New York Journal of Mathematics

Lang's height conjecture and Szpiro's conjecture

Joseph H. Silverman

Abstract

It is known that Szpiro's conjecture, or equivalently the $A B C$-conjecture, implies Lang's conjecture giving a uniform lower bound for the canonical height of nontorsion points on elliptic curves. In this note we show that a significantly weaker version of Szpiro's conjecture, which we call "prime-depleted," suffices to prove Lang's conjecture.

Contents

Introduction 1

1. The prime-depleted Szpiro conjecture 2
2. Some elementary properties of the prime-depleted Szpiro ratio 7
3. The prime-depleted Szpiro and $A B C$ conjectures 10
References 11

Introduction

Let E / K be an elliptic curve defined over a number field, let $P \in E(K)$ be a nontorsion point on E, and write $\mathfrak{D}(E / K)$ and $\mathfrak{F}(E / K)$ for the discriminant and the conductor of E / K. In this paper we discuss the relationship between the following conjectures of Serge Lang [12, page 92] and Lucien Szpiro (1983).
Conjecture 1 (Lang Height Conjecture). There are constants $C_{1}>0$ and C_{2}, depending only on K, such that the canonical height of P is bounded below by

$$
\hat{h}(P) \geq C_{1} \log \mathrm{~N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)-C_{2} .
$$

[^0]Conjecture 2 (Szpiro Conjecture). There are constants C_{3} and C_{4}, depending only on K, such that

$$
\log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{D}(E / K) \leq C_{3} \log \mathrm{~N}_{K / \mathbb{Q}} \mathfrak{F}(E / K)+C_{4} .
$$

(We remark that stronger versions of Conjectures 1 and 2 say, respectively, that C_{1} may be chosen to depend only on $[K: \mathbb{Q}]$ and that $C_{3}>6$ is sufficient.)

In [9] Marc Hindry and the author proved that Szpiro's conjecture implies Lang's height conjecture, and the dependence of C_{1} and C_{2} on K and on the constants in Szpiro's conjecture were subsequently improved by David [4] and Petsche [15]. It is thus tempting to try to prove the opposite implication, i.e., prove that Lang's height conjecture implies Szpiro's conjecture. Since Szpiro's conjecture is easily seen to imply the $A B C$-conjecture of Masser and Oesterlé [14] (with some exponent), such a proof would be of interest.

It is the purpose of this note to explain how the pigeonhole argument in [16] may be combined with the Fourier averaging methods in [9] to prove Lang's height conjecture using a weaker form of Szpiro's conjecture. Roughly speaking, the "prime-depleted" version of Szpiro's conjecture that we use allows us to discard a bounded number of primes from $\mathfrak{D}(E / K)$ and $\mathfrak{F}(E / K)$ before comparing them. It thus seems unlikely that there is a direct proof that Lang's height conjecture implies the standard Szpiro's conjecture. We also note that the prime-depleted conjecture is insufficient for many Diophantine applications; see Remark 12.

We briefly summarize the contents of this paper. In Section 1 we describe the prime-depleted Szpiro conjecture and prove that it implies Lang's height conjecture. Section 2 contains various elementary properties of the primedepleted Szpiro ratio. Finally, in Section 3 we state a prime-depleted $A B C$ conjecture and show that it is a consquence of the prime-depleted Szpiro conjecture.

Acknowledgements. The author would like to thank the referee for suggestions on improving the exposition.

1. The prime-depleted Szpiro conjecture

We begin with some definitions.
Definition. Let \mathfrak{D} be an integral ideal of K, let $\nu(\mathfrak{D})$ denote the number of distinct prime ideals dividing \mathfrak{D}, and factor

$$
\mathfrak{D}=\prod_{i=1}^{\nu(\mathfrak{D})} \mathfrak{p}_{i}^{e_{i}}
$$

as a product of prime powers. The Szpiro ratio of \mathfrak{D} is the quantity

$$
\sigma(\mathfrak{D})=\frac{\log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{D}}{\log \mathrm{N}_{K / \mathbb{Q}} \prod_{i=1}^{\nu(\mathfrak{D})} \mathfrak{p}_{i}}=\frac{\sum_{i=1}^{\nu(\mathfrak{D})} e_{i} \log \mathrm{~N}_{K / \mathbb{Q}} \mathfrak{p}_{i}}{\sum_{i=1}^{\nu(\mathfrak{D})} \log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{p}_{i}}
$$

