (a)( ) is of a-type m. If the degree of h;ca) is unbounded,

(@) :
we say that fy~’ () is of a-type co.

3. Some Properties of Sets of a-type Zero. According to the definition
of a-type zero, any polynomial fy(ba) (z) corresponding to the operator T is said to
be of a-type zero, if

T =Y hAET, ho#0 (3.1)
k=0
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and )
T{f @} = 12 @), (3.2)
where hj, are independent of a.

Let A(t) (independent of a) be a formal power series obtainable from the
symbolic correspondence

T(A(t)) =t(1 + A(t)), (3.3)
where T'(A(t)) stands for > pe ; b (A(t))*, (ho # 0),
Again, let
t) = Z urtra (34)
and denote .

o0 k oo
- [Se] S
r=1 r=k
Then, (3.3) on equating the coefficient of ¢" on both sides, gives

Up = Z hku(r+1)(k+1)7 r=12,.. (35)
k=0

with houu =1.

THEOREM 3. A necessary and suﬁicwnt condztwn for f(a)( ) to be of a-type

zero corresponding to the operator T is that fn ( ) possesses a generating function
of the type

(L+AM)*Qa,t) =Y [ (@)™, (3.6)
n=0
where! A(t) and Q(z,t) are independent of o and A(t) is given by (3.3) and (3.4).
Proof. Transforming both sides of (3.6) by T', we obtain

T {fﬁ"‘) (w)} = 1+ A@)T(AM))Q(z,1) =
n=0
=t(1+ A(t)*Q(z, t) Zf“‘“’ )ttt

which gives T { £*)(z)} = fu_1(a + 1)(z). Therefore, f\*)(z) is of a-type zero.
g

Conversely, let fr (a)( ) be of a-type zero. Then from (3.2), we get

o

[(1—1)A =] Y t"f{* (&) =0. (3.7)

n=0

! The generating function (3.6), in fact includes the generating functions given and studied
by Appell [2], Sheffer [8], Brenke [4], Boas and Buck [3], and Rainville [6, §77].
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Solving the above homogeneous-linear-difference equation, we get (3.6). Thus
the theorem is proved.

COROLLARY 1. A necessary and sufficient condition for féa)(w) to be of
a-type zero and Sheffer A-type zero corresponding to the operator T and J?, re-
spectively, is that fT(La) (x) possesses the generating function

1+ A®)* exp{zH()} = Y _ f{* (@)t", (3.8)
n=0
where A(t) and H(t) are independent of o and are given by (3.3) and J(H(t)) =
H(J(t)) =t, respectively.

THEOREM 4. Let {f,(la) (m)} be a set of a-type zero polynomials having the

generating function

(1+ A Qa,t) = Y fi (@)t

n—0

A necessary and sufficient condition for f(a)( ) to satisfy the recurrence re-

lation
n—1

nf{® (@) =Y (ady +me (@) £, 1 (@), n>1 (3.9)

r=0
is that there exist constants l;, and polynomial coefficients my(z) of degree < k in
z, independent of a and n, given by

A'(t)/(1+ At sz (3.10)

and

Q' (z,t)/Q(z,t) Zmr g (3.11)

respectively. Prime denotes differentiation wzth respect to t.
Proof. Differentiating both sides of (3.6), with respect to ¢, we get

Yont" £ (@) = tlad' (t)/(1+ A®) + Q' (z,1)/Q(z, 1) (1 + A(1))* Q(a, t)
=0

= Z Z (al, + m,(x (a) ()t

n=0 r

2Here, as well as in what follows, J is defined by

oo
J(D)=J =) D, co#£0, D =d/dx,
k=0

where the cjrs are independent of a.
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Equating the coefficients of t", we get (3.9). Thus, the sufficient part of the
theorem is proved.

For, the necessary part, let

P= ifﬁa)(w)t", L= iﬁntn and M = i%t" (3.12)
= n=0

n=0
where 3, =1,_11, Bo =0, rv. = m,_1(z) and v = 0.
With these assumptions, (3.9) can be written as
dP dL. dM
ot [aa - W] 7
which after some simplifications, gives
o0 o
aA'(t)/(1+ A1) + Q'(z,1)/Q(z,t) = a Zﬁrrt”_l - Z’yrrtr_l.
r=0 r=1

Since A(t) and Q(z,t) are independent of «, comparing the coefficient of a,
we obtain

A1)/ (1+ At Zﬂrrﬂ P=) bt
r=1
and

Q'(z,t)/Q(z,t) = Z%trl qu-l )L,

which are (3.10) and (3.11), respectlvely. Hence the theorem is proved.

