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Coactions and Fell bundles

S. Kaliszewski, Paul S. Muhly, John Quigg
and Dana P. Williams

Abstract. We show that for any Fell bundle A over a locally compact
group G, there is a natural coaction δ of G on the Fell-bundle C∗-algebra
C∗(G, A ) such that the full crossed product (C∗(G, A )oδG)oδ̂G by the

dual action δ̂ of G is canonically isomorphic to C∗(G, A ) ⊗ K(L2(G)).
Hence the coaction δ is maximal.

Contents

Introduction 315
1. Preliminaries 318
2. Product bundles 327
3. Coactions from Fell bundles 329
4. Transformation bundles 333
5. Coaction crossed product 334
6. Semidirect-product bundles 341
7. Action crossed product 344
8. The canonical surjection is injective 350
References 358

Introduction

The theorem announced in the abstract, which we prove as Theorem 8.1,
is part of a larger program that is inspired by the realization, which only
recently has come into focus, that Fell bundles provide a natural setting for
a broad range of imprimitivity theorems and equivalence theorems for C∗-
dynamical systems, especially theorems involving nonabelian duality. Even
in the context of group actions or coactions, the Fell bundles which arise
are over groupoids, and so our approach in this program will involve the
recent equivalence theorem of [16] for Fell bundles over groupoids. The
present paper is a first step in this larger program: in the course of re-
formulating the standard C∗-dynamical system constructions in the context
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of Fell bundles, it will be crucial to know that the coactions which arise will
always be maximal ones.

Very roughly, a Fell bundle A over a locally compact group G is a bundle
over G such that the fibre Ae over the identity e of G is a C∗-algebra and
such that the fibre As over each s ∈ G is an Ae –Ae-imprimitivity bimodule
with the property that As ⊗Ae At is isomorphic to Ast in such a way that
tensoring gives an associative multiplication on A .1 The space of continu-
ous, compactly supported cross sections of A , denoted Γc(G;A ), carries a
natural convolution-like product under which it forms a ∗-algebra. A cer-
tain completion of this algebra is a C∗-algebra, denoted C∗(G,A ). One
can profitably think of C∗(G,A ) as a generalized crossed product of Ae by
G. Indeed, if G acts on a C∗-algebra B via a continuous homomorphism
α : G→ Aut(B), and if A is defined to be B ×G, with product defined by
the equation (a, s)(b, t) = (aαs(b), st), then A is a Fell bundle over G, called
the semidirect-product bundle determined by the action, and the C∗-crossed
product B oα G is isomorphic to the bundle C∗-algebra C∗(G,A ).2 This
point was made by Fell in his first works on the subject [9, 10] and was one
of the reasons he began the theory of these bundles. Importantly, not every
Fell bundle over a group G is isomorphic to such a bundle [12, §§VIII.3.16,
VIII.4.7]; thus the results in the present paper properly generalize those (in
[3], for example) which directly address group actions.

Coactions were introduced to give a generalization, for nonabelian groups,
of the Takai–Takesaki duality for crossed products by actions of abelian
groups on C∗-algebras. Subsequently Katayama proved a crossed-product
duality theorem for coactions, specifically, if δ is a coaction of a group G on
a C∗-algebra A, then there is a dual action δ̂ of G on the crossed product
Aoδ G such that the reduced crossed product (Aoδ G) oδ̂,r G is isomorphic
to A⊗K(L2(G)). Katayama used what are now known as reduced coactions,
which involve the reduced group C∗-algebra C∗r (G). For more information
on crossed-product duality, see [4, Appendix A].

The use of the term “crossed product” both in the context of group actions
and in the context of coactions may seem confusing, initially. However, in
practice, it is easy to distinguish between the two.

Raeburn introduced full coactions, which involve the full group C∗-algebra
C∗(G), to take advantage of universal properties. For such coactions, there
is always a canonical surjection

Φ : Aoδ Goδ̂ G→ A⊗K(L2(G)),

and the question naturally arose, when is Φ in fact an isomorphism? When
this is the case, full crossed-product duality is said to hold, and the coaction

1We follow the convention that the total space of a Banach bundle is represented in a
script font, while the fibres are written in Roman font. Thus if p : A → X is a bundle
over a space X, then we’ll write Ax for the fibre p−1(x) viewed as a Banach space.

2We shall have more to say about semidirect-product bundles in Sections 6 and 7.
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δ is said to be maximal. For example, the dual coaction on a full crossed
product by an action is always maximal [3, Proposition 3.4].

Since Fell bundle C∗-algebras are generalizations of crossed products by
actions, it is natural to ask whether there exists a coaction δ of G on
C∗(G,A ), and if so, whether δ is maximal. In the present paper, we settle
these questions affirmatively; thus our Theorem 8.1 can be regarded as a
generalization of [3, Proposition 3.4] to arbitrary Fell bundles over G.

The existence of a coaction on C∗(G,A ) was briefly presented in [13] for
the case of reduced coactions. In [19] (see also [18]), the third author showed
that when the group G is discrete there is in fact a bijective correspondence
between Fell bundles over G and coactions of G on C∗-algebras. Further, in
[5] the third author and Echterhoff observed that given a Fell bundle A over
a discrete group G, there is a natural coaction δ of G on C∗(G,A ) and the
crossed product C∗(G,A ) oδ G is naturally isomorphic to the C∗-algebra
of a Fell bundle A ×lt G over the discrete groupoid G ×lt G obtained by
letting G act on itself by left translation. This observation, coupled with
the work of the second and fourth authors on the theory of Fell bundles over
groupoids [16] (which, in turn, was inspired, in part, by [19]), was the point
of departure for the current project.

Indeed, although groupoids do not appear explicitly in the statement of
our main theorem, Fell bundles over groupoids are crucial in the techniques
we develop for the proof: roughly speaking, crossed products by actions
of groups are modeled by Fell bundles over semidirect product groupoids,
and crossed products by coactions of groups are modeled by Fell bundles
over transformation groupoids. We rely heavily on [16] for the theory and
basic results concerning Fell bundles over groupoids. In particular, we make
free use of the Disintegration Theorem for Fell bundles [16, Theorem 4.13]
which is a generalization of Renault’s Disintegration Theorem for groupoids
[23, Proposition 4.2]. (See [17, §7] for more discussion and references on
Renault’s Theorem.)

The plan for our proof of Theorem 8.1 is as follows: The initial two
sections are preparatory. Section 1 establishes notation and collects some
results that will be used in the sequel. Section 2 addresses some fine points
regarding the problem of “promoting” a Fell bundle over a group to a Fell
bundle over the product of the group with itself. The first real step in our
analysis is taken in Section 3. There we prove in Proposition 3.1 that if
A is a Fell bundle over a locally compact group G, then there is a natural
coaction δ of G on C∗(G,A ) analogous to the dual coaction on a crossed
product.

We note in passing that in [7], Exel and Ng prove a result that is similar
to our Proposition 3.1. However, their setting is somewhat different from
ours in that it uses an older and no-longer-used definition of “full coaction”
that was advanced by Raeburn in [20]. Also, their proof is different in
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certain important respects. So, to keep this note self-contained we present
full details.

The second substantial step taken in our analysis is Theorem 5.1, which
asserts that there is a natural isomorphism θ from the crossed product
C∗(G,A ) oδ G to the C∗-algebra C∗(G ×lt G,A ×lt G) of the Fell bun-
dle A ×lt G over the transformation groupoid G ×lt G. As we mentioned
above, this isomorphism theorem was inspired by [5]. Section 4 provides the
necessary prerequisites for the formulation and proof of Theorem 5.1.

The third major step is Theorem 7.1, which establishes, in the general
context of a Fell bundle B over a groupoid G, an isomorphism between the
C∗-algebra of a semidirect-product bundle B ×α G (the theory of which is
developed in Section 6) and the crossed product of C∗(G,B) by a corre-
sponding action of G.

The remainder of the argument occupies Section 8. There, we show that
the isomorphism θ established in Theorem 5.1 is equivariant for the dual
action δ̂ of G on C∗(G,A )×δ G and a natural action of G on

C∗(G×lt G,A ×lt G).

Using this, θ is promoted to an isomorphism between the two crossed prod-
ucts. We then apply the result of Section 7 to this natural action to see
that the crossed product can be realized as the C∗-algebra of a certain
semidirect-product bundle; this bundle turns out to be isomorphic to one
whose C∗-algebra is easily recognized as C∗(G,A )⊗K(L2(G)). Finally, we
show that these isomorphisms combine to give the canonical surjection Φ,
and this completes our proof of Theorem 8.1.

1. Preliminaries

If A is a C∗-algebra, then its maximal unitization M(A) ([21, Defini-
tion 2.46]) is called the multiplier algebra of A. Traditionally, M(A) is
realized as the collection of double centralizers. Here we adopt the approach
taken in [21], regarding M(A) as the algebra L(A) of bounded adjointable
operators on A viewed as a right-Hilbert module over itself. (That any two
maximal unitizations are naturally isomorphic is guaranteed by [21, Theo-
rem 2.47].) As usual, we let Ã be the C∗-subalgebra of M(A) generated by A
and 1M(A). (Thus Ã = A if A is unital, and Ã is A with an identity adjoined
otherwise.) We use minimal tensor products of C∗-algebras throughout.

Let G be a locally compact group. We use u : G→M(C∗(G)) to denote
the canonical embedding, although sometimes we will simply identify s ∈ G
with its image u(s) ∈ M(C∗(G)). Similarly, we will usually not distinguish
between a strictly continuous unitary homomorphism of G and its unique
nondegenerate extension to C∗(G). As a general reference for group actions
we use [24], and for coactions we refer to [4, Appendix A].

1.1. Group Actions. An action of G on a C∗-algebra A is a homomor-
phism α : G→ AutA such that the map s 7→ αs(a) is norm continuous from
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G to A for each a ∈ A. A covariant representation of (A,G, α) on a Hilbert
space H is a pair (π,U), where π : A→ B(H) is a nondegenerate represen-
tation and U : G → B(H) is a strongly continuous unitary representation,
which satisfies the covariance condition

(1.1) π(αs(a)) = Usπ(a)U∗s for a ∈ A and s ∈ G.

More generally, for a C∗-algebra B, a covariant homomorphism of (A,G, α)
into M(B) is a pair (π,U), where π : A→M(B) is a nondegenerate homo-
morphism and U : G → M(B) is a strictly continuous unitary homomor-
phism, which satisfies (1.1).

A crossed product for (A,G, α) is a C∗-algebra A oα G, together with a
covariant homomorphism (iA, iG) of (A,G, α) into M(AoαG) which is uni-
versal in the sense that for any covariant homomorphism (π,U) of (A,G, α)
into M(B) there is a unique nondegenerate homomorphism

π o U : Aoα G→M(B),

called the integrated form of (π,U), such that

π = (π o U) ◦ iA and U = (π o U) ◦ iG.

The crossed product is generated by the universal covariant homomorphism
in the sense that

Aoα G = span{ iA(a)iG(f) : a ∈ A and f ∈ Cc(G) }.

The space Cc(G,A) of compactly supported continuous functions from G
into A is a ∗-algebra with (convolution) multiplication and involution given
by

(f ∗ g)(s) =
∫

G
f(t)αt(g(t−1s)) dt and f∗(s) = f(s−1)∗∆(s)−1,

where ∆ denotes the modular function of G. The algebra Cc(G,A) embeds
as a dense ∗-subalgebra of Aoα G via the map

f 7→
∫

G
iA(f(s))iG(s) ds,

so that if (π,U) is a covariant homomorphism of (A,G, α), then

π o U(f) =
∫

G
π(f(s))U(s) ds.

1.2. Coactions. A coaction of G on a C∗-algebra A is a nondegenerate
injective homomorphism δ : A→M(A⊗C∗(G)) which satisfies the coaction
identity

(1.2) (δ ⊗ idG) ◦ δ = (id⊗ δG) ◦ δ,

and which is nondegenerate as a coaction in the sense that

(1.3) span{δ(A)(1⊗ C∗(G))} = A⊗ C∗(G).
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Here δG : C∗(G) → M(C∗(G) ⊗ C∗(G)) is the homomorphism determined
by the unitary homomorphism of G given by s 7→ u(s) ⊗ u(s). Note that
condition (1.3) implies nondegeneracy of δ as a map into M(A⊗ C∗(G)).

