New York Journal of Mathematics

New York J. Math. 16 (2010) 1–12.

Lang's height conjecture and Szpiro's conjecture

Joseph H. Silverman

ABSTRACT. It is known that Szpiro's conjecture, or equivalently the *ABC*-conjecture, implies Lang's conjecture giving a uniform lower bound for the canonical height of nontorsion points on elliptic curves. In this note we show that a significantly weaker version of Szpiro's conjecture, which we call "prime-depleted," suffices to prove Lang's conjecture.

Contents

Introduction		1
1.	The prime-depleted Szpiro conjecture	2
2.	Some elementary properties of the prime-depleted Szpiro ratio	7
3.	The prime-depleted Szpiro and ABC conjectures	10
References		11

Introduction

Let E/K be an elliptic curve defined over a number field, let $P \in E(K)$ be a nontorsion point on E, and write $\mathfrak{D}(E/K)$ and $\mathfrak{F}(E/K)$ for the discriminant and the conductor of E/K. In this paper we discuss the relationship between the following conjectures of Serge Lang [12, page 92] and Lucien Szpiro (1983).

Conjecture 1 (Lang Height Conjecture). There are constants $C_1 > 0$ and C_2 , depending only on K, such that the canonical height of P is bounded below by

$$\hat{h}(P) \ge C_1 \log \mathsf{N}_{K/\mathbb{O}} \mathfrak{D}(E/K) - C_2.$$

Received August 26, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 11G05; Secondary: 11G50, 11J97, 14H52.

Key words and phrases. elliptic curve, canonical height, Szpiro conjecture, Lang conjecture.

The author's research partially supported by NSF grants DMS-0650017 and DMS-0854755.

Conjecture 2 (Szpiro Conjecture). There are constants C_3 and C_4 , depending only on K, such that

$$\log \mathsf{N}_{K/\mathbb{O}}\mathfrak{D}(E/K) \le C_3 \log \mathsf{N}_{K/\mathbb{O}}\mathfrak{F}(E/K) + C_4.$$

(We remark that stronger versions of Conjectures 1 and 2 say, respectively, that C_1 may be chosen to depend only on $[K : \mathbb{Q}]$ and that $C_3 > 6$ is sufficient.)

In [9] Marc Hindry and the author proved that Szpiro's conjecture implies Lang's height conjecture, and the dependence of C_1 and C_2 on K and on the constants in Szpiro's conjecture were subsequently improved by David [4] and Petsche [15]. It is thus tempting to try to prove the opposite implication, i.e., prove that Lang's height conjecture implies Szpiro's conjecture. Since Szpiro's conjecture is easily seen to imply the *ABC*-conjecture of Masser and Oesterlé [14] (with some exponent), such a proof would be of interest.

It is the purpose of this note to explain how the pigeonhole argument in [16] may be combined with the Fourier averaging methods in [9] to prove Lang's height conjecture using a weaker form of Szpiro's conjecture. Roughly speaking, the "prime-depleted" version of Szpiro's conjecture that we use allows us to discard a bounded number of primes from $\mathfrak{D}(E/K)$ and $\mathfrak{F}(E/K)$ before comparing them. It thus seems unlikely that there is a direct proof that Lang's height conjecture implies the standard Szpiro's conjecture. We also note that the prime-depleted conjecture is insufficient for many Diophantine applications; see Remark 12.

We briefly summarize the contents of this paper. In Section 1 we describe the prime-depleted Szpiro conjecture and prove that it implies Lang's height conjecture. Section 2 contains various elementary properties of the primedepleted Szpiro ratio. Finally, in Section 3 we state a prime-depleted ABCconjecture and show that it is a consquence of the prime-depleted Szpiro conjecture.

Acknowledgements. The author would like to thank the referee for suggestions on improving the exposition.

1. The prime-depleted Szpiro conjecture

We begin with some definitions.