(If $\mathfrak{D}=(1)$, we set $\sigma(\mathfrak{D})=1$.) More generally, for any integer $J \geq 0$, the J-depleted Szpiro ratio of \mathfrak{D} is defined as follows:

$$
\sigma_{J}(\mathfrak{D})=\min _{\substack{I \subset\{, 2, \ldots, \nu(\mathfrak{D})\} \\ \# I \geq \nu(\mathfrak{D})-J}} \sigma\left(\prod_{i \in I} \mathfrak{p}_{i}^{e_{i}}\right) .
$$

Thus $\sigma_{J}(\mathfrak{D})$ is the smallest value that can be obtained by removing from \mathfrak{D} up to J of the prime powers dividing \mathfrak{D} before computing the Szpiro ratio. We note that if $\nu(\mathfrak{D}) \leq J$, then $\sigma_{J}(\mathfrak{D})=1$ by definition.

Example 3.

$$
\sigma_{0}(1728)=\frac{\log 1728}{\log 6} \approx 4.16, \quad \sigma_{1}(1728)=\frac{\log 27}{\log 3}=3, \quad \sigma_{2}(1728)=1
$$

Conjecture 4 (Prime-Depleted Szpiro Conjecture). Let K / \mathbb{Q} be a number field. There exist an integer $J \geq 0$ and a constant C_{5}, both depending only on K, such that for all elliptic curves E / K,

$$
\sigma_{J}(\mathfrak{D}(E / K)) \leq C_{5} .
$$

It is clear from the definition that $\sigma_{0}(\mathfrak{D})=\sigma(\mathfrak{D})$. An elementary argument (Proposition 9) shows that the value of σ_{J} decreases as J increases,

$$
\sigma_{0}(\mathfrak{D}) \geq \sigma_{1}(\mathfrak{D}) \geq \sigma_{2}(\mathfrak{D}) \geq \cdots .
$$

Hence the prime-depleted Szpiro conjecture is weaker than the classical version, which says that $\sigma_{0}(\mathfrak{D}(E / K))$ is bounded independent of E. Before stating our main result, we need one further definition.

Definition. Let E / K be an elliptic curve defined over a number field. The height of E / K is the quantity

$$
h(E / K)=\max \left\{h(j(E)), \log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)\right\} .
$$

For a given field K, there are only finitely many elliptic curves E / K of bounded height, although there may be infinitely many elliptic curves of bounded height defined over fields of bounded degree [18].

We now state our main result.
Theorem 5. Let K / \mathbb{Q} be a number field, let $J \geq 1$ be an integer, let E / K be an elliptic curve, and let $P \in E(K)$ be a nontorsion point. There are
constants $C_{6}>0$ and C_{7}, depending only on $[K: \mathbb{Q}], J$, and the J-depleted Szpiro ratio $\sigma_{J}(\mathfrak{D}(E / K))$, such that

$$
\hat{h}(P) \geq C_{6} h(E / K)-C_{7} .
$$

In particular, the prime-depleted Szpiro conjecture implies Lang's height conjecture.
Remark 6. As in [15], it is not hard to give explicit expressions for C_{6} and C_{7} in terms of $[K: \mathbb{Q}], J$, and $\sigma_{J}(\mathfrak{D}(E / K))$. In terms of the dependence on the Szpiro ratio, probably the best that comes out of a careful working of the proof is something like

$$
C_{6}=C_{6}^{\prime} \sigma_{J}(\mathfrak{D}(E / K))^{c J}
$$

for an absolute constant c and a constant C_{6}^{\prime} depending on $[K: \mathbb{Q}]$ and J. But until the (prime-depleted) Szpiro conjecture is proven or a specific application arises, such explict expressions seem of limited utility.

Proof. We refer the reader to [19, Chapter 6] for basic material on canonical local heights on elliptic curves. Replacing P with $12 P$, we may assume without loss of generality that the local height satisfies

$$
\hat{\lambda}(P ; v) \geq \frac{1}{12} \log \mathrm{~N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)
$$

for all nonarchimedean places v at which E does not have split multiplicative reduction. We factor the discriminant $\mathcal{D}(E / K)$ into a product

$$
\mathfrak{D}(E / K)=\mathfrak{D}_{1} \mathfrak{D}_{2} \quad \text { with } \quad \nu\left(\mathfrak{D}_{2}\right) \leq J \quad \text { and } \quad \sigma_{J}(\mathfrak{D}(E / K))=\sigma\left(\mathfrak{D}_{1}\right) .
$$

We also choose an integer $M \geq 1$ whose value will be specified later, and for convenience we let $d=[K: \mathbb{Q}]$.