A covariant representation of (A,G, δ) on a Hilbert space H is a pair
(π, µ), where π : A → B(H) and µ : C0(G) → B(H) are nondegenerate
representations which satisfy the covariance condition

(1.4) Ad(µ⊗ id)(wG)(π(a)⊗ 1) = (π ⊗ id)(δ(a)) for a ∈ A.

Here wG is the element of M(C0(G) ⊗ C∗(G)) which corresponds to the
canonical embedding u : G→M(C∗(G)) under the natural isomorphism of
M(C0(G) ⊗ C∗(G)) with the strictly continuous bounded maps from G to
M(C∗(G)). More generally, for any C∗-algebra B, a covariant homomor-
phism of (A,G, δ) into M(B) is a pair (π, µ), where π : A → M(B) and
µ : C0(G) →M(B) are nondegenerate homomorphisms satisfying (1.4).

A crossed product for (A,G, δ) is a C∗-algebra A oδ G, together with a
covariant homomorphism (jA, jG) of (A,G, δ) into M(Aoδ G) which is uni-
versal in the sense that for any covariant homomorphism (π, µ) of (A,G, δ)
into M(B) there is a unique nondegenerate homomorphism

π o µ : Aoδ G→M(B),

called the integrated form of (π, µ), such that

π = (π o µ) ◦ jA and µ = (π o µ) ◦ jG.
The crossed product is generated by the universal covariant homomorphism
in the sense that

Aoδ G = span{ jA(a)jG(f) : a ∈ A and f ∈ C0(G) }.

The dual action of G on AoδG is the homomorphism δ̂ : G→ Aut(AoδG)
given on generators by

δ̂s(jA(a)jG(f)) = jA(a)jG(rts(f)),

where rt denotes the action of G on C0(G) by right translation: rts(f)(t) =
f(ts).

Given a representation π of A on a Hilbert space H, the associated regular
representation Λ of Aoδ G on H⊗ L2(G) is the integrated form

Λ =
(
(π ⊗ λ) ◦ δ

)
o (1⊗M),

where λ is the left regular representation of G on L2(G) and M is the
representation of C0(G) on L2(G) by multiplication: (Mfξ)(s) = f(s)ξ(s).
When π is faithful, the associated regular representation is always faithful
[4, Remark A.43(3)], and thus gives an isomorphism between A oδ G and
the concrete C∗-algebra

Λ(Aoδ G) = span{ (π ⊗ λ) ◦ δ(a)(1⊗Mf ) : a ∈ A and f ∈ C0(G) }.
The canonical surjection associated to δ is the map

Φ =
(
(id⊗ λ) ◦ δ o (1⊗M)

)
o (1⊗ ρ) : Aoδ Goδ̂ G→ A⊗K(L2(G)),
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where ρ is the right regular representation of G on L2(G). (It almost
goes without saying that, by convention, (λsξ)(t) = ξ(s−1t) and (ρsξ)(t) =
ξ(ts)∆(s)1/2.) On the generators, Φ is given by

Φ
(
iAoδG(jA(a)jG(f))iG(g)

)
= (id⊗ λ) ◦ δ(a)

(
1⊗Mfρ(g)

)
for a ∈ A, f ∈ C0(G), and g ∈ C∗(G). The coaction δ is maximal if
the canonical surjection Φ associated to δ is injective; thus the maximal
coactions are precisely those coactions for which full crossed-product duality
holds in the sense that Φ is an isomorphism of AoδGoδ̂G onto A⊗K(L2(G)).

Some of our coaction calculations will involve the Fourier–Stieltjes alge-
bra B(G). (see [4, §§A.4–A.5] for brief survey or [8] for a more detailed
treatment). In simple terms the Fourier–Stieltjes algebra B(G) is a space of
bounded continuous functions on G which can be identified with the dual
space C∗(G)∗ via the formula

f(g) =
∫

G
f(s)g(s) ds for f ∈ B(G) and g ∈ Cc(G) ⊆ C∗(G).

By [8, Propositions 3.4 and 3.7], the intersection B(G)∩C0(G) is norm dense
in C0(G). For f ∈ B(G), the slice map idA⊗f : A⊗C∗(G) → A determined
by

(idA ⊗ f)(a⊗ b) = af(b) for a ∈ A and b ∈ C∗(G)
extends uniquely to a strictly continuous linear map

idA ⊗ f : M(A⊗ C∗(G)) →M(A),

and moreover such slice maps separate the points of M(A ⊗ C∗(G)) ([4,
Lemma A.30]).

1.3. Fell Bundles. A Fell bundle over a groupoid is a natural general-
ization of Fell’s C∗-algebraic bundles over groups treated in detail in [12,
Chap. VIII] and discussed briefly in the introduction. We will refer to [16]
for the particulars of Fell bundles over groupoids. Generally speaking, a Fell
bundle p : B → G is a upper semicontinuous Banach bundle over a locally
compact Hausdorff groupoid G satisfying the axioms laid out in [16, Defini-
tion 1.1].3 It was observed in [1, Lemma 3.30] that the underlying Banach
bundle of an upper semicontinuous Fell bundle over a group is necessarily
continuous. (The authors of [1] attribute this observation to Exel.) Since all
the Fell bundles in this work originate from Fell bundles over groups, they
will necessarily be built on continuous Banach bundles.4 We will assume all
the Fell bundles here are separable in that G is second countable and the

3There are a number of equivalent definitions of Fell bundles over groupoids in the liter-
ature starting with Yamagami’s original in [25, Definition 1.1], as well as [14, Definition 6]
and [2, Definition 2.1].

4An exception is that in sections 6 and 7 we work with general Fell bundles over
groupoids, and there it is not necessary to assume that the underlying Banach bundles
are continuous.
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Banach space Γ0(G;B) of sections is separable. (This hypothesis is not only
a sign of good taste, but it will also ensure that the results of [16] apply.)

We are only interested in groupoids G with a continuous Haar system
{λu }u∈G(0) . Then the set Γc(G;B) of continuous compactly supported sec-
tions of B has the structure of a ∗-algebra:

f ∗ g(x) :=
∫
G
f(y)g(y−1x) dλr(x)(y) and f∗(x) := f(x−1)∗.

Then we can define a norm, ‖ · ‖I , on Γc(G;B) via

‖f‖I = max

{
sup

u∈G(0)

∫
G
‖f(x)‖ dλu(x), sup

u∈G(0)

∫
G
‖f(x)‖λu(x)

}
.

If H is a Hilbert space, then a ∗-homomorphism L : Γc(G;B) → B(H)
is called ‖ · ‖I-decreasing if ‖L(f)‖ ≤ ‖f‖I for all f . We say that L is a
‖ · ‖I -decreasing representation if it is also nondegenerate in the sense that

span{L(f)ξ : f ∈ Γc(G;B) and ξ ∈ H} = H.

Then, by definition, the universal norm on Γc(G;B) is

‖f‖ := sup{ ‖L(f)‖ : L is a ‖ · ‖I -decreasing representation of Γc(G;B) }.

The completion
(
Γc(G;B), ‖ · ‖

)
is the C∗-algebra C∗(G,B) of the Fell bun-

dle p : B → G.5

More generally, a nondegenerate ∗-homomorphism L : Γc(G,B) → B(H)
is called simply a representation if L is continuous when Γc(G;B) is equipped
with the inductive limit topology and B(H) is given the weak operator
topology. It is a nontrivial result — a consequence of the Disintegration
Theorem ([16, Theorem 4.13]) — that every representation of Γc(G;B) is
‖ · ‖I -decreasing. Since ‖ · ‖I -decreasing representations are clearly represen-
tations, we see that

‖f‖ = sup{ ‖L(f)‖ : L is a representation of Γc(G;B) }

(see [16, Remark 4.14]).

Lemma 1.1. Suppose that p : B → G is a Fell bundle over a locally compact
groupoid G. If H is a locally compact groupoid and ϕ : H → G is a continuous
groupoid homomorphism, then the pull-back q : ϕ∗B → H is a Fell bundle
over H with multiplication and involution given by

(a, h)(b, t) = (ab, ht) and (a, h)∗ = (a∗, h−1).

Proof. The proof is routine. For example, q : ϕ∗B → H is clearly a Banach
bundle (see [11, §II.13.7] where pull-backs are called retractions). The fibre
over h is isomorphic to Bϕ(h). The Fell bundle structure from B makes the
latter into a Br(ϕ(h)) –Bs(ϕ(h))-imprimitivity bimodule. Since the fibre over

5It might be helpful to look over the examples in [16, §2] at this point.



COACTIONS AND FELL BUNDLES 323

s(h) is isomorphic to Bϕ(s(h)) and ϕ(s(h)) = s(ϕ(h)), the rest is easy. (Note
that when G and H are groups, this result is [12, §VIII.3.17].) �

1.4. Fell Bundles over Groups. However, to begin with, we are inter-
ested in a (separable, of course) Fell bundle p : A → G where G is a locally
compact group. This case affords a number of simplifications, and also al-
lows us to avoid some of the overhead coming from [16]. Note that a Fell
bundle p : A → G over a group is what Fell and Doran call a C∗-algebraic
bundle over G (see [12, Definitions VIII.16.2 and VIII.3.1]). Since we ulti-
mately treat Fell bundles over groups as a special case of a Fell bundle over
a groupoid, our axioms require that p : A → G is saturated in the sense
that span{AsAt} = Ast for all s, t ∈ G (see [12, §VIII.2.8]). We will often
write as for an element of As; that is, as ∈ A and p(as) = s.

We do make one deviation from the groupoid treatment when building
the associated C∗-algebra, C∗(G,A ). In order that we can easily obtain the
usual group C∗-algebra construction as well as the usual crossed-product
construction as special cases, it is convenient to add the modular function,
∆, on G to the definition of the involution on Γc(G;A ):

f∗(s) = ∆(s)−1f(s−1)∗

(see [12, §VIII.5.6]). Then the somewhat unsatisfactory ‖ · ‖I reduces to the
normal analog of the L1-norm:

‖f‖1 :=
∫

G
‖f(s)‖ ds,

and the universal norm on Γc(G;A ) is given as the supremum over ‖ · ‖1-
decreasing representations. As we shall see shortly (see Remark 1.5), the
isomorphism class of C∗(G,A ) is the same as that obtained using the def-
inition of the involution given for groupoids where no modular function is
available.

Assuming p : A → G is a Fell bundle over a group, a ∗-homomorphism
π : A →M(B) is just a map with the obvious algebraic properties. We call
π nondegenerate if

span{π(Ae)B} = B.

The next lemma shows that A comes with a canonical nondegenerate strictly
continuous embedding ι : A →M(C∗(G,A )). Then Lemma 1.3 shows that
the pair (C∗(G,A ), ι) is in fact universal for strictly continuous nondegen-
erate ∗-homomorphisms of A into multiplier algebras.

Lemma 1.2. Let p : A → G be a separable Fell bundle over a locally
compact group G. There exists a strictly continuous nondegenerate ∗-homo-
morphism ι : A → M(C∗(G,A )) such that for as ∈ As and f ∈ Γc(G;A ),
we have ι(as)f ∈ Γc(G;A ), with

(1.5) (ι(as)f)(t) = asf(s−1t).
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Proof. For each as ∈ As, (1.5) clearly defines a linear map ι(as) of Γc(G;A )
into itself. Here we will view Γc(G;A ) as a dense subspace of C∗(G,A )
viewed as a Hilbert module over itself. Then the inner product 〈f , g〉= f∗∗g
is Γc(G;A )-valued on Γc(G;A ). It is easy to check that ι(as)ι(at) = ι(asat),
and a straightforward computation shows that

(1.6)
〈
ι(as)f , g

〉
=

〈
f , ι(a∗s)g

〉
(a similar, but more involved computation is given in detail in the proof of
Theorem 5.1). Since ‖as‖21Ae −a∗sas ≥ 0 in Ãe, there is a be ∈ Ãe such that
‖as‖21Ae−a∗sas = b∗ebe. Then, since (1.5) makes sense and ι is multiplicative
for elements of Ãe, and since (1.6) also holds for be ∈ Ãe, we see that

‖as‖2
〈
f , f

〉
−

〈
ι(as)f , ι(as)f

〉
=

〈
ι(‖as‖21Ae − a∗sas)f , f

〉
=

〈
ι(be)f , ι(be)f

〉
≥ 0

for all f ∈ Γc(G;A ). It follows that ι(as) is bounded and extends to a
bounded operator on C∗(G,A ) with adjoint ι(a∗s). It is routine to verify
that the resulting map ι : A →M(C∗(G,A )) is a ∗-homomorphism.