Definition. Let \mathfrak{D} be an integral ideal of K, let $\nu(\mathfrak{D})$ denote the number of distinct prime ideals dividing \mathfrak{D} , and factor

$$\mathfrak{D} = \prod_{i=1}^{
u(\mathfrak{D})} \mathfrak{p}_i^{e_i}$$

as a product of prime powers. The Szpiro ratio of \mathfrak{D} is the quantity

$$\sigma(\mathfrak{D}) = \frac{\log \mathsf{N}_{K/\mathbb{Q}}\mathfrak{D}}{\log \mathsf{N}_{K/\mathbb{Q}}\prod_{i=1}^{\nu(\mathfrak{D})} \mathfrak{p}_i} = \frac{\sum_{i=1}^{\nu(\mathfrak{D})} e_i \log \mathsf{N}_{K/\mathbb{Q}}\mathfrak{p}_i}{\sum_{i=1}^{\nu(\mathfrak{D})} \log \mathsf{N}_{K/\mathbb{Q}}\mathfrak{p}_i}.$$

(If $\mathfrak{D} = (1)$, we set $\sigma(\mathfrak{D}) = 1$.) More generally, for any integer $J \ge 0$, the *J*-depleted Szpiro ratio of \mathfrak{D} is defined as follows:

$$\sigma_J(\mathfrak{D}) = \min_{\substack{I \subset \{1, 2, \dots, \nu(\mathfrak{D})\}\\ \#I \ge \nu(\mathfrak{D}) - J}} \sigma\left(\prod_{i \in I} \mathfrak{p}_i^{e_i}\right).$$

Thus $\sigma_J(\mathfrak{D})$ is the smallest value that can be obtained by removing from \mathfrak{D} up to J of the prime powers dividing \mathfrak{D} before computing the Szpiro ratio. We note that if $\nu(\mathfrak{D}) \leq J$, then $\sigma_J(\mathfrak{D}) = 1$ by definition.

Example 3.

$$\sigma_0(1728) = \frac{\log 1728}{\log 6} \approx 4.16, \quad \sigma_1(1728) = \frac{\log 27}{\log 3} = 3, \quad \sigma_2(1728) = 1.$$

Conjecture 4 (Prime-Depleted Szpiro Conjecture). Let K/\mathbb{Q} be a number field. There exist an integer $J \geq 0$ and a constant C_5 , both depending only on K, such that for all elliptic curves E/K,

$$\sigma_J(\mathfrak{D}(E/K)) \le C_5.$$

It is clear from the definition that $\sigma_0(\mathfrak{D}) = \sigma(\mathfrak{D})$. An elementary argument (Proposition 9) shows that the value of σ_J decreases as J increases,

$$\sigma_0(\mathfrak{D}) \geq \sigma_1(\mathfrak{D}) \geq \sigma_2(\mathfrak{D}) \geq \cdots$$
.

Hence the prime-depleted Szpiro conjecture is weaker than the classical version, which says that $\sigma_0(\mathfrak{D}(E/K))$ is bounded independent of E. Before stating our main result, we need one further definition.

Definition. Let E/K be an elliptic curve defined over a number field. The *height of* E/K is the quantity

$$h(E/K) = \max\{h(j(E)), \log N_{K/\mathbb{Q}}\mathfrak{D}(E/K)\}.$$

For a given field K, there are only finitely many elliptic curves E/K of bounded height, although there may be infinitely many elliptic curves of bounded height defined over fields of bounded degree [18].

We now state our main result.

Theorem 5. Let K/\mathbb{Q} be a number field, let $J \ge 1$ be an integer, let E/K be an elliptic curve, and let $P \in E(K)$ be a nontorsion point. There are

constants $C_6 > 0$ and C_7 , depending only on $[K : \mathbb{Q}]$, J, and the J-depleted Szpiro ratio $\sigma_J(\mathfrak{D}(E/K))$, such that

$$\hat{h}(P) \ge C_6 h(E/K) - C_7.$$

In particular, the prime-depleted Szpiro conjecture implies Lang's height conjecture.

Remark 6. As in [15], it is not hard to give explicit expressions for C_6 and C_7 in terms of $[K : \mathbb{Q}]$, J, and $\sigma_J(\mathfrak{D}(E/K))$. In terms of the dependence on the Szpiro ratio, probably the best that comes out of a careful working of the proof is something like

$$C_6 = C'_6 \sigma_J \big(\mathfrak{D}(E/K) \big)^{cJ}$$

for an absolute constant c and a constant C'_6 depending on $[K : \mathbb{Q}]$ and J. But until the (prime-depleted) Szpiro conjecture is proven or a specific application arises, such explicit expressions seem of limited utility.