Using a pigeon-hole principle argument as described in [16], we can find an integer k with

$$
1 \leq k \leq(6 M)^{J+d}
$$

such that for all $1 \leq m \leq M$ we have

$$
\begin{aligned}
& \hat{\lambda}(m k P ; v) \geq c_{1} \log \max \left\{|j(E)|_{v}, 1\right\}-c_{2} \quad \text { for all } v \in \mathcal{M}_{K}^{\infty} \\
& \hat{\lambda}(m k P ; v) \geq c_{3} \log \left|\mathbf{N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)\right|_{v}^{-1} \quad \text { for all } v \in \mathcal{M}_{K}^{0} \text { with } \mathfrak{p}_{v} \mid \mathfrak{D}_{2}
\end{aligned}
$$

(Here and in what follows, c_{1}, c_{2}, \ldots are absolute positive constants. We also use the standard notation \mathcal{M}_{K}^{∞} and \mathcal{M}_{K}^{0} for complete normalized sets of archimedean, respectively non-archimedean, absolute values on K.) Roughly speaking, we need to force $J+d$ local heights to be positive for all $m P$ with $1 \leq m \leq M$, which is why we may need to take k as large as $O(M)^{J+d}$.

We next use the Fourier averaging technique described in [9]; see also [10, 15]. Let $\mathfrak{p}_{v} \mid \mathfrak{D}_{1}$ be a prime at which E has split multiplicative reduction. The group of components of the special fiber of the Néron model of E at v is a cyclic group of order

$$
n_{v}=\operatorname{ord}_{v}(\mathfrak{D}(E / K)),
$$

and we let $0 \leq a_{v}(P)<n_{v}$ be the component that is hit by P. (In practice, there is no prefered orientation to the cyclic group of components, so $a_{v}(P)$ is only defined up to ± 1. This will not affect our computations.) The formula for the local height at a split multiplicative place (due to Tate, see [19, VI.4.2]) says that

$$
\hat{\lambda}(P ; v) \geq \frac{1}{2} \mathbb{B}\left(\frac{a_{v}(P)}{n_{v}}\right) \log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{p}_{v}^{n_{v}} .
$$

In this formula, $\mathbb{B}(t)$ is the periodic second Bernoulli polynomial, equal to $t^{2}-t+\frac{1}{6}$ for $0 \leq t \leq 1$ and extended periodically modulo 1 . As in [9], we are going to take a weighted sum of this formula over $m P$ for $1 \leq m \leq M$.

The periodic Bernoulli polynomial has a Fourier expansion

$$
\mathbb{B}(t)=\frac{1}{2 \pi^{2}} \sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} \frac{e^{2 \pi i n t}}{n^{2}}=\frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos (2 \pi n t)}{n^{2}} .
$$

We also use the formula (Fejér kernel)

$$
\sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) \cos (m t)=\frac{1}{2(M+1)}\left|\sum_{m=0}^{M} e^{i m t}\right|^{2}-\frac{1}{2}
$$

Hence

$$
\begin{aligned}
\sum_{m=1}^{M} & \left(1-\frac{m}{M+1}\right) \hat{\lambda}(m P ; v) \\
& \geq \sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) \frac{1}{2} \mathbb{B}\left(\frac{m a_{v}(P)}{n_{v}}\right) \log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{p}_{v}^{n_{v}} \\
& =\sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) \frac{1}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{\cos \left(2 \pi n m a_{v}(P) / n_{v}\right)}{n^{2}} \\
& =\frac{1}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) \cos \left(\frac{2 \pi n m a_{v}(P)}{n_{v}}\right) \\
& =\frac{1}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\frac{1}{2(M+1)}\left|\sum_{m=0}^{M} e^{2 \pi i n m a_{v}(P) / n_{v}}\right|^{2}-\frac{1}{2}\right) .
\end{aligned}
$$

We split the sum over n into two pieces. If n is a multiple of n_{v}, then the quantity between the absolute value signs is equal to $M+1$, and if n is not a multiple of n_{v}, we simply use the fact that the absolute value is non-negative. This yields the local estimate

$$
\sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) \hat{\lambda}(m P ; v)
$$

$$
\begin{aligned}
& \geq\left(\frac{1}{4 \pi^{2}(M+1)} \sum_{n=1}^{\infty} \frac{(M+1)^{2}}{\left(n n_{v}\right)^{2}}-\frac{1}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\right) \log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{p}_{v}^{n_{v}} \\
& =\left(\frac{M+1}{24 n_{v}^{2}}-\frac{1}{24}\right) \log \mathrm{N}_{K / \mathscr{Q}} \mathfrak{p}_{v}^{n_{v}} .
\end{aligned}
$$