To see that ι is nondegenerate, first note that As is an Ae –Ae-imprim-
itivity bimodule. Thus if { ai }i∈I is an approximate identity in Ae, then
aias → as for any as ∈ As. Then a messy compactness argument similar to
that given in the proof of Theorem 5.1 shows that ι(ai)f → f in the inductive
limit topology on Γc(G;A ) for any f ∈ Γc(G;A ). Since convergence in the
inductive limit topology implies convergence in the C∗-norm, this establishes
nondegeneracy.

It only remains to prove strict continuity. Our separability assumptions
on p : A → G allow us to invoke [11, Proposition II.13.21] to see that A is
second countable. Thus, it suffices to show that if { asn } is a sequence in A
converging to as, then ι(asn) → ι(as) strictly.

The convergent sequence { asn } must lie in a norm-bounded subset of
A , so the image (ι(asn)) is a bounded sequence in M(C∗(G,A )) (because
‖ι(as)‖ ≤ ‖as‖). Thus, it suffices to show that ι(asn) → ι(as) ∗-strongly; and
since a∗sn

→ a∗s and ι is ∗-preserving, it suffices to show strong convergence.
Finally, since { ι(asn) } is bounded, it suffices to show that ι(asn)f → ι(as)f
in the inductive limit topology, for each f ∈ Γc(G;A ).

Suppose not; so there is f ∈ Γc(G;A ) such that ι(asn)f does not converge
to ι(as)f in the inductive limit topology. Note that since sn → s in G, we
can find a compact set K ⊆ G such that the supports of ι(as)f and all
the ι(asn)f are contained in K, so it must be that the convergence is not
uniform on K. So, passing to a subsequence and relabeling, we can find
ε > 0 and tn → t in K such that for all n,

‖ι(asn)f(tn)− ι(as)f(tn)‖ ≥ ε.

But by joint continuity of multiplication in A , we have

ι(asn)f(t) = asnf(s−1
n t) → asf(s−1t) = ι(as)f(t)
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in A . Since this implies that the norm of the difference goes to zero, we
have a contradiction. �

Lemma 1.3. Let p : A → G be as in Lemma 1.2. If B is a C∗-algebra and
π0 : A → M(B) is a strictly continuous nondegenerate ∗-homomorphism,
then there is a unique nondegenerate homomorphism π : C∗(G,A ) →M(B),
called the integrated form of π0, such that π ◦ ι = π0. Moreover,

(1.7) π(f) =
∫

G
π0(f(s)) ds for f ∈ Γc(G;A ).

Conversely, every nondegenerate ∗-homomorphism of C∗(G,A ) is the in-
tegrated form of some such π0.

Remark 1.4. Note that the integral in (1.7) makes sense since π0 ◦ f is
strictly continuous so that we can apply, for example, [21, Lemma C.11].

Proof. It is straightforward to check that (1.7) defines a ∗-homomorphism
π : Γc(G;A ) →M(B).

To see that π is nondegenerate, we need to see that

span{π(f)b : f ∈ Γc(G;A ) and b ∈ B }
is dense in B. To this end, fix a ∈ Ae and choose f ∈ Γc(G;A ) such
that f(e) = a. Let {ϕk } be a sequence in C+

c (G) with integral one whose
supports shrink to the identity. Let fk(s) = ϕk(s)f(s). Then it is not hard
to see that π(fk)b→ π0(a)b. Therefore, the nondegeneracy of π follows from
that of π0.

If L : B → B(H) is a faithful representation, then L◦π is a ‖·‖1-decreasing
representation of Γc(G;A ). By the definition of the universal norm,

‖L ◦ π(f)‖ ≤ ‖f‖.
Since the extension of L to M(B) is isometric, ‖π(f)‖ ≤ ‖f‖. Therefore, π
extends to C∗(G,A ).

To prove uniqueness, we need to establish that

(1.8)
∫

G
ι
(
f(s)

)
ds = f,

where the equality in (1.8) is meant in M
(
C∗(G,A )

)
. Therefore, it suffices

to see that

(1.9)
(∫

ι
(
f(s)

)
ds

)
g =

∫
G
ι
(
f(s)

)
g ds = f ∗ g for all g ∈ Γc(G;A ).

Thus we need to establish that the C∗(G,A )-valued integral in the middle of
(1.9) takes values in (the image of) Γc(G;A ) in C∗(G,A ) and coincides with
f∗g. This can be verified almost exactly as in the proof of [24, Lemma 1.108].

Now, if ρ : C∗(G,A ) → M(B) is a homomorphism such that ρ ◦ ι = π0,
then by (1.8), for each f ∈ Γc(G;A ) we must have

ρ(f) = ρ

(∫
G
ι(f(s)) ds

)
=

∫
G
ρ(ι(f(s))) ds =

∫
G
π0(f(s)) ds = π(f).
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For the converse, let π : C∗(G,A ) →M(B) be a nondegenerate ∗-homo-
morphism. By nondegeneracy, π extends to a strictly continuous homomor-
phism of M(C∗(G,A )), so that π ◦ ι is a strictly continous nondegenerate
∗-homomorphism of A whose integrated form, by uniqueness, is π. �

Remark 1.5 (Modular Differences). If p : A → G is a Fell bundle over a
locally compact group, then we could just as well have formed the C∗-algebra
C∗Gr(G,A ) by treating G as a groupoid. (That is, by leaving the modular
function off the involution.) To see that C∗Gr(G,A ) and C∗(G,A ) are nat-
urally isomorphic, we first observe that Lemma 1.2 and Lemma 1.3 remain
valid for C∗Gr(G,A ) using virtually the same proofs; the only difference is
that Equations (1.5) and (1.7) must be modified to deal with the lack of
modular function in the involution:(

ι′(as)f
)
(t) = ∆(s)

1
2asf(s−1t) and(1.5′)

π(f) =
∫

G
π′0

(
f(s)

)
∆(s)−

1
2 ds.(1.7′)

Then notice that there is a ∗-isomorphism ϕ : ΓGr
c (G,A ) → Γc(G;A ) given

by ϕ(f)(s) = ∆(s)−
1
2 f(s). We just need to see that ϕ is isometric with

respect to the universal norm ‖ · ‖Gr on C∗Gr(G,A ) and ‖ · ‖ on C∗(G,A ).
To verify this, let M be a faithful representation of C∗(G,A ). Then M is
the integrated form of M0 : A → B(H). But if L is the representation of
C∗Gr(G,A ) which is the integrated form of M0, then

‖ϕ(f)‖ = ‖M(ϕ(f))‖ = ‖L(f)‖ ≤ ‖f‖Gr.

On the other hand, if L is a faithful representation of C∗Gr(G,A ) which is the
integrated form of L0, then we can let M be the representation of C∗(G,A )
that is integrated up from L0. Then

‖ϕ(f)‖ ≥ ‖M(ϕ(f))‖ = ‖L(f)‖ = ‖f‖Gr.

Thus ϕ is isometric.

Remark 1.6. The same comments about modular functions apply to the
standard group C∗-algebra and crossed product constructions; that is, one
can omit the modular function in the definition of the involution and arrive
at isomorphic algebras. However, you have pay for the luxury of modular-
free involutions by adding the modular function to the integrated form of
any representation as in (1.7′).

Proposition 1.7. Let p : B → G be a separable Fell bundle over a locally
compact groupoid G, and let X0 be a dense subspace of a right Hilbert A-
module X. Suppose that L is a algebra homomorphism of Γc(G;B) into the
linear operators, Lin(X0), on X0 such that for all x, y ∈ X0:

(i)
〈
L(f)x , y

〉
A

=
〈
x , L(f∗)y

〉
A
,

(ii) f 7→
〈
L(f)x , y

〉
A

is continuous in the inductive limit topology, and
(iii) span{L(f)x : f ∈ Γc(G;B) and x ∈ X0 } is dense in X.
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Then L is bounded with respect to the universal C∗-norm on Γc(G;B) and
extends to a nondegenerate homomorphism L : C∗(G,B) → L(X).

Proof. This proposition is a consequence of the disintegration result [16,
Theorem 4.13] for Fell bundles. To see this, let ρ be a state on A. Then

(x | y)ρ := ρ
(
〈y , x〉

A

)
is a pre-inner product on X0. After modding out by the subspace N of
vectors of length zero, we get a pre-Hilbert space H0 := X0/N which we
view as a subspace of its completion H. Since

(L(f)x | L(f)x)ρ = (x | L(f∗ ∗ f)x)ρ,

it follows from the Cauchy Schwartz inequality that L(f) maps N to itself.
Therefore L(f) defines a linear operator Lρ(f) on H0 via Lρ(f)(x + N ) =
L(f)x + N . It is clear that Lρ defines a pre-representation of B on H0 as
in [16, Definition 4.1]. Then [16, Theorem 4.13] implies that

(L(f)x | L(f)x)ρ ≤ ‖f‖2(x | x)ρ.

Since this holds for all states ρ, we have ‖L(f)‖ ≤ ‖f‖. The rest is straight-
forward. �

Proposition 1.8. Let A be a separable Fell bundle over a groupoid G. Ev-
ery ∗-homomorphism from Γc(G;A ) into a C∗-algebra which is continuous
from the inductive limit topology into the norm topology is bounded for the
universal norm, and hence has a unique extension to C∗(G,A ).

Proof. Suppose that π : Γc(G;A ) → B is such a homomorphism, and that
ρ : B → B(H) is a faithful representation of B on a Hilbert space H. Let

H1 = span{ ρ ◦ π(f)ξ : f ∈ Γc(G;A ), ξ ∈ H}.

Then f 7→ ρ ◦ π(f)|H1 is a representation of A on H1 in the sense of [16,
Definition 4.7], since the operator norm topology is stronger than the weak
operator topology. By [16, Remark 4.14],

‖π(f)‖ = ‖ρ ◦ π(f)‖ = ‖ρ ◦ π(f)|H1‖ ≤ ‖f‖ for all f ∈ Γc(G;A ). �

2. Product bundles

If p : A → G is a Fell bundle over a locally compact group G, then the
Cartesian product, A ×G, carries a natural Fell bundle structure over G×G.
The bundle projection q : A ×G→ G×G is given by q(a, t) = (p(a), t) and
the multiplication and involution are given by

(as, t)(br, u) = (asbr, tu) and (as, t)∗ = (a∗s, t
−1).

(Indeed, the map (a, t) 7→ (a, (p(a), t)) is a bijection of A × G onto the
pull-back Fell bundle ϕ∗A — see Lemma 1.1 — where ϕ : G × G → G is
the projection onto the first factor.)
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Every section h ∈ Γc(G×G;A ×G) is of the form

h(s, t) = (h1(s, t), t),

where h1 ∈ Cc(G × G,A ) satisfies h1(s, t) ∈ As for s, t ∈ G. For f ∈
Γc(G;A ) and g ∈ Cc(G) we let f�g denote the element of Γc(G×G;A ×G)
defined by

(f � g)(s, t) = (f(s)g(t), t).

Lemma 2.1. With the above notation,

span{ f � g : f ∈ Γc(G;A ) and g ∈ Cc(G) }

is inductive-limit dense in Γc(G×G;A ×G).

Proof. Put S = { f � g : f ∈ Γc(G;A ), g ∈ Cc(G) }. Then for each
(s, t) ∈ G×G, {h(s, t) : h ∈ S } is easily seen to be dense in As×{t}, which
is the fibre of the bundle A × G over (s, t). Furthermore if u, v ∈ Cc(G)
and u⊗ v is the function in Cc(G×G) given by u⊗ v(s, t) = u(s)v(t), then
(u ⊗ v)h ∈ S for all u, v ∈ Cc(G) and h ∈ S. Then, because the u ⊗ v’s
span an inductive-limit dense subspace of Cc(G × G), a straightforward
partition of unity argument implies that spanS is dense as required (see
[11, Proposition II.14.6 and its remark] or [24, Proposition C.24]). �

For the study of the coaction associated to a Fell bundle over a group
(specifically, in Section 5) we will need the following slight variation on
Lemma 2.1:

Lemma 2.2. Let A → G be a Fell bundle. For f ∈ Γc(G;A ) and g ∈ Cc(G)
define f • g ∈ Cc(G×G,A ) by

f • g(s, t) = f(s)g(s−1t),

and define
f ? g(s, t) = (f • g(s, t), t).