Proof. We refer the reader to [19, Chapter 6] for basic material on canonical local heights on elliptic curves. Replacing P with 12P, we may assume without loss of generality that the local height satisfies

$$\hat{\lambda}(P; v) \ge \frac{1}{12} \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{D}(E/K)$$

for all nonarchimedean places v at which E does not have split multiplicative reduction. We factor the discriminant $\mathcal{D}(E/K)$ into a product

$$\mathfrak{D}(E/K) = \mathfrak{D}_1\mathfrak{D}_2$$
 with $\nu(\mathfrak{D}_2) \leq J$ and $\sigma_J(\mathfrak{D}(E/K)) = \sigma(\mathfrak{D}_1)$.

We also choose an integer $M \ge 1$ whose value will be specified later, and for convenience we let $d = [K : \mathbb{Q}]$.

Using a pigeon-hole principle argument as described in [16], we can find an integer k with

$$1 \le k \le (6M)^{J+d}$$

such that for all $1 \leq m \leq M$ we have

$$\hat{\lambda}(mkP; v) \ge c_1 \log \max\{|j(E)|_v, 1\} - c_2 \quad \text{for all } v \in \mathcal{M}_K^{\infty}, \\ \hat{\lambda}(mkP; v) \ge c_3 \log |\mathsf{N}_{K/\mathbb{Q}}\mathfrak{D}(E/K)|_v^{-1} \quad \text{for all } v \in \mathcal{M}_K^0 \text{ with } \mathfrak{p}_v \mid \mathfrak{D}_2.$$

(Here and in what follows, c_1, c_2, \ldots are absolute positive constants. We also use the standard notation \mathcal{M}_K^{∞} and \mathcal{M}_K^0 for complete normalized sets of archimedean, respectively non-archimedean, absolute values on K.) Roughly speaking, we need to force J + d local heights to be positive for all mP with $1 \leq m \leq M$, which is why we may need to take k as large as $O(M)^{J+d}$.

We next use the Fourier averaging technique described in [9]; see also [10, 15]. Let $\mathfrak{p}_v \mid \mathfrak{D}_1$ be a prime at which E has split multiplicative reduction. The group of components of the special fiber of the Néron model of E at v is a cyclic group of order

$$n_v = \operatorname{ord}_v(\mathfrak{D}(E/K)),$$

4

and we let $0 \leq a_v(P) < n_v$ be the component that is hit by P. (In practice, there is no prefered orientation to the cyclic group of components, so $a_v(P)$ is only defined up to ± 1 . This will not affect our computations.) The formula for the local height at a split multiplicative place (due to Tate, see [19, VI.4.2]) says that

$$\hat{\lambda}(P;v) \geq \frac{1}{2} \mathbb{B}\left(\frac{a_v(P)}{n_v}\right) \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_v^{n_v}.$$

In this formula, $\mathbb{B}(t)$ is the periodic second Bernoulli polynomial, equal to $t^2 - t + \frac{1}{6}$ for $0 \le t \le 1$ and extended periodically modulo 1. As in [9], we are going to take a weighted sum of this formula over mP for $1 \le m \le M$.

The periodic Bernoulli polynomial has a Fourier expansion

$$\mathbb{B}(t) = \frac{1}{2\pi^2} \sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} \frac{e^{2\pi i n t}}{n^2} = \frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2\pi n t)}{n^2}.$$

We also use the formula (Fejér kernel)

$$\sum_{m=1}^{M} \left(1 - \frac{m}{M+1} \right) \cos(mt) = \frac{1}{2(M+1)} \left| \sum_{m=0}^{M} e^{imt} \right|^2 - \frac{1}{2}$$

Hence

$$\begin{split} \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \hat{\lambda}(mP;v) \\ &\geq \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \frac{1}{2} \mathbb{B}\left(\frac{ma_v(P)}{n_v}\right) \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_v^{n_v} \\ &= \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \frac{1}{2\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2\pi nma_v(P)/n_v)}{n^2} \\ &= \frac{1}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \cos\left(\frac{2\pi nma_v(P)}{n_v}\right) \\ &= \frac{1}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{1}{2(M+1)} \left|\sum_{m=0}^{M} e^{2\pi nma_v(P)/n_v}\right|^2 - \frac{1}{2}\right). \end{split}$$

We split the sum over n into two pieces. If n is a multiple of n_v , then the quantity between the absolute value signs is equal to M + 1, and if nis not a multiple of n_v , we simply use the fact that the absolute value is non-negative. This yields the local estimate

$$\sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \hat{\lambda}(mP; v)$$

$$\geq \left(\frac{1}{4\pi^2(M+1)}\sum_{n=1}^{\infty}\frac{(M+1)^2}{(nn_v)^2} - \frac{1}{4\pi^2}\sum_{n=1}^{\infty}\frac{1}{n^2}\right)\log \mathsf{N}_{K/\mathbb{Q}}\mathfrak{p}_v^{n_v} \\ = \left(\frac{M+1}{24n_v^2} - \frac{1}{24}\right)\log \mathsf{N}_{K/\mathbb{Q}}\mathfrak{p}_v^{n_v}.$$