Explicit form. The a-type zero polynomials satisfy the recurrence relation
(3.9), viz.,

nf,(la) (z) = (alg + mo () fr—1(a)(z) + (ady + m1(z)) frn2(a)(z) + ...
+ (an1 + M1 () £ (2).

Eliminating f,(fi)l (), f (OL)Q (x),..., éa) (z), we get the following explicit form
for £ (z)
( ) SII 822 S"'n
o _ ...8m
" (:c)_z rilral.irpl’ (3.13)

where al + mg(z) = (k + 1)sg41, for £k = 0,1,...,n — 1; f(a)( ) = 1 and the
summation is taken over all positive integral values of ry, ra,...,r, such that
r1+2ry + -+ -+ nr, = n. (3.13) shows that f(a)( ) is a polynomial of degree n in
Q.

THEOREM 5. A necessary and sufficient condition for f(a)( ) to be of a-type
zero is that it satisfies a difference eguation of the form

{ £ (g } Zuk (3.14)
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where uy, is independent of n, a and is given by (3.3) and (3.4).
Proof. Applying A, to both sides of (3.6), we obtain

ZtA {ri@)} = am@ +Aw) ZZM“’ it

n=0 k=1

Equating the coefficients of t", we get (3.14).
Conversely, (3.14) can be written as

A{P} = A(t)P, (3.15)

in the notation of (3.12).
The solution of the difference equation (3.15) is

P= Zf("‘) = (14 A®1)*Q(x,1).

Thus the theorem is proved.

The difference equation (3.15) can be generalized as T'(P) = t(1 + A(t))P.

Thus, P =Y T(La)( )t™ is also the solution of the difference equation T'(P) =
t(1+ A(t)) P

The following results can be proved easily.

COROLLARY 2. If f,(la)(:v) is of a-type zero and Sheffer A-type zero corre-
sponding to the operator T and J, respectively, then so are the sets

{(AD) £ (@)}, {(A2DA) (@)}, 5
where D = d/dzx.

COROLLARY 3. If {f,(la) (m)} is a-type and Sheffer A-type zero, then

et @ ty) = 30 10 @O . 3.10)
r=0

(3.16) can also be written as

n

a4 = 3 (1) (0 - N @) 00,

r=0

which shows that {n!fn (a)( )} is a cross-sequence (for definition, see [7]).

The result (3.16) can be generalized as

fleorred (@ bt = Y f (@) S (). (3.17)

mi+-+mr=n
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THEOREM 6. If{ ,(f“) (w)} is of a-type zero corresponding to the operator
A, then so is { T(La"_ﬁ")(m)} corresponding to the operator T, defined by
7(2) = 2(14 2)7? (3.18)
where z = u(t)/(1 — u(t)) and t = u(t)(1 — u(t))?.
Proof. With the help of the following generating relation [5]

1—u(t)]~ "‘Fa:u at B
(%0 Zf( o) (3.19)

where t = u(t)(1 — u(t))?, the theorem can be proved easily.

4. A Characterization for a-type Zero Polynomials. Let us consider
the set of polynomials { (@ (z,A Q)} defined by
(@) a (@)™
dfn (SL',A,Q {E 1+A a))} Q(xava)Ta (4'1)

where A(t) and Q(z,t) are formal power series in ¢ independent of n.
(4.1), gives

ZWMQ ={E,'(1+A(Va)}" Qe, Vo)1 =) (4.2)

n=0

Now the application of the formula ®(V,){a®} = a®®(1 —a™'), with ®(z) =
Yoo o bra”, reduces (4.2) to the form

1+ A®)*Q(z,t) = Y UM (z, 4, Q)t". (4.3)

n=0

Hence, we conclude that

THEOREM 7. A necessary and sufficient condition for f(a)( ) to be of a-type
zero is that it is given by the operational formula

£(2) = {B;' (1+ A(Va)}" Q(z, Va)(@)n/nl, (4.4)
and then the polynomial is defined by the gemerating function
(14 At Z 1L ()

5. Algebraic Structure. Consider the set G; consisting of all a-type zero
polynomials corresponding to the operator T' as its elements, i. e.,

61 = {9 @ (@) = £ @)}, (5.1)
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where 7 is fixed and given by (3.1). For the sake of brevity, we denote the elements
of Gy by fi2, ¢\, ..

THEOREM 8. The set G is an Abelian Group with respect to the operation
defined by

O‘) * q(a) = Zp(o) (5.2)

Before proving Theorem 8, we derive the following lemma:

Lemva 1. If (1 4+ A(#)® = 520 I5t, then (5.3)
(i) I € Gy,

10 _ {0 for r #£0

(ii) It L forr— 0. (5.4)

(iii) the explicit form of any element fr(ba) € Gy is
o1, (5.5)

(iv) I8 s the identity element for the set (G1, *).
Proof of the Lemma 1. By Theorem 3, it is evident that I,(la) € (G1. Putting

a =0in (5.3), we obtain
oo
1= 19"
n=0

On comparing the coefficients of various powers of ¢, we get (5.4).