Then f ?g ∈ Γc(G×G;A ×G), and such sections have inductive-limit-dense
span.

Proof. It is obvious that f?g ∈ Γc(G×G;A ×G). For the second statement,
let

S = span{ f ? g : f ∈ Γc(G;A ) and g ∈ Cc(G) }.
To show that S is dense, we want to invoke a partition of unity argument
exactly as in Lemma 2.1; thus it suffices to establish the following two as-
sertions:

(i) For each (s, t) ∈ G×G, the set {h(s, t) : h ∈ S } is dense in As×{t}.
(ii) For each κ, η ∈ Cc(G) and h ∈ S we have (κ • η)h ∈ S, where

similarly to the above we define κ • η(s, t) = κ(s)η(s−1t).
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(Note that (ii) suffices since the set of functions of the form κ• η have dense
span in Cc(G × G) for the inductive limit topology, because this set is the
image of the set {u ⊗ v : u, v ∈ Cc(G) } under the linear homeomorphism
Ψ : Cc(G×G) → Cc(G×G) defined by

Ψ(ϕ)(s, t) = ϕ(s, s−1t),

and the functions u⊗ v have dense span in the inductive limit topology.)
For (i), if as ∈ As we can choose f ∈ Γc(G;A ) and g ∈ Cc(G) such that

f(s) = as and g(s−1t) = 1, and then

f ? g(s, t) = (as, t).

For (ii), just observe that

(κ • η)(f ? g) = (κf) ? (ηg). �

3. Coactions from Fell bundles

As mentioned in the introduction, if α is an action of a locally compact
group G on a C∗-algebra B, then A = B × G has a natural Fell-bundle
structure such that C∗(G,A ) ∼= BoαG. Then the dual coaction on BoαG
gives us a coaction on C∗(G,A ). In this section, we show that if p : A → G
is any Fell bundle, then C∗(G,A ) admits a natural coaction δ generalizing
the dual coaction construction just described.

Proposition 3.1. Let A be a separable Fell bundle over a group G. There
is a unique coaction δ of G on C∗(G,A ) such that

(3.1) δ(ι(as)) = ι(as)⊗ s for as ∈ As and s ∈ G.

Proof. For the proof we will make explicit the canonical map u : G →
M(C∗(G)). Consider the map δ0 : A → M(C∗(G,A )⊗ C∗(G)) defined by
δ0(as) = ι(as)⊗u(s). This clearly gives a ∗-homomorphism of A , and nonde-
generacy of δ0 follows directly from nondegeneracy of ι. That δ0 is strictly
continuous follows from strict continuity of ι : A → M(C∗(G,A )) and
u : G→M(C∗(G)). To see this, let asi → as in A , and let x ∈ C∗(G,A )⊗
C∗(G). Since C∗(G,A ) embeds nondegenerately in M(C∗(G,A )⊗C∗(G))
via b 7→ b ⊗ 1, by the Hewitt–Cohen factorization theorem we can write
x = (b ⊗ 1)y for some b ∈ C∗(G,A ) and y ∈ C∗(G,A ) ⊗ C∗(G). Since
ι(asi)b → ι(as)b in norm, we have ι(asi)b ⊗ 1 → ι(as)b ⊗ 1 in norm in
M(C∗(G,A ) ⊗ C∗(G)). Since the map u : G → M(C∗(G)) is strictly con-
tinuous, and since asi → as implies si → s in G, we have (1 ⊗ u(si))y →
(1 ⊗ u(s))y in norm in C∗(G,A ) ⊗ C∗(G). Since multiplication is norm
continuous,(

ι(asi)⊗ u(si)
)
x =

(
ι(asi)⊗ u(si)

)
(b⊗ 1)y =

(
ι(asi)b⊗ 1

)(
1⊗ u(si)

)
y

converges in norm to(
ι(as)b⊗ 1

)(
1⊗ u(s)

)
y =

(
ι(as)⊗ u(s)

)
x.
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Thus Lemma 1.3 gives a unique nondegenerate ∗-homomorphism δ :
C∗(G,A ) → M(C∗(G,A ) ⊗ C∗(G)) such that δ ◦ ι = δ0, and by (1.7)
we have

δ(f) =
∫

G
ι(f(s))⊗ u(s) ds for f ∈ Γc(G;A ).

To see that δ is injective, let 1G : G → C be the constant function
with value 1, and regard 1G as an element of the Fourier–Stieltjes algebra
B(G) = C∗(G)∗. Then for f ∈ Γc(G;A ) equation (1.8) and strict continuity
of the slice map give

(id⊗ 1G)(δ(f)) =
∫

(id⊗ 1G)(ι(f(s))⊗ u(s)) ds =
∫
ι(f(s)) ds = f.

Thus (id⊗ 1G) ◦ δ = idC∗(G,A ) by continuity and density, so δ is injective.
Now if as ∈ As, then

(δ ⊗ id) ◦ δ0(as)) = (δ ⊗ id)(ι(as)⊗ u(s)) = ι(as)⊗ u(s)⊗ u(s)

= (id⊗ δG)(ι(as)⊗ u(s)) = (id⊗ δG) ◦ δ0(as).

Thus the coaction identity (1.2) follows from uniqueness in Lemma 1.3 to-
gether with the usual manipulations with vector valued integrals as justified,
for example, in [21, Lemma C.11].

Finally, for the nondegeneracy condition (1.3), we elaborate on the argu-
ment sketched in the paragraph preceding [7, Lemma 1.3]. Consider the map
ζ0 : A × G → M(C∗(G,A ) ⊗ C∗(G)) defined by ζ0(as, t) = ι(as) ⊗ u(t),
where A × G is the Fell bundle over G × G defined in Section 2. Ar-
guing as for δ0 shows that ζ0 is a strictly continuous nondegenerate ∗-
homomorphism, and so Lemma 1.3 gives a nondegenerate ∗-homomorphism
ζ : C∗(G×G,A ×G) →M(C∗(G,A )⊗ C∗(G)) such that ζ ◦ ι = ζ0.

In particular, using (1.7) and (1.8) we have, for f ∈ Γc(G;A ) and g ∈
Cc(G),

ζ(f � g) =
∫

G×G
ζ0

(
(f � g)(s, t)

)
d(s, t)

=
∫

G

∫
G
ζ0(f(s)g(t), t) ds dt

=
∫

G
ι(f(s)) ds⊗

∫
G
g(t)u(t) dt

= f ⊗ g,

which implies that ζ maps C∗(G×G,A ×G) onto (and into) C∗(G,A )⊗
C∗(G).

Similarly, if f ?g is the element of Γc(G×G;A ×G) defined in Lemma 2.2,
then for a⊗ b ∈ C∗(G,A )⊗ C∗(G) we have

ζ(f ? g)(a⊗ b) =
∫

G×G
ζ0(f ? g)(s, t)(a⊗ b) d(s, t)
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=
∫

G

∫
G
ζ0(f(s)g(s−1t), t)(a⊗ b) dt ds

=
∫

G

∫
G
ι(f(s))a⊗ g(s−1t)u(t)b dt ds

which, after t 7→ st, is

=
∫

G

∫
G
ι(f(s))a⊗ g(t)u(st)b dt ds

=
∫

G

∫
G

(
ι(f(s))⊗ u(s)

)(
a⊗ g(t)u(t)b

)
dt ds

=
(∫

G
δ0(f(s)) ds

)(∫
G

1⊗ g(t)u(t) dt
)
(a⊗ b)

= δ(f)(1⊗ g)(a⊗ b).

Thus, the multiplier δ(f)(1 ⊗ g) of C∗(G,A ) ⊗ C∗(G) coincides with the
image ζ(f ?g). The set of sections of the form f ?g was shown in Lemma 2.2
to have dense span in Γc(G×G;A ×G), so the images ζ(f ? g) have dense
span in C∗(G,A ) ⊗ C∗(G). It follows that δ satisfies the nondegeneracy
condition (1.3). �

Remark 3.2. It is clear from the above proof that saturation of the Fell
bundle A → G is not necessary for Proposition 3.1.

Remark 3.3. Not every coaction is isomorphic to one constructed from a
Fell bundle as in Proposition 3.1 [13, Example 2.3(6)]. For abelian G, in
[6, Theorem 11.14] Exel effectively characterizes which coactions do arise
from Fell bundles (modulo the correspondence between coactions of G and
actions of the Pontryagin dual group Ĝ).

Proposition 3.4. Let A be a separable Fell bundle over a group G, and let
δ be the coaction of G on C∗(G,A ) described in Proposition 3.1. Further let
π0 : A → M(B) be a strictly continuous nondegenerate ∗-homomorphism,
with integrated form π : C∗(G,A ) → M(B), and let µ : C0(G) → M(B)
be a nondegenerate homomorphism. Then the pair (π, µ) is a covariant
homomorphism of (C∗(G,A ), G, δ) if and only if

(3.2) π0(as)µ(f) = µ ◦ lts(f)π0(as) for s ∈ G, as ∈ As and f ∈ C0(G),

where lt is the action of G on C0(G) by left translation: lts(f)(t) = f(s−1t).

Proof. First assume that (π, µ) is covariant. Because B(G)∩C0(G) is dense
in C0(G), it suffices to verify (3.2) for f ∈ B(G). So fix f ∈ B(G), and put
g = lts(f) ∈ B(G). By [4, Proposition A.34], we have

(idB ⊗ g)
(
(µ⊗ id)(wG)

)
= µ(g)

where id⊗g : M(C0(G)⊗C∗(G)) →M(C0(G)) denotes the slice map. Then

µ ◦ lts(f)π0(as) = µ(g)π0(as) = (idB ⊗ g)
(
(µ⊗ id)(wG)

)
π0(as)



332 KALISZEWSKI, MUHLY, QUIGG AND WILLIAMS

which, by [4, Lemma A.30], is

= (idB ⊗ g)
(
(µ⊗ id)(wG)(π(ι(as))⊗ 1)

)
which, by the covariance condition (1.4), is

= (idB ⊗ g)
(
(π ⊗ id)(δ(ι(as)))(µ⊗ id)(wG)

)
= (idB ⊗ g)

(
(π(ι(as))⊗ u(s))(µ⊗ id)(wG)

)
= (idB ⊗ g)

(
(π0(as)⊗ 1)(µ⊗ id)

(
(1⊗ u(s))wG

))
which, after applying [4, Lemma A.30] and writing (lts−1 ⊗ id)(wG) for the
multiplier r 7→ u(sr), is

= π0(as)(idB ⊗ g)
(
(µ⊗ id)

(
(lts−1 ⊗ id)(wG)

))
which, since (µ ⊗ id) ◦ (lts−1 ⊗ id) = µ ◦ lts−1 ⊗ id as a nondegenerate
homomorphism of C0(G)⊗C∗(G) into M(B)⊗C∗(G) ⊆M(B⊗C∗(G)), is

= π0(as)(idB ⊗ g)
(
(µ ◦ lts−1 ⊗ id)(wG)

)
which, by [4, Proposition A.34], is

= π0(as)µ ◦ lts−1(g)

= π0(as)µ(f).

Conversely, the above computation can be rearranged to show that, if
(3.2) holds, then

(idB ⊗ g)
(
(µ⊗ id)(wG)(π(ι(as))⊗ 1)

)
= (idB ⊗ g)

(
(π ⊗ id)(δ(ι(as)))(µ⊗ id)(wG)

)
for every g ∈ B(G). Since slicing by elements of B(G) separates points in
M(C∗(G,A )⊗ C∗(G)), it follows that the covariance condition (1.4) holds
for every a of the form ι(as), which then implies (by Lemma 1.3) that it
holds for every element of C∗(G,A ). �

We include the following proposition since it might be useful elsewhere,
although we will not need it in the present paper.