We next sum the local heights over all primes dividing \mathfrak{D}_1 ,

$$\begin{split} \sum_{\mathfrak{p}_v \mid \mathfrak{D}_1} \sum_{m=1}^M \bigg(1 - \frac{m}{M+1} \bigg) \hat{\lambda}(mP; v) \\ \geq \frac{1}{24} \sum_{\mathfrak{p}_v \mid \mathfrak{D}_1} \bigg(\frac{M+1}{n_v} - n_v \bigg) \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_v. \end{split}$$

We set

$$M+1 = \left\lfloor 2\sum_{\mathfrak{p}_v \mid \mathfrak{D}_1} n_v \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_v \middle/ \sum_{\mathfrak{p}_v \mid \mathfrak{D}_1} n_v^{-1} \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_v \right\rfloor + 1,$$

which gives the height estimate

$$\sum_{\mathfrak{p}_{v}|\mathfrak{D}_{1}} \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \hat{\lambda}(mP; v) \geq \frac{1}{24} \sum_{\mathfrak{p}_{v}|\mathfrak{D}_{1}} n_{v} \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_{v}$$
$$= \frac{1}{24} \sum_{\mathfrak{p}_{v}|\mathfrak{D}_{1}} \log \left|\mathsf{N}_{K/\mathbb{Q}} \mathfrak{D}(E/K)\right|_{v}^{-1}.$$

We also need to estimate the size of M. This is done using the elementary inequality

(1)
$$\left(\sum_{i=1}^{n} a_i x_i\right) \left(\sum_{i=1}^{n} a_i x_i^{-1}\right) \ge \left(\sum_{i=1}^{n} a_i\right)^2,$$

valid for all $a_i, x_i > 0$. (This is a special case of Jensen's inequality, applied to the function 1/x.) Applying (1) with $x_i = n_v$ and $a_i = \log N_{K/\mathbb{Q}} \mathfrak{p}_v$ allows us to estimate

$$\begin{split} M+1 &\leq 2 \left(\frac{\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} n_{v} \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_{v}}{\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} n_{v}^{-1} \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_{v}} \right) + 1 \\ &\leq 2 \left(\frac{\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} n_{v} \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_{v}}{\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{p}_{v}} \right)^{2} + 1 \quad \text{using (1)}, \\ &= \sigma(\mathfrak{D}_{1})^{2} + 1 = \sigma_{J} \big(\mathfrak{D}(E/K)\big)^{2} + 1. \end{split}$$

In particular, the value of M is bounded solely in terms of $\sigma_J(\mathfrak{D}(E/K))$. We now combine the estimates for the local heights to obtain

$$\begin{split} \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \hat{h}(mkP) \\ &\geq \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \left(\sum_{v \in \mathcal{M}_{K}^{\infty}} + \sum_{\mathfrak{p}_{v} \mid \mathfrak{D}(E/K)}\right) \hat{\lambda}(mkP;v) \\ &= \left(\sum_{v \in \mathcal{M}_{K}^{\infty}} + \sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} + \sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{2}}\right) \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \hat{\lambda}(mkP;v) \\ &\geq \sum_{v \in \mathcal{M}_{K}^{\infty}} \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \left(c_{1} \log \max\{|j(E)|_{v}, 1\} - c_{2}\right) \\ &+ \frac{1}{24} \sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} \log |\mathsf{N}_{K/\mathbb{Q}} \mathfrak{D}(E/K)|_{v}^{-1} \\ &+ \sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{2}} \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) c_{3} \log |\mathsf{N}_{K/\mathbb{Q}} \mathfrak{D}(E/K)|_{v}^{-1} \\ &\geq c_{4} h(j(E)) + c_{5} \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{D}(E/K) - c_{6}. \end{split}$$

In the last line we have used the fact that $\mathfrak{D}(E/K)j(E)$ is integral, so

$$\sum_{v \in \mathcal{M}_K^{\infty}} \log \max \left\{ |j(E)|_v, 1 \right\} + \sum_{\mathfrak{p}_v \mid \mathfrak{D}_1 \mathfrak{D}_2} \log \left| \mathsf{N}_{K/\mathbb{Q}} \mathfrak{D}(E/K) \right|_v^{-1} \ge h(j(E)).$$

