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Lang’s height conjecture and Szpiro’s
conjecture

Joseph H. Silverman

Abstract. It is known that Szpiro’s conjecture, or equivalently the
ABC-conjecture, implies Lang’s conjecture giving a uniform lower bound
for the canonical height of nontorsion points on elliptic curves. In this
note we show that a significantly weaker version of Szpiro’s conjecture,
which we call “prime-depleted,” suffices to prove Lang’s conjecture.
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Introduction

Let E/K be an elliptic curve defined over a number field, let P ∈ E(K)
be a nontorsion point on E, and write D(E/K) and F(E/K) for the discrim-
inant and the conductor of E/K. In this paper we discuss the relationship
between the following conjectures of Serge Lang [12, page 92] and Lucien
Szpiro (1983).

Conjecture 1 (Lang Height Conjecture). There are constants C1 > 0 and
C2, depending only on K, such that the canonical height of P is bounded
below by

ĥ(P ) ≥ C1 log NK/QD(E/K)− C2.
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Conjecture 2 (Szpiro Conjecture). There are constants C3 and C4, de-
pending only on K, such that

log NK/QD(E/K) ≤ C3 log NK/QF(E/K) + C4.

(We remark that stronger versions of Conjectures 1 and 2 say, respectively,
that C1 may be chosen to depend only on [K : Q] and that C3 > 6 is
sufficient.)

In [9] Marc Hindry and the author proved that Szpiro’s conjecture implies
Lang’s height conjecture, and the dependence of C1 and C2 on K and on
the constants in Szpiro’s conjecture were subsequently improved by David [4]
and Petsche [15]. It is thus tempting to try to prove the opposite implication,
i.e., prove that Lang’s height conjecture implies Szpiro’s conjecture. Since
Szpiro’s conjecture is easily seen to imply the ABC-conjecture of Masser
and Oesterlé [14] (with some exponent), such a proof would be of interest.

It is the purpose of this note to explain how the pigeonhole argument
in [16] may be combined with the Fourier averaging methods in [9] to prove
Lang’s height conjecture using a weaker form of Szpiro’s conjecture. Roughly
speaking, the “prime-depleted” version of Szpiro’s conjecture that we use al-
lows us to discard a bounded number of primes from D(E/K) and F(E/K)
before comparing them. It thus seems unlikely that there is a direct proof
that Lang’s height conjecture implies the standard Szpiro’s conjecture. We
also note that the prime-depleted conjecture is insufficient for many Dio-
phantine applications; see Remark 12.

We briefly summarize the contents of this paper. In Section 1 we describe
the prime-depleted Szpiro conjecture and prove that it implies Lang’s height
conjecture. Section 2 contains various elementary properties of the prime-
depleted Szpiro ratio. Finally, in Section 3 we state a prime-depleted ABC-
conjecture and show that it is a consquence of the prime-depleted Szpiro
conjecture.

Acknowledgements. The author would like to thank the referee for sug-
gestions on improving the exposition.

1. The prime-depleted Szpiro conjecture

We begin with some definitions.

Definition. Let D be an integral ideal of K, let ν(D) denote the number
of distinct prime ideals dividing D, and factor

D =
ν(D)∏
i=1

pei
i
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as a product of prime powers. The Szpiro ratio of D is the quantity

σ(D) =
log NK/QD

log NK/Q

ν(D)∏
i=1

pi

=

ν(D)∑
i=1

ei log NK/Qpi

ν(D)∑
i=1

log NK/Qpi

.

(If D = (1), we set σ(D) = 1.) More generally, for any integer J ≥ 0, the
J-depleted Szpiro ratio of D is defined as follows:

σJ(D) = min
I⊂{1,2,...,ν(D)}

#I≥ν(D)−J

σ

(∏
i∈I

pei
i

)
.

Thus σJ(D) is the smallest value that can be obtained by removing from D
up to J of the prime powers dividing D before computing the Szpiro ratio.
We note that if ν(D) ≤ J , then σJ(D) = 1 by definition.

Example 3.

σ0(1728) =
log 1728

log 6
≈ 4.16, σ1(1728) =

log 27
log 3

= 3, σ2(1728) = 1.

Conjecture 4 (Prime-Depleted Szpiro Conjecture). Let K/Q be a number
field. There exist an integer J ≥ 0 and a constant C5, both depending only
on K, such that for all elliptic curves E/K,

σJ

(
D(E/K)

)
≤ C5.