Proposition 3.5. If α is an action of a group G on a C∗-algebra B, and
A → G is the associated semidirect-product Fell bundle, then the isomor-
phism

B oα G ∼= C∗(G,A )

carries the dual coaction α̂ to the coaction δ of G on C∗(G,A ) described in
Proposition 3.1.



COACTIONS AND FELL BUNDLES 333

Proof. We recall that the isomorphism θ : B oα G→ C∗(G,A ) is charac-
terized on generators by

θ(iB(b)iG(f)) =
∫

G
f(s)ι(b, s) ds for b ∈ B and f ∈ Cc(G)

(which follows from [12, §VIII.5.7]). Thus,

δ ◦ θ(iB(b)iG(f)) =
∫

G
f(s)δ(ι(b, s)) ds

=
∫

G
f(s)ι(b, s)⊗ s ds

=
∫

G
f(s)(θ ⊗ id)(iB(b)iG(s)⊗ s) ds

=
∫

G
f(s)(θ ⊗ id) ◦ α̂(iB(b)iG(s)) ds

= (θ ⊗ id) ◦ α̂(iB(b)iG(f)). �

4. Transformation bundles

Having defined a coaction δ on the C∗-algebra C∗(G,A ) of a Fell bundle
over a group, an obvious next step is to consider the corresponding crossed
product. In the next section, we will show that C∗(G,A )oδG is isomorphic
to the C∗-algebra of a Fell bundle over a groupoid. The purpose of this short
section is to describe that groupoid and Fell bundle.

Let G be a locally compact group, and let G×ltG denote the transforma-
tion groupoid associated to the action lt of G on itself by left translation,
with multiplication and inverse

(s, tr)(t, r) = (st, r) and (s, t)−1 = (s−1, st) for s, t, r ∈ G.

Note that the unit space is (G×lt G)0 = {e} ×G, and the range and source
maps are given by

r(s, t) = (e, st) and s(s, t) = (e, t).

It it not hard to check that we get a left Haar system on G×lt G via∫
G×ltG

f(u, v) dλr(s,t)(u, v) =
∫

G
f(u, u−1st) du for f ∈ Cc(G×lt G).

Now let A → G be a Fell bundle over the locally compact group G.
The map ϕ : (s, t) 7→ s is a groupoid homomorphism of G ×lt G onto the
group G. The pull-back Fell bundle ϕ∗A (see Lemma 1.1) will be called the
transformation Fell bundle A ×lt G → G ×lt G. We will use the bijection
(as, (s, t)) 7→ (as, t) to identify the total space of A ×ltG with the Cartesian
product A ×G. Then the multiplication is

(as, tr)(bt, r) = (asbt, r) for s, t, r ∈ G, as ∈ As and bt ∈ At,
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and the involution is
(as, t)∗ = (a∗s, st).

For future reference, the convolution in Γc(G×lt G;A ×lt G) is given by

(h ∗ k)(s, t) =
∫

G
h(u, u−1st)k(u−1s, t) du(4.1)

and the involution by

(4.2) h∗(s, t) = h
(
(s, t)−1

)∗ = h(s−1, st)∗.

Note that every h ∈ Γc(G×lt G;A ×lt G) is of the form

h(s, t) =
(
h1(s, t), t

)
for a continuous function h1 : G×lt G→ A with h1(s, t) ∈ As.

5. Coaction crossed product

Our purpose in this section is to prove the following:

Theorem 5.1. Let A be a separable Fell bundle over a group G, and let
δ be the associated coaction on C∗(G,A ) described in Proposition 3.1. If
q : A ×lt G→ G×lt G is the transformation Fell bundle constructed in the
preceding section, then there is an isomorphism

θ : C∗(G,A ) oδ G→ C∗(G×lt G,A ×lt G)

such that

(5.1) θ
(
jC∗(G,A )(f)jG(g)

)
= (∆

1
2 f)�g for f ∈ Γc(G;A ) and g ∈ Cc(G),

where (∆
1
2 f) � g ∈ Γc(G×lt G;A ×lt G) is defined by

((∆
1
2 f) � g)(s, t) = (∆(s)

1
2 f(s)g(t), t).

Remark 5.2. For G discrete, this is a special case of [5, Corollary 2.8].

Proof. We will obtain θ as the integrated form of a covariant homomor-
phism (θA , θG) of (C∗(G,A ), G, δ) into M(C∗(G×ltG,A ×ltG)) such that

(5.2) θA (f)θG(g) = (∆
1
2 f) � g ∈ Γc(G×lt G;A ×lt G)

for f ∈ Γc(G;A ) and g ∈ Cc(G). It will follow that θ = θA o θG maps
Aoδ G into C∗(G×lt G,A ×lt G), satisfies (5.1), and is surjective because

{ f � g : f ∈ Γc(G;A ), g ∈ Cc(G) }

has inductive-limit-dense span in Γc(G×ltG;A ×ltG). We will show that θ
is injective by finding a representation Π of C∗(G×lt G,A ×lt G) such that
Π ◦ θ is a faithful regular representation of C∗(G,A ) oδ G.

We will obtain θA : C∗(G,A ) → M
(
C∗(G ×lt G,A ×lt G)

)
as the inte-

grated form of a ∗-homomorphism θA
0 : A → M

(
C∗(G ×lt G,A ×lt G)

)
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(as in Lemma 1.3). Given as ∈ As, we define an operator θA
0 (as) on

Γc(G×lt G;A ×lt G) by6

(5.3) (θA
0 (as)h)(t, r) =

(
ash1(s−1t, r)∆(s)

1
2 , r

)
.

Then it is straightforward to verify that θA
0 (as)θA

0 (at) = θA
0 (asat). More-

over, if h, k ∈ Γc(G×lt G;A ×lt G), we have〈
θA
0 (as)h , k

〉
(t, r) =

(
(θA

0 (as)h)∗ ∗ k
)
(t, r)

which, in view of the formula for convolution given by (4.1), is

=
∫

G
(θA

0 (as)h)∗(u, u−1tr) k(u−1t, r) du

which, using the formula for the involution given by (4.2), is

=
∫

G
(θA

0 (as)h)(u−1, tr)∗ k(u−1t, r) du

=
∫

G

(
ash1(s−1u−1, tr)∆(s)

1
2 , tr

)∗ (
k1(u−1t, r), r

)
du

=
∫

G

(
h1(s−1u−1, tr)∗a∗s∆(s)

1
2 , u−1tr

) (
k1(u−1t, r), r

)
du

=
∫

G

(
h1(s−1u−1, tr)∗a∗sk1(u−1t, r), r

)
∆(s)

1
2du

which, after sending u 7→ us−1, is

=
∫

G

(
h1(u−1, tr)∗a∗sk1(su−1t, r), r

)
∆(s)−

1
2du

=
∫

G

(
h1(u−1, tr)∗, u−1tr

)(
a∗sk1(su−1t, r)∆(s)−

1
2 , r

)
du

=
∫

G

(
h1(u−1, tr), tr

)∗(
a∗sk1(su−1t, r)∆(s)−

1
2 , r

)
du

=
∫

G
h(u−1, tr)∗(θA

0 (a∗s)k)(u
−1t, r) du

=
∫

G
h∗(u, u−1tr)(θA

0 (a∗s)k)(u
−1t, r) du

=
(
h∗ ∗ (θA

0 (a∗s)k)
)
(t, r)

=
〈
h , θA

0 (a∗s)k
〉
(t, r).

6The operator θA
0 (as) defined in (5.3) is analogous to ι(as) defined in Lemma 1.2. The

modular function appearing in its definition is required to make θA
0 ∗-preserving. We need

it here because there is no modular function in the involution in Γc(G×lt G; A ×lt G).
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If we choose be ∈ Ãe such that ‖as‖21Ae − a∗sas = b∗ebe, then since θA
0 makes

sense and is multiplicative on Ãe, and since the preceding computation cer-
tainly holds for be ∈ Ãe, we see that

‖as‖2
〈
h , h

〉
−

〈
θA
0 (as)h , θA

0 (as)h
〉

=
〈
θA
0 (‖as‖21Ae − a∗sas)h , h

〉
=

〈
θA
0 (be)h , θA

0 (be)h
〉
≥ 0

for all h ∈ Γc(G ×lt G;A ×lt G). Thus θA
0 (as) extends to a bounded ad-

jointable operator on C∗(G×lt G,A ×lt G) and we get a ∗-homomorphism
θA
0 : A →M(C∗(G×lt G,A ×lt G)).
We need to show that θA

0 is strictly continuous and nondegenerate. For
nondegeneracy, let {ei} be an approximate identity in Ae. It suffices to show
that if h ∈ Γc(G ×lt G;A ×lt G) then θA

0 (ei)h → h in the inductive limit
topology.7 Notice that

θA
0 (ei)h(r, t) = (eih1(r, t), t).

Since each Ar is an Ae –Ae-imprimitivity bimodule, eih1(r, t) → h1(r, t) for
any (r, t) ∈ G×lt G. Fix ε > 0. Since a 7→ ‖a‖ is continuous on A , we can
cover supph1 with open sets V1, . . . , Vn and find aj ∈ Ae such that

‖ajh1(r, t)− h1(r, t)‖ <
ε

3
for all (r, t) ∈ Vj .

Let {ϕj } ⊆ C+
c (G×ltG) be such that suppϕj ⊆ Vj and

∑
j ϕj(r, t) ≤ 1 for

all (r, t), with equality for (r, t) ∈ supph1. Define a ∈ Cc(G×lt G,Ae) by

a(r, t) =
∑

j

ϕj(r, t)aj .

Then
‖a(r, t)h1(r, t)− h1(r, t)‖ <

ε

3
for all (r, t).

Clearly, there is an i0 such that i ≥ i0 implies that

‖eia(r, t)− a(r, t)‖ < ε

3(‖h1‖∞ + 1)
for all (r, t).

Since ‖ei‖ ≤ 1 for all i, we see that i ≥ i0 implies

‖θA
0 (ei)h(r, t)− h(r, t)‖

= ‖eih1(r, t)− h1(r, t)‖
≤ ‖eih1(r, t)− eia(r, t)h1(r, t)‖+ ‖e1a(r, t)h1(r, t)− a(r, t)h1(r, t)‖

+ ‖a(r, t)h1(r, t)− h1(r, t)‖
≤ 2‖h1(r, t)− a(r, t)h1(r, t)‖+ ‖eia(r, t)− a(r, t)‖‖h1‖∞

<
ε

3
+
ε

3
+
ε

3
= ε.

7This could be proved using [16, Lemma 8.1]. However, the proof of that lemma given
in [16] is incorrect. Fortunately, it can be fixed along the same lines as presented here.
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Therefore θA
0 (ei)h → h uniformly, so since supp θA

0 (ei)h = supph for all i,
we have θA

0 (ei)h→ h in the inductive limit topology, as desired.
Finally, for strict continuity we note that our separability assumption on

p : A → G guarantees that A is second countable [11, Proposition II.13.21].
Thus, it suffices to show that θA

0 takes convergent sequences to strictly
convergent sequences.

So suppose { ai } is a sequence converging to a in A . Let s = p(a),
and for each i, let si = p(ai); so si → s in G. Since { ai } must lie in a
norm-bounded subset of A , the image { θA

0 (ai) } is a bounded sequence in
M(C∗(G ×lt G,A ×lt G)). Thus it suffices to show that θA

0 (ai) → θA
0 (a)

∗-strongly [21, Proposition C.7]. Since a∗i → a∗ and θA
0 is ∗-preserving, it

suffices to show strong convergence. Since { θA
0 (ai) } is bounded, it suffices

to show that θA
0 (ai)h → θA

0 (a)h in the inductive limit topology for each
h ∈ Γc(G×lt G;A ×lt G).

We can replace {ai} by a subsequence (keeping the same notation) such
that the si’s lie in a fixed compact neighborhood of s. Then the supports
of the θA

0 (ai)h’s all lie in a fixed compact set, so it suffices to show that
θA
0 (ai)h → θA

0 (a)h uniformly. If not, then there are (ri, ti), all lying in a
compact subset of G×lt G, and an ε > 0 such that

(5.4) ‖θA
0 (ai)h(ri, ti)− θA

0 (a)h(ri, ti)‖ ≥ ε.