For every fi*) € G1, by Theorem 3, we have
(1+ A(t Z fral(x

in which the substitution a = 0 gives

Z O (5.6)

Now, putting the value of (1 + A(t))%, Q(z,t) from (5.3) and (5.6), respec-
tively, in (3.6), and equating the coefficients of t", we get the required result (5.5).

Since

F 1 = S LA, = 1, oy 6.5,

r=0

and n
s (0 =310 10, = 11, (by (5-4));

r=0
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I is the identity element for the set (Gy,#). Thus the lemma is proved.

Proof of Theorem 8. With the help of the lemma above, the theorem can be
proved easily.

THEOREM 9. The mapping p : G1 — G such that
p(f1) =T(f5), VI € Gy (5.7)

is an isomorphism.

Proof. The proof is simple and hence omitted.

6. Polynomials of S-type m. Before defining 8-type m polynomials con-
sider the following example.

The classical Hermite polynomials are defined by means of the relation [6]

exp(2zt — t°) = i Hp(z)t" /nl,
n=0
which gives

The example above suggests the following extension of Theorem 5.

LEMMA 2. For every polynomial fy(ba) () there exist unique polynomial coeffi-
cients ugca) of degree < k in a and independent of n, such that

Aa{£@)} = ul 1+ f @)+ +u@ 0@, 021, (62)

Definition. A set of polynomials { () (w)} is said to be of B-type m if in
(6.2) the maximum degree of the coefficients ug’) is m. If the degree of ug’) is

unbounded as k — oo we say that the set { T(La)(x)} is of B-type oo.

From Theorem 5 and Lemma 2, we conclude

THEOREM 10. The set of polynomials { T(La)(a:)} is of B-type zero if, and only
if, it is of a-type zero.

caps Theorem 11. A necessary and sufficient condition for the polynomial
() to be of B-type m is that

Z " fl) = Cexp [A;l log (1 + Zuﬁo‘)tr)] , (6.3)

n=0 r=1

where C'is an arbitrary periodic function of period unity in o.
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Proof. From (6.2), we have

Aa {f; £ (t”} =3 AO@ Y e
n=0 n=0 r=1

or

- Zuga)trl S @) =o. (6.4)
r=1 n=0

(6.4) is a homogeneous-linear-difference equation of order one, whose solution
is (6.3). The converse part can be proved easily by transforming both sides of (6.3)
by A,, and hence the proof is omitted. Thus, the theorem is proved.

7. Polynomials of «-type m. In this section we define another class of
polynomials which are said to be of y-type m, based on Lemma 3 (an extension of
Theorem 4) given below. We also give a generating function for y-type m polyno-
mials.

LEMMA 3. For every polynomial fr, (a)( ) there exist unique polynomial coeffi-
cients u( )( ) of degree < k in a and independent of n, such that

nf{(2) = i (@) {2 @)+ (@) £ @)+ -+ (@) § (2), (0 >1). (1.1)

Definition. A set of polynomials { (o )( )} is said to be of y-type m if in

(7.1) the maximum degree of the coefficients (a)( )is (m+1) in a.
From the definition above and Theorem 4, it is evident that every a-type zero
polynomial is also of y-type zero.

THEOREM 12. A necessary and sufficient condition for the polynomials
éa)(x) to be of y-type zero is that

it” 7 (z) = K exp (Z v (@) (r + 1)) (7.2)
n=0

where K is an arbitrary constant (independent of t).

Proof. The sufficient part of the theorem can be proved easily by differenti-
ating both sides of (7.2) with respect to .

For the converse part write (7.1) as

B SPIEr s IZW D @) = 3 fo @ S @),
n=0 n=0 r=0

n=0
or

l% -2 uh (m)”] > i@ =o. 3

r=0 n=0
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On solving the difference equation (7.3), we get (7.2).

8. Generalized a-type Zero Polynomials. We conclude this paper by
giving a generalization of a-type zero polynomials, introduced in § 3. We shall also
give two characterizations for these polynomials.

Let us consider the following difference-operator of infinite order
oo
T(A) =T =) gkt (8.1)
k=0

in which go # 0, gx (k > 0) are independent of o and 7 is some fixed positive
integer.

Definition. Any polynomial Gg[’)(x) for which there exists an operator T of
the form (8.1), such that

T {GE{") (a:)} = Gglj:) (), (n=rr+1,...) (8.2)

where 7 is some fixed positive integer, we call a Generalized a-type zero polynomial.
Obviously, for » = 1, (8.2) reduces to the condition required for Gs{l) (z) to be of
a-type zero.