On the other hand,

$$\sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) \hat{h}(mkP) = \sum_{m=1}^{M} \left(1 - \frac{m}{M+1}\right) m^2 k^2 \hat{h}(P)$$
$$= \frac{k^2 M (M+1)(M+2)}{12} \hat{h}(P).$$

Adjusting the constants yet again yields

$$\hat{h}(P) \geq \frac{c_7 h\big(j(E)\big) + c_8 \log \mathsf{N}_{K/\mathbb{Q}} \mathfrak{D}(E/K) - c_9}{k^2 M^3} \geq \frac{c_{10} h(E/K) - c_9}{k^2 M^3}.$$

Since M depends only on $\sigma_J(\mathfrak{D}(E/K))$ and since $k \leq (6M)^{J+d}$, this gives the desired lower bound for $\hat{h}(P)$.

Remark 7. As in [15], a similar argument can be used to prove that $\#E(K)_{\text{tors}}$ is bounded by a constant that depends only on $[K : \mathbb{Q}], J$, and $\sigma_J(\mathfrak{D}(E/K))$.

2. Some elementary properties of the prime-depleted Szpiro ratio

We start with an elementary inequality.

Lemma 8. Let $n \ge 2$, and let $\alpha_1, \ldots, \alpha_n$ and x_1, \ldots, x_n be positive real numbers, labeled so that $\alpha_n = \max \alpha_i$. Then

$$\frac{\alpha_1 x_1 + \dots + \alpha_n x_n}{x_1 + \dots + x_n} \ge \frac{\alpha_1 x_1 + \dots + \alpha_{n-1} x_{n-1}}{x_1 + \dots + x_{n-1}},$$

0.

with strict inequality unless $\alpha_1 = \cdots = \alpha_n$.

Proof. Let
$$A = \sum_{i=1}^{n} \alpha_i x_i$$
 and $X = \sum_{i=1}^{n} x_i$. Then

(2)
$$A(X - x_n) - (A - \alpha_n x_n)X = (\alpha_n X - A)x_n$$
$$= \left(\sum_{i=1}^n (\alpha_n - \alpha_i)x_i\right)x_n \ge$$

Hence

(3)
$$\frac{A}{X} \ge \frac{A - \alpha_n x_n}{X - x_n},$$

and since the x_i are assumed to be positive, inequalities (2) and (3) are strict unless the α_i are all equal.

We apply the lemma to prove some basic properties of the J-depleted Szpiro ratio.

Proposition 9. Let $J \ge 1$.

(a) For all integral ideals \mathfrak{D} ,

$$\sigma_{J-1}(\mathfrak{D}) \geq \sigma_J(\mathfrak{D}).$$

Further, the inequality is strict unless \mathfrak{D} has the form $\mathfrak{D} = \mathfrak{I}^e$ for a squarefree ideal \mathfrak{I} .

(b) Assume that $\nu(\mathfrak{D}) \geq J$. Then there exists an ideal $\mathfrak{d} \mid \mathfrak{D}$ satisfying

$$u(\mathfrak{d}) = J \quad and \quad \sigma_J(\mathfrak{D}) = \sigma(\mathfrak{D}/\mathfrak{d})$$

(c) Let \mathfrak{p} be a prime ideal and \mathfrak{D} an ideal with $\mathfrak{p} \nmid \mathfrak{D}$. Then

$$\sigma_J(\mathfrak{D}) \geq \sigma_J(\mathfrak{p}^e\mathfrak{D}) \geq rac{\sigma_J(\mathfrak{D})}{\log N_{K/\mathbb{Q}}\mathfrak{p}}.$$

(d) Let p be a prime ideal and let D an arbitrary ideal (so p is allowed to divide D). Then

$$(\log \mathsf{N}_{K/\mathbb{Q}}\mathfrak{p})\sigma_J(\mathfrak{D}) \geq \sigma_J(\mathfrak{p}^e\mathfrak{D}) \geq \frac{\sigma_J(\mathfrak{D})}{\log \mathsf{N}_{K/\mathbb{Q}}\mathfrak{p}}.$$