Of course, we can pass to a subsequence, relabel, and assume that (ri, ti) →
(r, t). But the left-hand side of (5.4) equals

(5.5) ‖aih1(s−1
i ri, ti)− ah1(s−1ri, ti)‖.

Since (ai, h1(s−1
i ri, ti)) and (a, h1(s−1ri, ti)) both converge to (a, h1(s−1r, t))

in A ×A , and since multiplication is continuous from A ×A → A , it follows
that aih1(s−1

i ri, ti)−ah1(s−1ri, ti) tends to 0Ar in A . Therefore, (5.5) tends
to zero, and this contradicts (5.4). Thus θA

0 is strictly continuous.
Having dealt with θA

0 , we turn to the definition of θG. For f ∈ C0(G)
and h ∈ Γc(G×lt G;A ×lt G) define

(5.6) (θG(f)h)(s, t) = (f(st)h1(s, t), t).

We note that (5.6) makes perfectly good sense for f ∈ C0(G)∼, and then
θG(fg) = θG(f)θG(g) for f, g ∈ C0(G)∼. Another computation shows that〈

θG(f)h , k
〉

=
〈
h , θG(f)k

〉
for all such f . Writing ‖f‖2

∞ − ff = gg for some g ∈ C0(G)∼, we thus have

‖f‖2
∞

〈
h , h

〉
−

〈
θG(f)h , θG(f)h

〉
=

〈
θG(g)h , θG(g)h

〉
≥ 0

for all h. Therefore θG(f) is bounded and we get a ∗-homomorphism of
C0(G) into M

(
C∗(G×lt G,A oltG)

)
.8

8In fact, modulo the obvious identification of G with (G×lt G)(0), θG is just the natural

map of C0(G(0)) into the multiplier algebra of the C∗-algebra C∗(G, B) of a Fell bundle
over a groupoid G.
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We let θA be the integrated form of θA
0 (see Lemma 1.3). To see that

(θA , θG) is covariant, we will use Proposition 3.4. For as ∈ As, f ∈ Cc(G),
h ∈ Γc(G×G;A ×G), and r, t ∈ G we have(

θA
0 (as)θG(f)h

)
(r, t) =

(
as(θG(f)h)1(s−1r, t)∆(s)

1
2 , r

)
=

(
asf(s−1rt)h1(s−1r, t)∆(s)

1
2 , r

)
=

(
lts(f)(rt)ash1(s−1r, t)∆(s)

1
2 , r

)
=

(
lts(f)(rt)(θA

0 (as)h)1(r, t), r
)

=
(
θG ◦ lts(f)θA

0 (as)h
)
(r, t).

To verify (5.2), for h ∈ Γc(G×lt G;A ×lt G) we have(
θA (f)θG(g)h

)
(s, t) =

∫ (
θA
0 (f(r))θG(g)h

)
(s, t) dr

=
∫ (

f(r)(θG(g)h)1(r−1s, t)∆(r)
1
2 , t

)
dr

=
∫ (

f(r)g(r−1st)h1(r−1s, t)∆(r)
1
2 , t

)
dr

=
∫ (

f(r)∆(r)
1
2 g(r−1st), r−1st

)(
h1(r−1s, t), t

)
dr

=
∫ (

(∆
1
2 f) � g

)
(r, r−1st)h(r−1s, t) dr

=
((

(∆
1
2 f) � g

)
∗ h

)
(s, t).

As outlined at the start of the proof, it follows from the above that the
integrated form θ = θA o θG maps A oδ G onto C∗(G ×lt G,A ×lt G).
To show that θ is faithful, we will now construct a representation Π of
C∗(G ×lt G,A ×lt G) such that Π ◦ θ is the regular representation Λ =
(πA ⊗λ)◦δo(1⊗M) associated to a faithful representation πA of C∗(G,A ).
This will suffice since Λ is faithful by [4, Remark A.43(3)].

So let πA be a faithful nondegenerate representation of C∗(G,A ) on a
Hilbert space H. Of course, πA is the integrated form of a representation
πA

0 of A , by Lemma 1.3. For h ∈ Γc(G×ltG;A ×ltG) and ξ ∈ Cc(G,H) ⊆
H⊗ L2(G), define Π0(h)ξ : G→ H by

(5.7)
(
Π0(h)ξ

)
(t) =

∫
G
πA

0

(
h1(s, s−1t)

)
ξ(s−1t)∆(s)−

1
2 ds;

the integrand is in Cc(G × G,H), so (5.7) does define a vector in H, and
Π0(h)ξ ∈ Cc(G,H). It follows that (5.7) defines a linear operator Π0(h) on
the dense subspace Cc(G,H) of H⊗ L2(G).

By [16, Theorem 4.13], to show that Π0 extends to a representation

Π : C∗(G×lt G,A ×lt G) → B(H⊗ L2(G)),
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it suffices to show that Π0 is a pre-representation of A ×lt G on Cc(G,H).
Recall from [16, Definition 4.1] that to say that Π0 is a pre-representation
means that Π0 : Γc(G×ltG;A ×ltG) → Lin(Cc(G,H)) (where Lin(Cc(G,H))
denotes the algebra of all linear operators on the vector space Cc(G,H)) is
an algebra homomorphism such that for all ξ, η ∈ Cc(G,H):

(i) h 7→
〈
Π0(h)ξ , η

〉
is continuous in the inductive limit topology;

(ii)
〈
Π0(h)ξ , η

〉
=

〈
ξ , Π0(h∗)η

〉
; and

(iii) Π0(Γc(G×lt G;A ×lt G))Cc(G,H) has dense span in H⊗ L2(G).
Π0 is obviously linear; we verify that it is multiplicative: for

f, g ∈ Γc(G×lt G;A ×lt G) and ξ ∈ Cc(G,H)

we have(
Π0(f ∗ g)ξ

)
(t)

=
∫

G
πA

0

(
(f ∗ g)1(s, s−1t)

)
ξ(s−1t)∆(s)−

1
2 ds

=
∫

G

∫
G
πA

0

(
f1(r, r−1t)g1(r−1s, s−1t)

)
ξ(s−1t)∆(s)−

1
2 ds dr

which, after s 7→ rs, is

=
∫

G

∫
G
πA

0

(
f1(r, r−1t)g1(s, s−1r−1t)

)
ξ(s−1r−1t)∆(rs)−

1
2 ds dr

=
∫

G
πA

0

(
f1(r, r−1t)

)
·
(∫

G
πA

0

(
g1(s, s−1r−1t)

)
ξ(s−1r−1t)∆(s)−

1
2 ds

)
∆(r)−

1
2 dr

=
(
Π0(f)Π0(g)ξ

)
(t).

For (i), it suffices to show that if K ⊆ G × G is compact and {hn} is a
sequence converging uniformly to 0 in ΓK(G×lt G,A ×lt G) then〈

Π0(hn)ξ , η
〉
→ 0 for all ξ, η ∈ Cc(G,H).

We have〈
Π0(hn)ξ , η

〉
=

∫
G

〈(
Π0(hn)ξ

)
(t) , η(t)

〉
dt

=
∫

G

∫
G

〈
πA

0 (hn(s, s−1t))ξ(s−1t) , η(t)
〉
ds dt,

which converges to 0 since the integrands converge uniformly to 0 and the
integration is over a compact set.

For (ii) we have〈
Π0(h)ξ , η

〉
=

∫
G

〈(
Π0(h)ξ

)
(t) , η(t)

〉
dt
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=
∫

G

∫
G

〈
πA

0 (h1(s, s−1t))ξ(s−1t) , η(t)
〉
∆(s)−

1
2 dt ds

=
∫

G

∫
G

〈
ξ(s−1t) , πA

0 (h1(s, s−1t)∗)η(t)
〉
∆(s)−

1
2 dt ds

which, after t 7→ st, is

=
∫

G

∫
G

〈
ξ(t), πA

0 (h1(s, t)∗)η(st)
〉
∆(s)−

1
2 dt ds

which, after s 7→ s−1, is

=
∫

G

∫
G

〈
ξ(t) , πA

0 (h1(s−1, t)∗)η(s−1t)
〉
∆(s)−

1
2 dt ds

=
∫

G

∫
G

〈
ξ(t) , πA

0 ((h∗)1(s, s−1t))η(s−1t)
〉
∆(s)−

1
2 ds dt

=
∫

G

〈
ξ(t) ,

(
Π0(h∗)η

)
(t)

〉
dt

=
〈
ξ , Π0(h∗)η

〉
.

For (iii), it suffices to show that for f ∈ Γc(G;A ) and g ∈ Cc(G) we have

Π0((∆
1
2 f) � g) = (πA ⊗ λ) ◦ δ(f)(1⊗Mg),

because the ranges of the operators on the right-hand side have dense span
in H ⊗ L2(G) since the regular representation of A ×δ G is nondegenerate.
For ξ ∈ Cc(G,H) we have(

Π0

(
(∆

1
2 f) � g

)
ξ
)
(t) =

∫
G
πA

0

(
(f � g)1(s, s−1t)

)
ξ(s−1t)∆(s)−

1
2 ds

=
∫

G
πA

0 (f(s))g(s−1t)ξ(s−1t) ds

=
∫

G
πA

0 (f(s))(Mgξ)(s−1t) ds

=
∫

G
πA

0 (f(s))(λsMgξ)(t) ds

=
∫

G

((
πA

0 (f(s))⊗ λsMg

)
ξ
)
(t) ds

=
∫

G

((
πA (ι(f(s)))⊗ λsMg

)
ξ
)
(t) ds

=
∫

G

((
πA ⊗ λ

)(
ι(f(s))⊗ u(s)

)(
1⊗Mg

)
ξ
)
(t) ds

=
∫

G

(
(πA ⊗ λ) ◦ δ(ι(f(s)))(1⊗Mg)ξ

)
(t) ds

=
(
(πA ⊗ λ) ◦ δ(f)(1⊗Mg)ξ

)
(t).
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As we explained above, we now can conclude that Π0 extends uniquely
to a nondegenerate representation Π of C∗(G×lt G,A ×lt G), and then the
above calculation verifies that Π ◦ θ agrees with the regular representation
Λ = (πA ⊗ λ) ◦ δ × (1⊗M) on the generators jA(f)jG(g) for f ∈ Γc(G;A )
and g ∈ Cc(G). Hence Π ◦ θ = Λ on all of C∗(G,A ) ×δ G by linearity,
continuity, and density. �

6. Semidirect-product bundles

To prove our main theorem in Section 8, we are going to need to build
a Fell bundle over groupoid arising as a semidirect product. In this sec-
tion, we give the construction of this semidirect-product Fell bundle. We
will investigate the structure of the corresponding Fell bundle C∗-algebra in
Section 7.

To begin, let G be a locally compact Hausdorff groupoid with Haar system
{λu }u∈G(0) , and let G be a second countable locally compact group. An
action of G on G is a homomorphism β : G→ AutG such that (x, t) 7→ βt(x)
is continuous from G × G to G. (Note that automorphisms of a groupoid
do not necessarily fix the unit space pointwise.) Given an action β of G on
G, the semidirect-product groupoid G ×β G comprises the Cartesian product
G ×G with multiplication

(x, t)(y, s) = (xβt(y), ts)

whenever s(x) = βt(r(y)) and inverse (x, t)−1 = (βt−1(x−1), t−1) ([22, Defi-
nition I.1.7]). Note that we have (G ×β G)0 = G0 × {e}, with

r(x, t) = (r(x), e) and s(x, t) = (β−1
t (s(x)), e).

Also note that Cc(G)� Cc(G) is inductive-limit dense in Cc(G ×β G).
Now suppose p : B → G is a separable Fell bundle over G. An action

of G on B is a homomorphism α : G → AutB such that (b, t) 7→ αt(b) is
continuous from B ×G→ B, together with an associated action β of G on
G such that p

(
αt(b)

)
= βt

(
p(b)

)
for all t ∈ G and b ∈ B.

Remark 6.1. The compatibility of α and β allows us to write down, for
each t ∈ G, an automorphism αt of Γc(G;B) given by

(6.1) αt(f)(x) = αt

(
f(β−1

t (x)
)
.

Since αt is clearly continuous from the inductive limit topology to the norm
topology, it follows from Proposition 1.8 that αt extends to an automorphism
of C∗(G,B). Similarly, t 7→ αt(f) is continuous from G into C∗(G,B), so
we obtain an action α of G on C∗(G,B).