We next sum the local heights over all primes dividing \mathfrak{D}_{1},

$$
\begin{aligned}
\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} \sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) & \hat{\lambda}(m P ; v) \\
& \geq \frac{1}{24} \sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}}\left(\frac{M+1}{n_{v}}-n_{v}\right) \log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{p}_{v} .
\end{aligned}
$$

We set

$$
M+1=\left\lfloor 2 \sum_{\mathfrak{p}_{v} \mid \mathscr{D}_{1}} n_{v} \log \mathrm{~N}_{K / \mathbb{Q}} \mathfrak{p}_{v} / \sum_{\mathfrak{p}_{v} \mid \mathscr{D}_{1}} n_{v}^{-1} \log \mathrm{~N}_{K / \mathbb{Q}} \mathfrak{p}_{v}\right\rfloor+1,
$$

which gives the height estimate

$$
\begin{aligned}
\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} \sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) \hat{\lambda}(m P ; v) & \geq \frac{1}{24} \sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} n_{v} \log \mathrm{~N}_{K / \mathbb{Q}^{\prime} \mathfrak{p}_{v}} \\
& =\frac{1}{24} \sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} \log \left|\mathrm{~N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)\right|_{v}^{-1} .
\end{aligned}
$$

We also need to estimate the size of M. This is done using the elementary inequality

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i} x_{i}\right)\left(\sum_{i=1}^{n} a_{i} x_{i}^{-1}\right) \geq\left(\sum_{i=1}^{n} a_{i}\right)^{2}, \tag{1}
\end{equation*}
$$

valid for all $a_{i}, x_{i}>0$. (This is a special case of Jensen's inequality, applied to the function $1 / x$.) Applying (1) with $x_{i}=n_{v}$ and $a_{i}=\log \mathrm{N}_{K / \mathbb{Q} \mathfrak{p}_{v}}$ allows us to estimate

$$
\begin{aligned}
M+1 & \leq 2\left(\frac{\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} n_{v} \log \mathbf{N}_{K / \mathbb{Q}} \mathfrak{p}_{v}}{\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} n_{v}^{-1} \log \mathbf{N}_{K / \mathbb{Q}} \mathfrak{p}_{v}}\right)+1 \\
& \leq 2\left(\frac{\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} n_{v} \log \mathbf{N}_{K / \mathbb{Q} \mathfrak{p}_{v}}}{\sum_{\mathfrak{p}_{v} \backslash \mathfrak{D}_{1}} \log \mathbf{N}_{K / \mathbb{Q}} \mathfrak{p}_{v}}\right)^{2}+1 \quad \text { using (1), } \\
& =\sigma\left(\mathfrak{D}_{1}\right)^{2}+1=\sigma_{J}(\mathfrak{D}(E / K))^{2}+1 .
\end{aligned}
$$

In particular, the value of M is bounded solely in terms of $\sigma_{J}(\mathfrak{D}(E / K))$.
We now combine the estimates for the local heights to obtain

$$
\begin{aligned}
& \sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) \hat{h}(m k P) \\
& \geq \sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right)\left(\sum_{v \in \mathcal{M}_{K}^{\infty}}+\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}(E / K)}\right) \hat{\lambda}(m k P ; v) \\
&=\left(\sum_{v \in \mathcal{M}_{K}^{\infty}}+\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}}+\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{2}}\right) \sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) \hat{\lambda}(m k P ; v) \\
& \geq \sum_{v \in \mathcal{M}_{K}^{\infty}} \sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right)\left(c_{1} \log \max \left\{|j(E)|_{v}, 1\right\}-c_{2}\right) \\
& \quad+\frac{1}{24} \sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1}} \log \left|\mathbf{N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)\right|_{v}^{-1} \\
& \quad+\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{2}} \sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) c_{3} \log \left|\mathbb{N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)\right|_{v}^{-1} \\
& \geq c_{4} h(j(E))+c_{5} \log \mathbb{N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)-c_{6} .
\end{aligned}
$$

In the last line we have used the fact that $\mathfrak{D}(E / K) j(E)$ is integral, so

$$
\sum_{v \in \mathcal{M}_{K}^{\infty}} \log \max \left\{|j(E)|_{v}, 1\right\}+\sum_{\mathfrak{p}_{v} \mid \mathfrak{D}_{1} \mathfrak{D}_{2}} \log \left|\mathbf{N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)\right|_{v}^{-1} \geq h(j(E)) .
$$

On the other hand,

$$
\begin{aligned}
\sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) \hat{h}(m k P) & =\sum_{m=1}^{M}\left(1-\frac{m}{M+1}\right) m^{2} k^{2} \hat{h}(P) \\
& =\frac{k^{2} M(M+1)(M+2)}{12} \hat{h}(P) .
\end{aligned}
$$

Adjusting the constants yet again yields

$$
\hat{h}(P) \geq \frac{c_{7} h(j(E))+c_{8} \log \mathrm{~N}_{K / \mathbb{Q}} \mathfrak{D}(E / K)-c_{9}}{k^{2} M^{3}} \geq \frac{c_{10} h(E / K)-c_{9}}{k^{2} M^{3}} .
$$

Since M depends only on $\sigma_{J}(\mathcal{D}(E / K))$ and since $k \leq(6 M)^{J+d}$, this gives the desired lower bound for $\hat{h}(P)$.