It is clear from the definition that σ0(D) = σ(D). An elementary argu-
ment (Proposition 9) shows that the value of σJ decreases as J increases,

σ0(D) ≥ σ1(D) ≥ σ2(D) ≥ · · · .

Hence the prime-depleted Szpiro conjecture is weaker than the classical ver-
sion, which says that σ0

(
D(E/K)

)
is bounded independent of E. Before

stating our main result, we need one further definition.

Definition. Let E/K be an elliptic curve defined over a number field. The
height of E/K is the quantity

h(E/K) = max
{
h
(
j(E)

)
, log NK/QD(E/K)

}
.

For a given field K, there are only finitely many elliptic curves E/K of
bounded height, although there may be infinitely many elliptic curves of
bounded height defined over fields of bounded degree [18].

We now state our main result.

Theorem 5. Let K/Q be a number field, let J ≥ 1 be an integer, let E/K
be an elliptic curve, and let P ∈ E(K) be a nontorsion point. There are
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constants C6 > 0 and C7, depending only on [K : Q], J , and the J-depleted
Szpiro ratio σJ

(
D(E/K)

)
, such that

ĥ(P ) ≥ C6h(E/K)− C7.

In particular, the prime-depleted Szpiro conjecture implies Lang’s height con-
jecture.

Remark 6. As in [15], it is not hard to give explicit expressions for C6

and C7 in terms of [K : Q], J , and σJ

(
D(E/K)

)
. In terms of the dependence

on the Szpiro ratio, probably the best that comes out of a careful working
of the proof is something like

C6 = C ′
6σJ

(
D(E/K)

)cJ
for an absolute constant c and a constant C ′

6 depending on [K : Q] and J .
But until the (prime-depleted) Szpiro conjecture is proven or a specific ap-
plication arises, such explict expressions seem of limited utility.

Proof. We refer the reader to [19, Chapter 6] for basic material on canonical
local heights on elliptic curves. Replacing P with 12P , we may assume
without loss of generality that the local height satisfies

λ̂(P ; v) ≥ 1
12

log NK/QD(E/K)

for all nonarchimedean places v at which E does not have split multiplicative
reduction. We factor the discriminant D(E/K) into a product

D(E/K) = D1D2 with ν(D2) ≤ J and σJ

(
D(E/K)

)
= σ(D1).

We also choose an integer M ≥ 1 whose value will be specified later, and for
convenience we let d = [K : Q].

Using a pigeon-hole principle argument as described in [16], we can find
an integer k with

1 ≤ k ≤ (6M)J+d

such that for all 1 ≤ m ≤ M we have

λ̂(mkP ; v) ≥ c1 log max
{
|j(E)|v, 1

}
− c2 for all v ∈M∞

K ,

λ̂(mkP ; v) ≥ c3 log
∣∣NK/QD(E/K)

∣∣−1

v
for all v ∈M0

K with pv | D2.

(Here and in what follows, c1, c2, . . . are absolute positive constants. We
also use the standard notationM∞

K andM0
K for complete normalized sets of

archimedean, respectively non-archimedean, absolute values on K.) Roughly
speaking, we need to force J +d local heights to be positive for all mP with
1 ≤ m ≤ M , which is why we may need to take k as large as O(M)J+d.

We next use the Fourier averaging technique described in [9]; see also [10,
15]. Let pv | D1 be a prime at which E has split multiplicative reduction.
The group of components of the special fiber of the Néron model of E at v
is a cyclic group of order

nv = ordv

(
D(E/K)

)
,
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and we let 0 ≤ av(P ) < nv be the component that is hit by P . (In practice,
there is no prefered orientation to the cyclic group of components, so av(P ) is
only defined up to ±1. This will not affect our computations.) The formula
for the local height at a split multiplicative place (due to Tate, see [19,
VI.4.2]) says that

λ̂(P ; v) ≥ 1
2

B
(

av(P )
nv

)
log NK/Qpnv

v .

In this formula, B(t) is the periodic second Bernoulli polynomial, equal
to t2− t+ 1

6 for 0 ≤ t ≤ 1 and extended periodically modulo 1. As in [9], we
are going to take a weighted sum of this formula over mP for 1 ≤ m ≤ M .