Proposition 6.2. Let α be an action of G on a Fell bundle p : A → G, with
associated action β of G on G. Then the Banach bundle q : B×αG→ G×βG
with total space B × G and bundle projection q(b, t) = (p(b), t) becomes a
Fell bundle when equipped with the multiplication given by

(bx, t)(cy, s) = (bxαt(cy), ts) whenever s(x) = r(βt(y))
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and the involution given by

(bx, t)∗ = (αt−1(bx)∗, t−1).

We refer to a Fell bundle which arises from a group action as in Proposi-
tion 6.2 as a semidirect-product Fell bundle.

Sketch of Proof. For convenience, we’ll write C(x,t) for the fibre of B×αG
over (x, t). Verifying the axioms that B ×α G is a Fell bundle is routine
with the possible exception of seeing that C(x,t) is a C(r(x),e) –C(β−1

t (s(x)),e)-
imprimitivity bimodule via the operations inherited from B ×α G. How-
ever, C(x,t) is naturally identified with Bx, and the latter is given to be a
Br(x) –Bs(x)-imprimitivity bimodule with respect to the operations inherited
from B. Furthermore, αt restricts to a C∗-algebra isomorphism of Bβ−1

t (s(x))

onto Bs(x). Therefore Bx is naturally a Br(x) –Bβ−1
t (s(x))-imprimitivity bi-

module. The right action is given by x · b = xαt(b) and the right inner
product is given by

〈x, y〉B
β−1

t (s(x))
= α−1

t

(
〈x , y〉Bs(x)

)
.

Now it is a simple matter to see that the given operations in B×αG induce
the same structure on C(x,t) as does the identification of C(x,t) with Bx. �

In order to have a Haar system on a semidirect-product groupoid G×βG,
we will need β to be compatible with the Haar system on G in the following
sense.

Definition 6.3. An action β : G → AutG is invariant if for all u ∈ G(0),
f ∈ Cc(G), and t ∈ G we have∫

G
f(βt(y)) dλu(y) =

∫
G
f(y) dλβt(u)(y),

i.e., βt transforms the measure on r−1(u) to the measure on r−1(βt(u)). If
α : G→ AutB is an action on a Fell bundle B → G with associated action
β : G→ AutG, we say α is invariant if β is.

Proposition 6.4. Let β : G→ AutG be an invariant action on a groupoid
G with Haar system {λu}u∈G(0). Then

dλ(u,e)(y, s) = dλu(y) ds

is a Haar system on G ×β G.

Proof. The left-invariance property we need is that for h ∈ Cc(G×βG) and
(x, t) ∈ G ×β G we have∫

G×G
h
(
(x, t)(y, s)

)
dλs(x,t)(y, s) =

∫
G×G

h(y, s) dλr(x,t)(y, s),
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and it suffices to take h = f ⊗g, where f ∈ Gc(G) and g ∈ Cc(G). Fix x ∈ G
with s(x) = v and r(x) = u. In the left-hand integral we must have

(r(y), e) = r(y, s) = s(x, t) = (β−1
t (s(x)), e) = (β−1

t (v), e),

and in the right-hand integral we must have

(r(y), e) = (r(x), e) = (u, e).

Since
(x, t)(y, s) = (xβt(y), ts),

we must show that∫
G

∫
G
f(xβt(y))g(ts) ds dλβ−1

t (v)(y) =
∫
G

∫
G
f(y)g(s) ds dλu(y).

We have∫
G

∫
G
f(xβt(y))g(ts) ds dλβ−1

t (v)(y) =
∫
G
f(xβt(y))

∫
G
g(ts) ds dλβ−1

t (v)(y)

=
∫
G
f(xβt(y)) dλβ−1

t (v)(y)
∫

G
g(s) ds

and similarly∫
G

∫
G
f(y)g(s) ds dλu(y) =

∫
G
f(y) dλu(y)

∫
G
g(s) ds,

so it remains to verify∫
G
f(xβt(y)) dλβ−1

t (v)(y) =
∫
G
f(y) dλu(y).

But invariance of the action β gives∫
G
f(xβt(y)) dλβ−1

t (v)(y) =
∫
G
f(xy) dλv(y),

which equals
∫
G f(y) dλu(y) because λ is a Haar system. �

For reference, we record the formula for convolution in Cc(G ×β G):

(h ∗ k)(x, t) =
∫
G

∫
G
h(y, s)k

(
β−1

s (y−1x), s−1t
)
ds dλr(x)(y).

Thus in Γc(G ×β G;B ×α G) the convolution is given by

(h ∗ k)(x, t) =
∫
G

∫
G
h(y, s)k

(
β−1

s (y−1x), s−1t
)
ds dλr(x)(y)

=
∫
G

∫
G
(h1(y, s), s)

(
k1

(
β−1

s (y−1x), s−1t
)
, s−1t

)
ds dλr(x)(y)

=
∫
G

∫
G

(
h1(y, s)αs

(
k1

(
β−1

s (y−1x), s−1t
))
, t

)
ds dλr(x)(y).
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As with product bundles (see Section 2), each section h ∈ Γc(G×βG;B×αG)
is of the form

h(x, t) = (h1(x, t), t),
where h1 ∈ Cc(G ×β G,B) satisfies h1(x, t) ∈ Bx. So in particular

(6.2) (h ∗ k)1(x, t) =
∫
G

∫
G
h1(y, s)αs

(
k1

(
β−1

s (y−1x), s−1t
))
ds dλr(x)(y).

The involution in Γc(G ×β G;B ×α G) is given by

h∗(x, t) = h
(
(x, t)−1

)∗ = h
(
β−1

t (x−1), t−1
)∗ =

(
h1

(
β−1

t (x−1), t−1
)
, t−1

)∗
=

(
αt

(
h1

(
β−1

t (x−1), t−1
)∗)

, t
)
,

so in particular
h∗1(x, t) = αt

(
h1

(
β−1

t (x−1), t−1
)∗)

.

7. Action crossed product

We now relate the C∗-algebra of a semidirect-product bundle to the
crossed product.

Theorem 7.1. Let p : B → G be a separable Fell bundle over a locally
compact Hausdorff groupoid with Haar system {λu}u∈G(0), and let α : G →
AutB be an action of a second countable locally compact group G on B
with an invariant associated action β of G on G. Let

q : B ×α G→ G ×β G

denote the associated semidirect-product Fell bundle over the semidirect-
product groupoid as defined in Section 6, and let α : G → AutC∗(G,B)
denote the concomitant action described in Remark 6.1. Then there is a
unique isomorphism

σ : C∗(G,B) oα G −→ C∗(G ×β G,B ×α G)

such that if f ∈ Γc(G;B) and g ∈ Cc(G) then σ(iB(f)iG(g)) is the continu-
ous compactly supported section of B ×α G given by

(7.1) σ
(
iB(f)iG(g)

)
(x, t) =

(
f(x)g(t)∆(t)

1
2 , t

)
.

Proof. Uniqueness is immediate from density. For existence, we will ob-
tain σ as the integrated form of a covariant homomorphism (σB, σG) of
(C∗(G,B), G, α) into M(C∗(G ×β G,B ×α G)) such that

(7.2) σB(f)σG(g) = f � (∆
1
2 g) ∈ Γc(G ×β G;B ×α G)

for f ∈ Γc(G;B) and g ∈ Cc(G). It will follow that σ maps C∗(G,B) oα G
into C∗(G×βG,B×αG), satisfies (7.1), and is surjective because the sections
in (7.2) have inductive-limit-dense span in Γc(G ×β G;B ×α G).

To define σB, we appeal to Proposition 1.7, viewing C∗(G×βG,B×αG) as
a right Hilbert module over itself, with dense subspace Γc(G ×β G;B×αG).



COACTIONS AND FELL BUNDLES 345

For f ∈ Γc(G;B) we define a linear operator σB(f) on Γc(G ×β G;B ×α G)
by (

σB(f)h
)
(y, t) =

∫
G

(
f(x)h1(x−1y, t), t

)
dλr(y)(x).

Seeing that σB : Γc(G;B) → Lin(Γc(G ×β G;B ×α G)) is an algebra homo-
morphism is straightforward: for f, g ∈ Γc(G;B) and h ∈ Γc(G×βG;B×αG)
we have(
σB(f)σB(g)h

)
(y, t) =

∫
G

(
f(x)

(
σB(g)h

)
1
(x−1y, t), t

)
dλr(y)(x)

=
∫
G

∫
G

(
f(x)g(z)h1(z−1x−1y, t), t

)
dλs(x)(z) dλr(y)(x),

which, after using Fubini and sending z 7→ x−1z, is

=
∫
G

∫
G

(
f(x)g(x−1z)h1(z−1y, t), t

)
dλr(y)(x) dλr(y)(z)

=
∫
G

(
f ∗ g(z)h1(z−1y, t), t

)
dλr(y)(z)

=
(
σB(f ∗ g)h

)
(y, t).

Thus, it remains to verify that σB satisfies (i), (ii) and (iii) of Proposition 1.7.
To check (i), we compute as follows. For h, k ∈ Γc(G ×β G;B ×α G), we

have〈
σB(f)h , k

〉
1
(x, t) =

(
(σB(f)h)∗ ∗ k)1(x, t)

=
∫
G

∫
G
(σB(f)h)∗1(y, s)αs

(
k1(β−1

s (y−1x), s−1t)
)
ds dλr(x)(y)

=
∫
G

∫
G
αs

(
(σB(f)h)1(β−1

s (y−1), s−1)
)∗
αs

(
k1(β−1

s (y−1x), s−1t)
)
ds dλr(x)(y)

=
∫
G

∫
G

∫
G
αs

(
f(z)h1(z−1β−1

s (y−1), s−1)
)∗
αs

(
k1(β−1

s (y−1x), s−1t)
)

dλr(β−1
s (y−1))(z) ds dλr(x)(y)

=
∫
G

∫
G

∫
G
αs

(
h1(z−1β−1

s (y−1), s−1)∗f(z)∗k1(β−1
s (y−1x), s−1t)

)
dλr(β−1

s (y−1))(z) ds dλr(x)(y)

which, after z 7→ β−1
s (y−1)z for fixed y, is

=
∫
G

∫
G

∫
G
αs

(
h1(z−1, s−1)∗f(β−1

s (y−1)z)∗k1(β−1
s (y−1x), s−1t)

)
dλs(β−1

s (y−1))(z) ds dλr(x)(y)
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which, by invariance of the action β (in the variable z), is

=
∫
G

∫
G

∫
G
αs

(
h1(β−1

s (z−1), s−1)∗f(β−1
s (y−1z))∗k1(β−1

s (y−1x), s−1t)
)

λs(y−1)(z) ds dλr(x)(y)

which, by Fubini, is

=
∫
G

∫
G

∫
G
αs

(
h1(β−1

s (z−1), s−1)∗f(β−1
s (y−1z))∗k1(β−1

s (y−1x), s−1t)
)

dλr(x)(y) ds λr(x)(z)

which, after y 7→ zy for fixed z, is

=
∫
G

∫
G

∫
G
αs

(
h1(β−1

s (z−1), s−1)∗f(β−1
s (y−1))∗k1(β−1

s (y−1z−1x), s−1t)
)

dλs(z)(y) ds λr(x)(z)

which, by invariance of β (in y), is

=
∫
G

∫
G

∫
G
αs

(
h1(β−1

s (z−1), s−1)∗f(y−1)∗k1(y−1β−1
s (z−1x), s−1t)

)
dλs(β−1

s (z))(y) ds λr(x)(z)

=
∫
G

∫
G

∫
G
αs

(
h1(β−1

s (z−1), s−1)∗
)
αs

(
f∗(y)k1(y−1β−1

s (z−1x), s−1t)
)

dλr(β−1
s (z−1x))(y) ds dλr(x)(z)

=
∫
G

∫
G
h∗1(z, s)αs

(
(σB(f∗)k)1(β−1

s (z−1x), s−1t)
)
ds dλr(x)(z)

=
(
h∗ ∗ (σB(f∗)k)

)
1
(x, t)

=
〈
h , σB(f∗)k

〉
1
(x, t).