Remark 7. As in [15], a similar argument can be used to prove that $\# E(K)_{\text {tors }}$ is bounded by a constant that depends only on $[K: \mathbb{Q}], J$, and $\sigma_{J}(\mathfrak{D}(E / K))$.

2. Some elementary properties of the prime-depleted Szpiro ratio

We start with an elementary inequality.
Lemma 8. Let $n \geq 2$, and let $\alpha_{1}, \ldots, \alpha_{n}$ and x_{1}, \ldots, x_{n} be positive real numbers, labeled so that $\alpha_{n}=\max \alpha_{i}$. Then

$$
\frac{\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}}{x_{1}+\cdots+x_{n}} \geq \frac{\alpha_{1} x_{1}+\cdots+\alpha_{n-1} x_{n-1}}{x_{1}+\cdots+x_{n-1}}
$$

with strict inequality unless $\alpha_{1}=\cdots=\alpha_{n}$.
Proof. Let $A=\sum_{i=1}^{n} \alpha_{i} x_{i}$ and $X=\sum_{i=1}^{n} x_{i}$. Then

$$
\begin{align*}
A\left(X-x_{n}\right)-\left(A-\alpha_{n} x_{n}\right) X & =\left(\alpha_{n} X-A\right) x_{n} \tag{2}\\
& =\left(\sum_{i=1}^{n}\left(\alpha_{n}-\alpha_{i}\right) x_{i}\right) x_{n} \geq 0 .
\end{align*}
$$

Hence

$$
\begin{equation*}
\frac{A}{X} \geq \frac{A-\alpha_{n} x_{n}}{X-x_{n}} \tag{3}
\end{equation*}
$$

and since the x_{i} are assumed to be positive, inequalities (2) and (3) are strict unless the α_{i} are all equal.

We apply the lemma to prove some basic properties of the J-depleted Szpiro ratio.

Proposition 9. Let $J \geq 1$.
(a) For all integral ideals \mathfrak{D},

$$
\sigma_{J-1}(\mathfrak{D}) \geq \sigma_{J}(\mathfrak{D})
$$

Further, the inequality is strict unless \mathfrak{D} has the form $\mathfrak{D}=\mathfrak{I}^{e}$ for a squarefree ideal \mathfrak{I}.
(b) Assume that $\nu(\mathfrak{D}) \geq J$. Then there exists an ideal $\mathfrak{d} \mid \mathfrak{D}$ satisfying

$$
\nu(\mathfrak{d})=J \quad \text { and } \quad \sigma_{J}(\mathfrak{D})=\sigma(\mathfrak{D} / \mathfrak{d}) .
$$

(c) Let \mathfrak{p} be a prime ideal and \mathfrak{D} an ideal with $\mathfrak{p} \nmid \mathfrak{D}$. Then

$$
\sigma_{J}(\mathfrak{D}) \geq \sigma_{J}\left(\mathfrak{p}^{e} \mathfrak{D}\right) \geq \frac{\sigma_{J}(\mathfrak{D})}{\log \mathrm{N}_{K / \mathbb{Q}^{p}}}
$$

(d) Let \mathfrak{p} be a prime ideal and let \mathfrak{D} an arbitrary ideal (so \mathfrak{p} is allowed to divide \mathfrak{D}). Then

$$
\left(\log \mathrm{N}_{K / \mathscr{Q}} \mathfrak{p}\right) \sigma_{J}(\mathfrak{D}) \geq \sigma_{J}\left(\mathfrak{p}^{e} \mathfrak{D}\right) \geq \frac{\sigma_{J}(\mathfrak{D})}{\log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{p}}
$$