8

Proof. (a) Write $\mathfrak{D} = \prod \mathfrak{p}_i^{e_i}$. To ease notation, we let

$$q_i = \log \mathsf{N}_{K/\mathbb{O}}\mathfrak{p}_i.$$

If $\nu(\mathfrak{D}) \leq J - 1$, then $\sigma_{J-1}(\mathfrak{D}) = \sigma_J(\mathfrak{D}) = 1$, so there is nothing to prove. Assume now that $\nu(\mathfrak{D}) \geq J$. Let $I \subset \{1, 2, \dots, \nu(\mathfrak{D})\}$ be a set of indices with $\#I \geq \nu(\mathfrak{D}) - (J-1)$ satisfying

$$\sigma_{J-1}(\mathfrak{D}) = \sum_{i \in I} e_i q_i / \sum_{i \in I} q_i.$$

Let $k \in I$ be an index satisfying $e_k = \max\{e_i : i \in I\}$. Then Lemma 8 with $\alpha_i = e_i$ and $x_i = q_i$ yields

$$\sigma_{J-1}(\mathfrak{D}) = \frac{\sum_{i \in I} e_i q_i}{\sum_{i \in I} q_i} \ge \frac{\sum_{i \in I, i \neq k} e_i q_i}{\sum_{i \in I, i \neq k} q_i} \ge \sigma_J(\mathfrak{D}).$$

Further, Lemma 8 says that the inequality is strict unless all of the e_i are equal, in which case \mathfrak{D} is a power of a squarefree ideal.

(b) If $\mathfrak{D} = \mathfrak{I}^e$ is a power of a squarefree ideal, then $\sigma_J(\mathfrak{D}) = \sigma(\mathfrak{D}/\mathfrak{c}^e)$ for every ideal $\mathfrak{c} \mid \mathfrak{I}$ satisfying $\nu(\mathfrak{c}) = J$, so the assertion to be proved is clear. We may thus assume that \mathfrak{D} is not a power of a squarefree ideal.

Suppose in this case that $\sigma_J(\mathfrak{D}) = \sigma(\mathfrak{D}/\mathfrak{d})$ for some $\mathfrak{d} \mid \mathfrak{D}$ with $\nu(\mathfrak{d}) \leq J-1$. Then

$$\sigma_{J-1}(\mathfrak{D}) \leq \sigma(\mathfrak{D}/\mathfrak{d}) = \sigma_J(\mathfrak{D}),$$

contradicting the strict inequality $\sigma_{J-1}(\mathfrak{D}) > \sigma_J(\mathfrak{D})$ proven in (a).

(c) We always have

$$\sigma_J(\mathfrak{p}^e\mathfrak{D}) \leq \sigma_{J-1}(\mathfrak{D}),$$

since in computing $\sigma_J(\mathfrak{p}^e\mathfrak{D})$, we can always remove \mathfrak{p} and J-1 other primes from \mathfrak{D} . If this inequality is an equality, we're done. Otherwise the value of $\sigma_J(\mathfrak{p}^e\mathfrak{D})$ is obtained by removing J primes from \mathfrak{D} . Continuing with the notation from (a) and letting $q = \log N_{K/\mathbb{Q}}\mathfrak{p}$, this means that there is an index set I with $\#I \ge \nu(\mathfrak{D}) - J$ such that

$$\sigma_J(\mathfrak{D}) = \frac{eq + \sum_{i \in I} e_i q_i}{q + \sum_{i \in I} q_i} \ge \frac{q + \sum_{i \in I} e_i q_i}{q + \sum_{i \in I} q_i} = \frac{q + X}{q + Y},$$

where to ease notation, we write X and Y for the indicated sums.

If Y = 0, then also X = 0 and $\nu(\mathfrak{D}) \leq J$, so $\sigma_J(\mathfrak{p}^e \mathfrak{D})$ equals either e or 1. In either case, it is greater than $\sigma_J(\mathfrak{D}) = 1$. So we may assume that Y > 0, which implies that $Y \geq \log 2$. We observe that

$$\frac{X}{Y} = \frac{\sum_{i \in I} e_i q_i}{\sum_{i \in I} q_i} \ge \sigma_J(\mathfrak{D}).$$

Hence

$$\sigma_J(\mathfrak{D}) = \frac{X}{Y} \cdot \frac{1 + q/X}{1 + q/Y} \ge \frac{\sigma_J(\mathfrak{D})}{1 + q/Y} \ge \frac{\sigma_J(\mathfrak{D})}{3q}.$$

(The final inequality is true since $q \ge \log 2$ and $Y \ge \log 2$.) This proves that $\sigma_J(\mathfrak{D})$ is greater than the smaller of $\sigma_{J-1}(\mathfrak{D})$ and $\sigma_J(\mathfrak{D})/3q$. But from (a) we have $\sigma_{J-1}(\mathfrak{D}) \ge \sigma_J(\mathfrak{D})$, so the latter is the minimum.