The periodic Bernoulli polynomial has a Fourier expansion

B(t) =
1

2π2

∑
n∈Z
n6=0

e2πint

n2
=

1
π2

∞∑
n=1

cos(2πnt)
n2

.

We also use the formula (Fejér kernel)

M∑
m=1

(
1− m

M + 1

)
cos(mt) =

1
2(M + 1)

∣∣∣∣ M∑
m=0

eimt

∣∣∣∣2 − 1
2
.

Hence
M∑

m=1

(
1− m

M + 1

)
λ̂(mP ; v)

≥
M∑

m=1

(
1− m

M + 1

)
1
2

B
(

mav(P )
nv

)
log NK/Qpnv

v

=
M∑

m=1

(
1− m

M + 1

)
1

2π2

∞∑
n=1

cos(2πnmav(P )/nv)
n2

=
1

2π2

∞∑
n=1

1
n2

M∑
m=1

(
1− m

M + 1

)
cos
(

2πnmav(P )
nv

)

=
1

2π2

∞∑
n=1

1
n2

(
1

2(M + 1)

∣∣∣∣ M∑
m=0

e2πinmav(P )/nv

∣∣∣∣2 − 1
2

)
.

We split the sum over n into two pieces. If n is a multiple of nv, then
the quantity between the absolute value signs is equal to M + 1, and if n
is not a multiple of nv, we simply use the fact that the absolute value is
non-negative. This yields the local estimate

M∑
m=1

(
1− m

M + 1

)
λ̂(mP ; v)
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≥

(
1

4π2(M + 1)

∞∑
n=1

(M + 1)2

(nnv)2
− 1

4π2

∞∑
n=1

1
n2

)
log NK/Qpnv

v

=
(

M + 1
24n2

v

− 1
24

)
log NK/Qpnv

v .

We next sum the local heights over all primes dividing D1,∑
pv |D1

M∑
m=1

(
1− m

M + 1

)
λ̂(mP ; v)

≥ 1
24

∑
pv |D1

(
M + 1

nv
− nv

)
log NK/Qpv.

We set

M + 1 =

2
∑

pv |D1

nv log NK/Qpv

/∑
pv |D1

n−1
v log NK/Qpv

+ 1,

which gives the height estimate∑
pv |D1

M∑
m=1

(
1− m

M + 1

)
λ̂(mP ; v) ≥ 1

24

∑
pv |D1

nv log NK/Qpv

=
1
24

∑
pv |D1

log
∣∣NK/QD(E/K)

∣∣−1

v
.

We also need to estimate the size of M . This is done using the elementary
inequality

(1)
( n∑

i=1

aixi

)( n∑
i=1

aix
−1
i

)
≥
( n∑

i=1

ai

)2

,

valid for all ai, xi > 0. (This is a special case of Jensen’s inequality, applied
to the function 1/x.) Applying (1) with xi = nv and ai = log NK/Qpv allows
us to estimate

M + 1 ≤ 2


∑

pv |D1

nv log NK/Qpv∑
pv |D1

n−1
v log NK/Qpv

+ 1

≤ 2


∑

pv |D1

nv log NK/Qpv∑
pv |D1

log NK/Qpv


2

+ 1 using (1),

= σ(D1)2 + 1 = σJ

(
D(E/K)

)2 + 1.
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In particular, the value of M is bounded solely in terms of σJ

(
D(E/K)

)
.

We now combine the estimates for the local heights to obtain

M∑
m=1

(
1− m

M + 1

)
ĥ(mkP )

≥
M∑

m=1

(
1− m

M + 1

)( ∑
v∈M∞

K

+
∑

pv |D(E/K)

)
λ̂(mkP ; v)

=
( ∑

v∈M∞
K

+
∑

pv |D1

+
∑

pv |D2

) M∑
m=1

(
1− m

M + 1

)
λ̂(mkP ; v)

≥
∑

v∈M∞
K

M∑
m=1

(
1− m

M + 1

)(
c1 log max

{
|j(E)|v, 1

}
− c2

)
+

1
24

∑
pv |D1

log
∣∣NK/QD(E/K)

∣∣−1

v

+
∑

pv |D2

M∑
m=1

(
1− m

M + 1

)
c3 log

∣∣NK/QD(E/K)
∣∣−1

v

≥ c4h
(
j(E)

)
+ c5 log NK/QD(E/K)− c6.