Proof. (a) Write $\mathfrak{D}=\prod \mathfrak{p}_{i}^{e_{i}}$. To ease notation, we let

$$
q_{i}=\log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{p}_{i} .
$$

If $\nu(\mathfrak{D}) \leq J-1$, then $\sigma_{J-1}(\mathfrak{D})=\sigma_{J}(\mathfrak{D})=1$, so there is nothing to prove. Assume now that $\nu(\mathfrak{D}) \geq J$. Let $I \subset\{1,2, \ldots, \nu(\mathfrak{D})\}$ be a set of indices with $\# I \geq \nu(\mathfrak{D})-(J-1)$ satisfying

$$
\sigma_{J-1}(\mathfrak{D})=\sum_{i \in I} e_{i} q_{i} / \sum_{i \in I} q_{i} .
$$

Let $k \in I$ be an index satisfying $e_{k}=\max \left\{e_{i}: i \in I\right\}$. Then Lemma 8 with $\alpha_{i}=e_{i}$ and $x_{i}=q_{i}$ yields

$$
\sigma_{J-1}(\mathfrak{D})=\frac{\sum_{i \in I} e_{i} q_{i}}{\sum_{i \in I} q_{i}} \geq \frac{\sum_{i \in I, i \neq k} e_{i} q_{i}}{\sum_{i \in I, i \neq k} q_{i}} \geq \sigma_{J}(\mathfrak{D})
$$

Further, Lemma 8 says that the inequality is strict unless all of the e_{i} are equal, in which case \mathfrak{D} is a power of a squarefree ideal.
(b) If $\mathfrak{D}=\mathfrak{I}^{e}$ is a power of a squarefree ideal, then $\sigma_{J}(\mathfrak{D})=\sigma\left(\mathfrak{D} / \mathfrak{c}^{e}\right)$ for every ideal $\mathfrak{c} \mid \mathfrak{I}$ satisfying $\nu(\mathfrak{c})=J$, so the assertion to be proved is clear. We may thus assume that \mathfrak{D} is not a power of a squarefree ideal.

Suppose in this case that $\sigma_{J}(\mathfrak{D})=\sigma(\mathfrak{D} / \mathfrak{d})$ for some $\mathfrak{d} \mid \mathfrak{D}$ with $\nu(\mathfrak{d}) \leq$ $J-1$. Then

$$
\sigma_{J-1}(\mathfrak{D}) \leq \sigma(\mathfrak{D} / \mathfrak{d})=\sigma_{J}(\mathfrak{D}),
$$

contradicting the strict inequality $\sigma_{J-1}(\mathfrak{D})>\sigma_{J}(\mathfrak{D})$ proven in (a).
(c) We always have

$$
\sigma_{J}\left(\mathfrak{p}^{e} \mathfrak{D}\right) \leq \sigma_{J-1}(\mathfrak{D}),
$$

since in computing $\sigma_{J}\left(\mathfrak{p}^{e} \mathfrak{D}\right)$, we can always remove \mathfrak{p} and $J-1$ other primes from \mathfrak{D}. If this inequality is an equality, we're done. Otherwise the value of $\sigma_{J}\left(\mathfrak{p}^{e} \mathfrak{D}\right)$ is obtained by removing J primes from \mathfrak{D}. Continuing with the notation from (a) and letting $q=\log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{p}$, this means that there is an index set I with $\# I \geq \nu(\mathfrak{D})-J$ such that

$$
\sigma_{J}(\mathfrak{D})=\frac{e q+\sum_{i \in I} e_{i} q_{i}}{q+\sum_{i \in I} q_{i}} \geq \frac{q+\sum_{i \in I} e_{i} q_{i}}{q+\sum_{i \in I} q_{i}}=\frac{q+X}{q+Y},
$$

where to ease notation, we write X and Y for the indicated sums.
If $Y=0$, then also $X=0$ and $\nu(\mathfrak{D}) \leq J$, so $\sigma_{J}\left(\mathfrak{p}^{e} \mathfrak{D}\right)$ equals either e or 1 . In either case, it is greater than $\sigma_{J}(\mathfrak{D})=1$. So we may assume that $Y>0$, which implies that $Y \geq \log 2$.

We observe that

$$
\frac{X}{Y}=\frac{\sum_{i \in I} e_{i} q_{i}}{\sum_{i \in I} q_{i}} \geq \sigma_{J}(\mathfrak{D})
$$

Hence

$$
\sigma_{J}(\mathfrak{D})=\frac{X}{Y} \cdot \frac{1+q / X}{1+q / Y} \geq \frac{\sigma_{J}(\mathfrak{D})}{1+q / Y} \geq \frac{\sigma_{J}(\mathfrak{D})}{3 q}
$$