(d) Let $\mathfrak{D} = \mathfrak{p}^i \mathfrak{D}'$ with $\mathfrak{p} \nmid \mathfrak{D}'$. Then writing $q = \log \mathsf{N}_{K/\mathbb{Q}}\mathfrak{p}$ as usual and applying (c) several times, we have

$$\sigma_J(\mathfrak{p}^e\mathfrak{D}) = \sigma_J(\mathfrak{p}^{e+i}\mathfrak{D}') \le \sigma_J(\mathfrak{D}') \le q\sigma_J(\mathfrak{p}^i\mathfrak{D}') = q\sigma_J(\mathfrak{D}).$$

Similarly

$$\sigma_J(\mathfrak{p}^e\mathfrak{D}) = \sigma_J(\mathfrak{p}^{e+i}\mathfrak{D}') \geq \frac{\sigma_J(\mathfrak{D}')}{q} \geq \frac{\sigma_J(\mathfrak{p}^i\mathfrak{D}')}{q} = \frac{\sigma_J(\mathfrak{D})}{q}. \qquad \Box$$

3. The prime-depleted Szpiro and ABC conjectures

In this section we describe a prime-depleted variant of the ABC-conjecture and show that it is a consequence of the prime-depleted Szpiro conjecture. For ease of notation, we restrict attention to $K = \mathbb{Q}$ and leave the generalization to arbitrary fields to the reader. For other variants of the ABCconjecture, see for example [1, 2, 7, 11].

Conjecture 10 (Prime-Depleted ABC-conjecture). There exist an integer $J \ge 0$ and an absolute constant C_8 such that if $A, B, C \in \mathbb{Z}$ are integers satisfying

$$A + B + C = 0 \qquad and \qquad \gcd(A, B, C) = 1,$$

then

$$\sigma_J(ABC) \le C_8.$$

The classical ABC-conjecture (with non-optimal exponent) says that $\sigma(ABC)$ is bounded, which is stronger than the prime-depleted version, since $\sigma_J(ABC)$ is less than or equal to $\sigma(ABC)$.

Proposition 11. If the prime-depleted Szpiro conjecture is true, then the prime-depleted ABC-conjecture is true.

Proof. We suppose that the prime-depleted Szpiro conjecture is true, say with J primes deleted. Let $A, B, C \in \mathbb{Z}$ be as in the statement of the depleted ABC-conjecture. We consider the Frey curve

$$E: y^2 = x(x+A)(x-B).$$

10

An easy calculation [20, VIII.11.3] shows that the minimal discriminant of E is either $2^4(ABC)^2$ or $2^{-8}(ABC)^2$, so in any case we can write

$$\mathfrak{D}(E/\mathbb{Q}) = 2^e (ABC)^2$$

for some exponent $e \in \mathbb{Z}$. Then using Proposition 9 we find that

$$\sigma_J(\mathfrak{D}(E/\mathbb{Q})) = \sigma_J(2^e(ABC)^2) \ge \frac{\sigma_J((ABC)^2)}{\log 2} = \frac{2\sigma_J(ABC)}{\log 2}.$$

So the boundedness of $\sigma_J(\mathfrak{D}(E/\mathbb{Q}))$ implies the boundedness of $\sigma_J(ABC)$.

Remark 12. The Szpiro and ABC-conjectures have many important consequences, including asymptotic Fermat (trivial), a strengthened version of Roth's theorem [3, 6], the infinitude of non-Wieferich primes [17], non-existence of Siegel zeros [8], Faltings' theorem (Mordell conjecture) [5, 6],.... (For a longer list, see [13].) It is thus of interest to ask which, if any, of these results follows from the prime-depleted Szpiro conjecture. As far as the author has been able to determine, the answer is none of them, which would seem to indicate that the prime-depleted Szpiro conjecture is qualitatively weaker than the original Szpiro conjecture.