In the last line we have used the fact that D(E/K)j(E) is integral, so∑
v∈M∞

K

log max
{
|j(E)|v, 1

}
+

∑
pv |D1D2

log
∣∣NK/QD(E/K)

∣∣−1

v
≥ h

(
j(E)

)
.

On the other hand,

M∑
m=1

(
1− m

M + 1

)
ĥ(mkP ) =

M∑
m=1

(
1− m

M + 1

)
m2k2ĥ(P )

=
k2M(M + 1)(M + 2)

12
ĥ(P ).

Adjusting the constants yet again yields

ĥ(P ) ≥
c7h
(
j(E)

)
+ c8 log NK/QD(E/K)− c9

k2M3
≥ c10h(E/K)− c9

k2M3
.

Since M depends only on σJ

(
D(E/K)

)
and since k ≤ (6M)J+d, this gives

the desired lower bound for ĥ(P ). �

Remark 7. As in [15], a similar argument can be used to prove that
#E(K)tors is bounded by a constant that depends only on [K : Q], J ,
and σJ

(
D(E/K)

)
.
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2. Some elementary properties of the prime-depleted Szpiro
ratio

We start with an elementary inequality.

Lemma 8. Let n ≥ 2, and let α1, . . . , αn and x1, . . . , xn be positive real
numbers, labeled so that αn = maxαi. Then

α1x1 + · · ·+ αnxn

x1 + · · ·+ xn
≥ α1x1 + · · ·+ αn−1xn−1

x1 + · · ·+ xn−1
,

with strict inequality unless α1 = · · · = αn.

Proof. Let A =
∑n

i=1 αixi and X =
∑n

i=1 xi. Then

A(X − xn)− (A− αnxn)X = (αnX −A)xn(2)

=
( n∑

i=1

(αn − αi)xi

)
xn ≥ 0.

Hence

(3)
A

X
≥ A− αnxn

X − xn
,

and since the xi are assumed to be positive, inequalities (2) and (3) are strict
unless the αi are all equal. �

We apply the lemma to prove some basic properties of the J-depleted
Szpiro ratio.

Proposition 9. Let J ≥ 1.

(a) For all integral ideals D,

σJ−1(D) ≥ σJ(D).

Further, the inequality is strict unless D has the form D = Ie for a
squarefree ideal I.

(b) Assume that ν(D) ≥ J . Then there exists an ideal d | D satisfying

ν(d) = J and σJ(D) = σ(D/d).

(c) Let p be a prime ideal and D an ideal with p - D. Then

σJ(D) ≥ σJ(peD) ≥ σJ(D)
log NK/Qp

.

(d) Let p be a prime ideal and let D an arbitrary ideal (so p is allowed
to divide D). Then

(log NK/Qp)σJ(D) ≥ σJ(peD) ≥ σJ(D)
log NK/Qp

.
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Proof. (a) Write D =
∏

pei
i . To ease notation, we let

qi = log NK/Qpi.

If ν(D) ≤ J − 1, then σJ−1(D) = σJ(D) = 1, so there is nothing to prove.
Assume now that ν(D) ≥ J . Let I ⊂

{
1, 2, . . . , ν(D)

}
be a set of indices

with #I ≥ ν(D)− (J − 1) satisfying

σJ−1(D) =
∑
i∈I

eiqi

/∑
i∈I

qi.

Let k ∈ I be an index satisfying ek = max{ei : i ∈ I}. Then Lemma 8 with
αi = ei and xi = qi yields

σJ−1(D) =

∑
i∈I

eiqi∑
i∈I

qi

≥

∑
i∈I, i6=k

eiqi∑
i∈I, i6=k

qi

≥ σJ(D).

Further, Lemma 8 says that the inequality is strict unless all of the ei are
equal, in which case D is a power of a squarefree ideal.

(b) If D = Ie is a power of a squarefree ideal, then σJ(D) = σ(D/ce) for
every ideal c | I satisfying ν(c) = J , so the assertion to be proved is clear.
We may thus assume that D is not a power of a squarefree ideal.