(The final inequality is true since $q \geq \log 2$ and $Y \geq \log 2$.) This proves that $\sigma_{J}(\mathfrak{D})$ is greater than the smaller of $\sigma_{J-1}(\mathfrak{D})$ and $\sigma_{J}(\mathfrak{D}) / 3 q$. But from (a) we have $\sigma_{J-1}(\mathfrak{D}) \geq \sigma_{J}(\mathfrak{D})$, so the latter is the minimum.
(d) Let $\mathfrak{D}=\mathfrak{p}^{i} \mathfrak{D}^{\prime}$ with $\mathfrak{p} \nmid \mathfrak{D}^{\prime}$. Then writing $q=\log \mathrm{N}_{K / \mathbb{Q}} \mathfrak{p}$ as usual and applying (c) several times, we have

$$
\sigma_{J}\left(\mathfrak{p}^{e} \mathfrak{D}\right)=\sigma_{J}\left(\mathfrak{p}^{e+i} \mathfrak{D}^{\prime}\right) \leq \sigma_{J}\left(\mathfrak{D}^{\prime}\right) \leq q \sigma_{J}\left(\mathfrak{p}^{i} \mathfrak{D}^{\prime}\right)=q \sigma_{J}(\mathfrak{D})
$$

Similarly

$$
\sigma_{J}\left(\mathfrak{p}^{e} \mathfrak{D}\right)=\sigma_{J}\left(\mathfrak{p}^{e+i} \mathfrak{D}^{\prime}\right) \geq \frac{\sigma_{J}\left(\mathfrak{D}^{\prime}\right)}{q} \geq \frac{\sigma_{J}\left(\mathfrak{p}^{i} \mathfrak{D}^{\prime}\right)}{q}=\frac{\sigma_{J}(\mathfrak{D})}{q}
$$

3. The prime-depleted Szpiro and $A B C$ conjectures

In this section we describe a prime-depleted variant of the $A B C$-conjecture and show that it is a consequence of the prime-depleted Szpiro conjecture. For ease of notation, we restrict attention to $K=\mathbb{Q}$ and leave the generalization to arbitrary fields to the reader. For other variants of the $A B C$ conjecture, see for example $[1,2,7,11]$.

Conjecture 10 (Prime-Depleted $A B C$-conjecture). There exist an integer $J \geq 0$ and an absolute constant C_{8} such that if $A, B, C \in \mathbb{Z}$ are integers satisfying

$$
A+B+C=0 \quad \text { and } \quad \operatorname{gcd}(A, B, C)=1
$$

then

$$
\sigma_{J}(A B C) \leq C_{8}
$$

The classical $A B C$-conjecture (with non-optimal exponent) says that $\sigma(A B C)$ is bounded, which is stronger than the prime-depleted version, since $\sigma_{J}(A B C)$ is less than or equal to $\sigma(A B C)$.

Proposition 11. If the prime-depleted Szpiro conjecture is true, then the prime-depleted $A B C$-conjecture is true.

Proof. We suppose that the prime-depleted Szpiro conjecture is true, say with J primes deleted. Let $A, B, C \in \mathbb{Z}$ be as in the statement of the depleted $A B C$-conjecture. We consider the Frey curve

$$
E: y^{2}=x(x+A)(x-B)
$$

An easy calculation [20, VIII.11.3] shows that the minimal discriminant of E is either $2^{4}(A B C)^{2}$ or $2^{-8}(A B C)^{2}$, so in any case we can write

$$
\mathfrak{D}(E / \mathbb{Q})=2^{e}(A B C)^{2}
$$

for some exponent $e \in \mathbb{Z}$. Then using Proposition 9 we find that

$$
\sigma_{J}(\mathfrak{D}(E / \mathbb{Q}))=\sigma_{J}\left(2^{e}(A B C)^{2}\right) \geq \frac{\sigma_{J}\left((A B C)^{2}\right)}{\log 2}=\frac{2 \sigma_{J}(A B C)}{\log 2} .
$$

So the boundedness of $\sigma_{J}(\mathfrak{D}(E / \mathbb{Q}))$ implies the boundedness of $\sigma_{J}(A B C)$.

Remark 12. The Szpiro and $A B C$-conjectures have many important consequences, including asymptotic Fermat (trivial), a strengthened version of Roth's theorem [3, 6], the infinitude of non-Wieferich primes [17], nonexistence of Siegel zeros [8], Faltings' theorem (Mordell conjecture) [5, 6],.... (For a longer list, see [13].) It is thus of interest to ask which, if any, of these results follows from the prime-depleted Szpiro conjecture. As far as the author has been able to determine, the answer is none of them, which would seem to indicate that the prime-depleted Szpiro conjecture is qualitatively weaker than the original Szpiro conjecture.