THEOREM 13. For any polynomial G%a) (z) to be a Generalized a-type zero
polynomial, the necessary and sufficient condition is that it satisfies a generating
relation of the form

D Qi(w, t)(1+ B(eit)* = Y G (o), (8.3)
i=1 n=o
where, B(t) is defined by the relation
T(B(t)) =t"(1+ B(t))", (8.4)
and €1,€a,...,&, are the r roots of unity.

Proof. By operating both sides of (8.3), by T it can be shown easily with the
help of (8.4) that G{¥(z) satisfies the condition (8.2).
Conversely, let us write

i G (z)t" =G (8.5)
n=0

Therefore, from (8.2) and (8.5), we have
[T —t"E7]G = 0. (8.6)

It is always possible to find out another difference-operator of the form

M(Ag) = irAE™, o #0 (8.7)
k=0
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such that
T(Aa) = (M(Aa))r' (8'8)
Hence from (8.6) and (8.8), we obtain
[(M(AL)" — (14 A)"t"G =0.
Consequently, if €1, €2, ..., €., are the r roots of unity, we have
[M(Ay) — (1+Ay)eit]lG=0, (=1,2,...,7). (8.9)

Solving the homogeneous-linear-difference equations above we get

G = Z Qi(z,t)(1 + B(eat))*

i=1
where B(t) is given by
M(B(t)) =t(1 + B(t)). (8.10)
Therefore, the theorem is proved.
Like Theorem 2, one can show that

THEOREM 14. If the set {G%a) (a:)} corresponds to the operator T, then a

necessary and sufficient condition for the set {Kﬁba) (m)} to correspond also to the

same operator T is that there exist polynomial coefficients di(x) of degree < h in z
and independent of n and o, such that

n

G (z) = Zdi(w)K,(f‘) (x), do(zx) #0. (8.11)

=0

Finally, we give still another characterization for generalized a-type zero poly-
nomials.

THEOREM 15. Let M(A,) be the operator of type (8.7) and u(a) a function of
bounded variation on (0,00) such that / du(a) #0. Then G\ () is a Generalized
0

a-type zero polynomial if, and only if,
/{M(Aa)}kG;“*") (x)du(a) = cop, (k=0,1,2,...) (8.12)
0

where ¢y 1, are elements of an infinite triangular matriz, in which c+n+r,k+r =
Cn,k-
Before proving the theorem above we first prove the following lemma:

LEMMA 4. (8.12) is satisfied by one and only one Glem (z) for some given
M(A,) and u(a) satisfying the conditions stated in the theorem above.
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Proof of Lemma, 4. From Lemma, 1 we know that the polynomials Ir(ba) defined
by

1+ B®)*=>_ 1"
n=0

are of a-type zero corresponding to the operator M (A,), where M (B(t)) = ¢(1 +
B(t)). We also have Iéa) =1

Let G\ ™ (z) satisfy (8.12); then we can write

n

G (@) =Y An,i,2)I{*).

i=0
Therefore
n—k
(MA)FGE™ (2) = 3 Aln,i+ k, 2) [T (8.13)
i=0
If we write

/I@'(Mrk)du(a) = ek,
0

then from (8.12) and (8.13), we get

n—k
Z An,i+k,x)eir =cnp, (k=0,1,2,...,n). (8.14)
=0

Since A(n,i,xz) = 0, if i > n, it follows that the determinant of the system

n o0
(8.14) is H eo,r 7 0, and since eg, = /du(a) # 0, we conclude that A(n,i,z)

k=0 o
(:=0,1,...,n) are uniquely determined.

Proof of Theorem 15. Let G\ (z) be a Generalized a-type zero polynomial.
Since G\ (z) is a polynomial of degree n in «, we have

[M(A)]'G ™ (z) =0, ifi>n

or
cni =0, if i >mn.
Again, since
M*(AL)GE ) (2) = MFT(AL)G ™ (2)

we get Cn,k = Cntrktr-
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Conversely, let G~ (z) satisfy (8.12). Then

/MkH(Aa)GLTiWi) (w)du(a) = cnyiskti = Cnyk-
0

The substitution

S () = M{(AL)GT™ ) ()

reduces (8.15) to

/ M*(AR) S () du(a) = cn k.
0

But by Lemma 4, (8.12) is satisfied by the unique polynomial Gsla_"). There-
fore S (z) = G (x).
This completes the proof of the theorem.

I am grateful to Professor R. P. Agrawal for his kind guidance during the preparation of
this paper.
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