References

- BAKER, A. Logarithmic forms and the *abc*-conjecture. Number theory (Eger, 1996), 37–44. de Gruyter, Berlin, 1998. MR1628831 (99e:11101), Zbl 0973.11047.
- BAKER, ALAN. Experiments on the abc-conjecture. Publ. Math. Debrecen 65 (2004) 253-260. MR2107944 (2005g:11051), Zbl 1064.11050.
- [3] BOMBIERI, E. Roth's theorem and the *abc*-conjecture. Preprint, ETH, Zürich, 1994.
- [4] DAVID, SINNOU. Points de petite hauteur sur les courbes elliptiques. J. Number Theory 64 (1997) 104–129. MR1450488 (98k:11067), Zbl 0873.11035.
- [5] ELKIES, NOAM D. ABC implies Mordell. Internat. Math. Res. Notices 1991, no. 7, 99–109. MR1141316 (93d:11064), Zbl 0763.11016.
- [6] VAN FRANKENHUYSEN, MACHIEL. The ABC conjecture implies Vojta's height inequality for curves. J. Number Theory 95 (2002) 289–302. MR1924103 (2003g:11070), Zbl 1083.11042.
- [7] VAN FRANKENHUYSEN, MACHIEL. About the *ABC* conjecture and an alternative. Preprint, February 2010.
- [8] GRANVILLE, ANDREW; STARK, H. M. abc implies no "Siegel zeros" for L-functions of characters with negative discriminant. *Invent. Math.* 139 (2000) 509–523. MR1738058 (2002b:11114), Zbl 0967.11033.
- [9] HINDRY, MARC; SILVERMAN, JOSEPH H. The canonical height and integral points on elliptic curves. *Invent. Math.* 93 (1988) 419–450. MR0948108 (89k:11044), Zbl 0657.14018.
- [10] HINDRY, MARC; SILVERMAN, JOSEPH H. On Lehmer's conjecture for elliptic curves. Séminaire de Théorie des Nombres, Paris 1988–1989, 103–116. Progr. Math., 91. Birkhäuser Boston, Boston, MA, 1990. MR1104702 (92e:11062), Zbl 0741.14013.
- [11] LAGARIAS, JEFFREY C.; SOUNDARARAJAN, K. Smooth solutions to the equation A + B = C. November, 2009. arXiv:0911.4147.

JOSEPH H. SILVERMAN

- [12] LANG, SERGE. Elliptic curves: Diophantine analysis. Grundlehren der Mathematischen Wissenschaften, 231. Springer-Verlag, Berlin, 1978. xi+261 pp. ISBN: 3-540-08489-4. MR0518817 (81b:10009), Zbl 0388.10001.
- [13] NITAJ, ABDERRAHMANE. The *abc* conjecture home page. http://www.math.unicaen. fr/~nitaj/abc.html.
- [14] OESTERLÉ, JOSEPH. Nouvelles approches du "théorème" de Fermat. Astérisque, (161-162):Exp. No. 694, 4, 165–186 (1989), 1988. Séminaire Bourbaki, Vol. 1987/88.
 MR0992208 (90g:11038), Zbl 0668.10024.
- [15] PETSCHE, CLAYTON. Small rational points on elliptic curves over number fields. New York J. Math. 12 (2006) 257–268. MR2259240 (2007g:11061), Zbl 1163.11327.
- [16] SILVERMAN, JOSEPH H. Lower bound for the canonical height on elliptic curves. Duke Math. J. 48 (1981) 633–648. MR0630588 (82k:14043), Zbl 0475.14033.
- [17] SILVERMAN, JOSEPH H. Wieferich's criterion and the *abc*-conjecture. J. Number Theory **30** (1988) 226–237. MR0961918 (89m:11027), Zbl 0654.10019.
- [18] SILVERMAN, JOSEPH H. Elliptic curves of bounded degree and height. Proc. Amer. Math. Soc. 105 (1989) 540-545. MR0953747 (89i:11063), Zbl 0698.14027.
- [19] SILVERMAN, JOSEPH H. Advanced topics in the arithmetic of elliptic curves. Graduate Texts in Mathematics, 151. Springer-Verlag, New York, 1994. xiv+525 pp. ISBN: 0-387-94328-5. MR1312368 (96b:11074), Zbl 0911.14015.
- [20] SILVERMAN, JOSEPH H. The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106. Springer-Verlag, Dordrecht, 2009. xx+513 pp. ISBN: 978-0-387-09493-9. MR2514094.

MATHEMATICS DEPARTMENT, BOX 1917 BROWN UNIVERSITY, PROVIDENCE, RI 02912 USA

jhs@math.brown.edu

This paper is available via http://nyjm.albany.edu/j/2010/16-1.html.