References

[1] Baker, A. Logarithmic forms and the abc-conjecture. Number theory (Eger, 1996), 37-44. de Gruyter, Berlin, 1998. MR1628831 (99e:11101), Zbl 0973.11047.
[2] Baker, Alan. Experiments on the abc-conjecture. Publ. Math. Debrecen 65 (2004) 253-260. MR2107944 (2005g:11051), Zbl 1064.11050.
[3] Bombieri, E. Roth's theorem and the abc-conjecture. Preprint, ETH, Zürich, 1994.
[4] David, Sinnou. Points de petite hauteur sur les courbes elliptiques. J. Number Theory 64 (1997) 104-129. MR1450488 (98k:11067), Zbl 0873.11035.
[5] Elkies, Noam D. ABC implies Mordell. Internat. Math. Res. Notices 1991, no. 7, 99-109. MR1141316 (93d:11064), Zbl 0763.11016.
[6] Van Frankenhuysen, Machiel. The $A B C$ conjecture implies Vojta's height inequality for curves. J. Number Theory 95 (2002) 289-302. MR1924103 (2003g:11070), Zbl 1083.11042.
[7] Van Frankenhuysen, Machiel. About the $A B C$ conjecture and an alternative. Preprint, February 2010.
[8] Granville, Andrew; Stark, H. M. abc implies no "Siegel zeros" for L-functions of characters with negative discriminant. Invent. Math. 139 (2000) 509-523. MR1738058 (2002b:11114), Zbl 0967.11033.
[9] Hindry, Marc; Silverman, Joseph H. The canonical height and integral points on elliptic curves. Invent. Math. 93 (1988) 419-450. MR0948108 (89k:11044), Zbl 0657.14018.
[10] Hindry, Marc; Silverman, Joseph H. On Lehmer's conjecture for elliptic curves. Séminaire de Théorie des Nombres, Paris 1988-1989, 103-116. Progr. Math., 91. Birkhäuser Boston, Boston, MA, 1990. MR1104702 (92e:11062), Zbl 0741.14013.
[11] Lagarias, Jeffrey C.; Soundararajan, K. Smooth solutions to the equation $A+B=C$. November, 2009. arXiv:0911.4147.
[12] Lang, Serge. Elliptic curves: Diophantine analysis. Grundlehren der Mathematischen Wissenschaften, 231. Springer-Verlag, Berlin, 1978. xi+261 pp. ISBN: 3-540-08489-4. MR0518817 (81b:10009), Zbl 0388.10001.
[13] Nitaj, Abderrahmane. The $a b c$ conjecture home page. http://www.math.unicaen. fr/~nitaj/abc.html.
[14] Oesterlé, Joseph. Nouvelles approches du "théorème" de Fermat. Astérisque, (161162):Exp. No. 694, 4, 165-186 (1989), 1988. Séminaire Bourbaki, Vol. 1987/88. MR0992208 (90g:11038), Zbl 0668.10024.
[15] Petsche, Clayton. Small rational points on elliptic curves over number fields. New York J. Math. 12 (2006) 257-268. MR2259240 (2007g:11061), Zbl 1163.11327.
[16] Silverman, Joseph H. Lower bound for the canonical height on elliptic curves. Duke Math. J. 48 (1981) 633-648. MR0630588 (82k:14043), Zbl 0475.14033.
[17] Silverman, Joseph H. Wieferich's criterion and the abc-conjecture. J. Number Theory 30 (1988) 226-237. MR0961918 (89m:11027), Zbl 0654.10019.
[18] Silverman, Joseph H. Elliptic curves of bounded degree and height. Proc. Amer. Math. Soc. 105 (1989) 540-545. MR0953747 (89i:11063), Zbl 0698.14027.
[19] Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves. Graduate Texts in Mathematics, 151. Springer-Verlag, New York, 1994. xiv+525 pp. ISBN: 0-387-94328-5. MR1312368 (96b:11074), Zbl 0911.14015.
[20] Silverman, Joseph H. The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106. Springer-Verlag, Dordrecht, 2009. xx+513 pp. ISBN: 978-0-387-09493-9. MR2514094.

Mathematics Department, Box 1917 Brown University, Providence, RI 02912 USA
jhs@math.brown.edu
This paper is available via http://nyjm.albany.edu/j/2010/16-1.html.

[^0]: Received August 26, 2009
 2000 Mathematics Subject Classification. Primary: 11G05; Secondary: 11G50, 11J97, 14H52.

 Key words and phrases. elliptic curve, canonical height, Szpiro conjecture, Lang conjecture.

 The author's research partially supported by NSF grants DMS-0650017 and DMS0854755.