Suppose in this case that σJ(D) = σ(D/d) for some d | D with ν(d) ≤
J − 1. Then

σJ−1(D) ≤ σ(D/d) = σJ(D),

contradicting the strict inequality σJ−1(D) > σJ(D) proven in (a).
(c) We always have

σJ(peD) ≤ σJ−1(D),

since in computing σJ(peD), we can always remove p and J−1 other primes
from D. If this inequality is an equality, we’re done. Otherwise the value
of σJ(peD) is obtained by removing J primes from D. Continuing with the
notation from (a) and letting q = log NK/Qp, this means that there is an
index set I with #I ≥ ν(D)− J such that

σJ(D) =

eq +
∑
i∈I

eiqi

q +
∑
i∈I

qi

≥

q +
∑
i∈I

eiqi

q +
∑
i∈I

qi

=
q + X

q + Y
,

where to ease notation, we write X and Y for the indicated sums.
If Y = 0, then also X = 0 and ν(D) ≤ J , so σJ(peD) equals either e or 1.

In either case, it is greater than σJ(D) = 1. So we may assume that Y > 0,
which implies that Y ≥ log 2.
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We observe that

X

Y
=

∑
i∈I

eiqi∑
i∈I

qi

≥ σJ(D).

Hence

σJ(D) =
X

Y
· 1 + q/X

1 + q/Y
≥ σJ(D)

1 + q/Y
≥ σJ(D)

3q
.

(The final inequality is true since q ≥ log 2 and Y ≥ log 2.) This proves
that σJ(D) is greater than the smaller of σJ−1(D) and σJ(D)/3q. But
from (a) we have σJ−1(D) ≥ σJ(D), so the latter is the minimum.

(d) Let D = piD′ with p - D′. Then writing q = log NK/Qp as usual and
applying (c) several times, we have

σJ(peD) = σJ(pe+iD′) ≤ σJ(D′) ≤ qσJ(piD′) = qσJ(D).

Similarly

σJ(peD) = σJ(pe+iD′) ≥ σJ(D′)
q

≥ σJ(piD′)
q

=
σJ(D)

q
. �

3. The prime-depleted Szpiro and ABC conjectures

In this section we describe a prime-depleted variant of the ABC-conjecture
and show that it is a consequence of the prime-depleted Szpiro conjecture.
For ease of notation, we restrict attention to K = Q and leave the gener-
alization to arbitrary fields to the reader. For other variants of the ABC-
conjecture, see for example [1, 2, 7, 11].

Conjecture 10 (Prime-Depleted ABC-conjecture). There exist an inte-
ger J ≥ 0 and an absolute constant C8 such that if A,B, C ∈ Z are integers
satisfying

A + B + C = 0 and gcd(A,B, C) = 1,

then
σJ(ABC) ≤ C8.

The classical ABC-conjecture (with non-optimal exponent) says that
σ(ABC) is bounded, which is stronger than the prime-depleted version,
since σJ(ABC) is less than or equal to σ(ABC).

Proposition 11. If the prime-depleted Szpiro conjecture is true, then the
prime-depleted ABC-conjecture is true.

Proof. We suppose that the prime-depleted Szpiro conjecture is true, say
with J primes deleted. Let A,B, C ∈ Z be as in the statement of the
depleted ABC-conjecture. We consider the Frey curve

E : y2 = x(x + A)(x−B).
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An easy calculation [20, VIII.11.3] shows that the minimal discriminant of E
is either 24(ABC)2 or 2−8(ABC)2, so in any case we can write

D(E/Q) = 2e(ABC)2

for some exponent e ∈ Z. Then using Proposition 9 we find that

σJ

(
D(E/Q)

)
= σJ

(
2e(ABC)2

)
≥

σJ

(
(ABC)2

)
log 2

=
2σJ(ABC)

log 2
.

So the boundedness of σJ

(
D(E/Q)

)
implies the boundedness of σJ(ABC).

�

Remark 12. The Szpiro and ABC-conjectures have many important con-
sequences, including asymptotic Fermat (trivial), a strengthened version
of Roth’s theorem [3, 6], the infinitude of non-Wieferich primes [17], non-
existence of Siegel zeros [8], Faltings’ theorem (Mordell conjecture) [5, 6],. . . .
(For a longer list, see [13].) It is thus of interest to ask which, if any, of these
results follows from the prime-depleted Szpiro conjecture. As far as the au-
thor has been able to determine, the answer is none of them, which would
seem to indicate that the prime-depleted Szpiro conjecture is qualitatively
weaker than the original Szpiro conjecture.
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