To check the continuity condition (ii) of Proposition 1.7, it suffices to
show that if L ⊆ G is compact and fi → 0 uniformly in ΓL(G,B), then for
each h, k ∈ Γc(G×β G;B×αG) there exists a compact set K ⊆ G×β G such
that

〈
σB(fi)h , k

〉
→ 0 uniformly in ΓK(G ×β G,B×αG). Using continuity

of the action of G on G, it is routine to verify that for any such h and k
there exists a compact set K such that supp

〈
σB(fi)h , k

〉
⊆ K for every i.

Then, to verify uniform convergence, we notice that for each i,

‖
〈
σB(fi)h , k

〉
‖∞ ≤M‖fi‖∞‖h‖∞‖k‖∞,

where M = supu∈G(0) λ(e,u)(K).
For the nondegeneracy condition (iii) of Proposition 1.7, note that if f, g ∈

Γc(G;B) and h ∈ Cc(G), then

σB(f)(g � h) = (f ∗ g) � h,
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where g�h ∈ Γc(G ×β G;B×αG) is defined by (g�h)(x, t) = (g(x)h(t), t).
Letting f run through an approximate identity {fi} for Γc(G;B) in the
inductive limit topology (see [16, Proposition 6.10]), we have fi ∗ g → g,
hence (fi ∗ g) � h → g � h, both nets converging in the inductive limit
topology. Since such sections g�h have dense span in Γc(G ×β G;B×αG),
hence in C∗(G ×β G,B ×α G), nondegeneracy follows.

Now we conclude from Proposition 1.7 that σB extends to a nondegener-
ate ∗-homomorphism of C∗(G,B) into M(C∗(G×βG,B×αG)), as required.

We now turn to σG. Fix s ∈ G, and for each h ∈ Γc(G ×β G;B ×α G),
define σG(s)h ∈ Γc(G ×β G;B ×α G) by(

σG(s)h
)
(x, t) =

(
αs

(
h1

(
β−1

s (x), s−1t
))

∆(s)
1
2 , t

)
.

Then for h, k ∈ Γc(G ×β G;B ×α G) we have〈
σG(s)h , σG(s)k

〉
1
(x, t) =

(
(σG(s)h)∗ ∗ (σG(s)k)

)
1
(x, t)

=
∫
G

∫
G
(σG(s)h)∗1(y, r)αr

(
(σG(s)k)1(β−1

r (y−1x), r−1t)
)
dr dλr(x)(y)

=
∫
G

∫
G
αr

(
(σG(s)h)1(β−1

r (y−1), r−1)∗
)

αr

(
(σG(s)k)1(β−1

r (y−1x), r−1t)
)
dr dλr(x)(y)

=
∫
G

∫
G
αr

(
αs(h1(β−1

s (β−1
r (y−1)), s−1r−1)∗∆(s)

1
2
)

αr

(
αs(k1(β−1

s (β−1
r (y−1x)), s−1r−1t)∆(s)

1
2
)
dr dλr(x)(y)

=
∫
G

∫
G
αrs

(
h1(β−1

rs (y−1), (rs)−1)∗
)

αrs

(
k1(β−1

rs (y−1x), (rs)−1t)
)
∆(s)dr dλr(x)(y)

which, after r 7→ rs−1, is

=
∫
G

∫
G
αr

(
h1(β−1

r (y−1), r−1)∗
)
αr

(
k1(β−1

r (y−1x), r−1t)
)
dr dλr(x)(y)

=
∫
G

∫
G
h∗1(y, r)αr

(
k1(β−1

r (y−1x), r−1t)
)
dr dλr(x)(y)

= (h∗ ∗ k)1(x, t) = 〈h , k〉
1
(x, t).

Since we clearly have σG(s)σG(t) = σG(st) and σG(e) is the identity, it
follows that σG(s) defines a unitary in M(C∗(G ×β G,B ×α G)).

To see the resulting homomorphism σG : G → M(C∗(G ×β G,B ×α G))
is strictly continuous, it suffices (by [21, Corollary C.8]) to show that if
si → e in G and h ∈ Γc(G ×β G;B×αG) then σG(si)h→ h in the inductive
limit topology. Without loss of generality all the si’s are contained in some
compact neighborhood V of e. Choose compact sets K ⊆ G and L ⊆ G such



348 KALISZEWSKI, MUHLY, QUIGG AND WILLIAMS

that supph ⊆ K × L. Then for each i we have

suppσG(si)h ⊆ βV −1(K)× V −1L,

which is compact by continuity of the action β. The uniform continuity of
h and continuity of the actions α and β guarantee that

lim
i
αsi

(
h1(βs−1

i
(x), s−1

i t
))

= h1(x, t)

uniformly in (x, t), so σG(si)h → h uniformly. Thus σG(si)h → h in the
inductive limit topology.

Now we verify that the pair (σB, σG) is covariant for (C∗(G,B), G, α).
If f ∈ Γc(G;B) and s ∈ G, then for each h ∈ Γc(G ×β G;B ×α G) and
(y, t) ∈ G ×β G, we have(

σG(s)σB(f)h
)
1
(y, t)

= αs

(
(σB(f)h)1(β−1

s (y), s−1t)
)
∆(s)

1
2

=
∫
G
αs

(
f(x)h1(x−1β−1

s (y), s−1t)
)
∆(s)

1
2 dλr(β−1

s (y))(x)

which, by invariance of β, is

=
∫
G
αs

(
f(β−1

s (x))h1(β−1
s (x−1y), s−1t)

)
∆(s)

1
2 dλr(y)(x)

=
∫
G
αs(f)(x)

(
σG(s)h

)
1
(x−1y, t) dλr(y)(x)

=
(
σB(αs(f))σG(s)h

)
1
(y, t).

Next we verify (7.2): for h ∈ Γc(G ×β G;B×αG) and (y, s) ∈ G ×β G, we
have(

σB(f)σG(g)h
)
(y, s)

=
(∫

G
f(x)

(
σG(g)h

)
1
(x−1y, s) dλr(y)(x), s

)
=

(∫
G

∫
G
f(x)g(t)αt

(
h1

(
β−1

t (x−1y), t−1s)
)
∆(t)

1
2 dt dλr(y)(x), s

)
=

∫
G

∫
G

(
f(x)g(t)αt

(
h1(β−1

t (x−1y), t−1s)
)
, s

)
∆(t)

1
2 dt dλr(y)(x)

=
∫
G

∫
G

(
f(x)g(t)∆(t)

1
2 , t

)(
h1(β−1

t (x−1y), t−1s), t−1s
)
dt dλr(y)(x)

=
∫
G

∫
G

(
f � (∆

1
2 g)

)
(x, t)h(β−1

t (x−1y), t−1s) dt dλr(y)(x)

=
((
f � (∆

1
2 g)

)
∗ h

)
(y, s).

As outlined at the start of the proof, it follows from the above that the
integrated form σ = σB oσG maps C∗(G,B)oαG onto C∗(G×βG,B×αG).
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To show injectivity of σ, it suffices to find a left inverse. We will begin by
constructing a ∗-homomorphism τ : Γc(G ×β G;B×αG) → Cc(G,Γc(G;B))
which is continuous for the inductive limit topologies on each algebra, where
(of course) Γc(G;B) is also given the inductive limit topology. Then, the
composition

Γc(G×βG;B×αG) τ−→ Cc(G,Γc(G;B)) −→ Cc(G,C∗(G,B)) −→ C∗(G,B)×αG

will be continuous from the inductive limit topology to the C∗-norm topol-
ogy, and hence, by Proposition 1.8, will extend to a homomorphism, which
we will also denote by τ , of C∗(G×βG,B×αG) into C∗(G,B)oαG. Finally,
we will check that τ ◦ σ = id on generators, and this will suffice.

For h ∈ Γc(G ×β G;B ×α G) and t ∈ G, it is clear that the rule

x 7→ h1(x, t)∆(t)−
1
2

defines an element τ(h)(t) of Γc(G;B). The discussion in [11, II.15.19] shows
that the map t 7→ h1(·, t) from G into Γc(G;B) is inductive-limit continuous,
and it follows that t 7→ τ(h)(t) defines an inductive-limit continuous map
τ(h) from G to Γc(G;B). Since τ(h) obviously has compact support, we
therefore have τ(h) ∈ Cc(G,Γc(G;B)), with

τ(h)(t)(x) = h1(x, t)∆(t)−
1
2 for t ∈ G and x ∈ G.

Now the rule h 7→ τ(h) gives a map τ with domain Γc(G ×β G;B ×α G)
which is clearly linear. To show that τ is continuous for the inductive limit
topologies, it suffices to show that if K ⊆ G and L ⊆ G are compact and
{hi} is a net in ΓK×L(B ×α G) converging uniformly to 0, then τ(hi) → 0
in the inductive limit topology of Cc(G,Γc(G;B)). Since supp τ(hi) ⊆ L for
all i, it suffices to show that τ(hi) → 0 uniformly. But this is obvious, since
hi → 0 uniformly.

Next we show that τ is a ∗-homomorphism. For h, k ∈ Γc(G×βG;B×αG)
we can use the argument9 of [24, Lemma 1.108] to conclude that τ(h)∗τ(k),
which is a priori an element of Cc(G,C∗(G,B)), lies in Cc(G,Γc(G;B)) and
that we can pass “evaluation at x” through the integral in the third line of
the following computation:(
τ(h) ∗ τ(k)

)
(t)(x)

=
(∫

G
τ(h)(s) ∗ αs

(
τ(k)(s−1t)

)
ds

)
(x)

=
∫

G

(
τ(h)(s) ∗ αs

(
τ(k)(s−1t)

))
(x) ds

=
∫

G

∫
G
τ(h)(s)(y)αs

(
τ(k)(s−1t)

)
(y−1x) dλr(x)(y) ds

9Lemma 1.108 of [24] as stated does not apply to a section algebra Γc(G; B) sitting
inside a bundle C∗-algebra C∗(G, B), but it is easy to see that the argument gives the
conclusion we need here.
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=
∫

G

∫
G
h1(y, s)∆(s)−

1
2αs

(
τ(k)(s−1t)

(
β−1

s (y−1x)
))
dλr(x)(y) ds

=
∫

G

∫
G
h1(y, s)∆(s)−

1
2αs

(
k1

(
β−1

s (y−1x), s−1t
))

∆(s−1t)−
1
2 dλr(x)(y) ds

= (h ∗ k)1(x, t)∆(t)−
1
2

= τ(h ∗ k)(t)(x),

so τ is multiplicative. For the involution, we have

τ(h)∗(t)(x) = αt

(
τ(h)(t−1)∗∆(t−1)

)
(x)

= αt

(
τ(h)(t−1)∗

)
(x)∆(t−1)

= αt

(
τ(h)(t−1)∗

(
βt−1(x)

))
∆(t−1)

= αt

(
τ(h)(t−1)

(
βt−1(x−1)

)∗)∆(t−1)

= αt

(
h1

(
βt−1(x−1), t−1

)
∆(t)

1
2
)∗∆(t−1)

= αt

(
h1

(
βt−1(x−1), t−1

))∗∆(t)−
1
2

= (h∗)1(x, t)∆(t)−
1
2

= τ(h∗)(t)(x).

Finally, we check τ ◦ σ = id on generators of the form iB(f)iG(g) for f ∈
Γc(G;B) and g ∈ Cc(G):

τ ◦ σ
(
iB(f)iG(g)

)
(t)(x) = τ

(
f � (∆

1
2 g)

)
(t)(x)

=
(
(f � (∆

1
2 g)

)
1
(x, t)∆(t)−

1
2

= f(x)g(t)

=
(
iB(f)iG(g)

)
(t)(x). �

8. The canonical surjection is injective

Since Fell bundle C∗-algebras are generalizations of crossed products by
actions, our main result generalizes the fact ([3, Proposition 3.4]) that the
dual coaction on a crossed product is always maximal:

Theorem 8.1. Let A be a separable Fell bundle over a group G, and let
δ be the associated coaction of G on C∗(G,A ) as in Proposition 3.1. Then
the canonical surjection

Φ : C∗(G,A ) oδ Goδ̂ G→ C∗(G,A )⊗K(L2(G))

is an isomorphism; hence δ is maximal.

To do prove Theorem 8.1, we will factor Φ into three isomorphisms,
each involving the C∗-algebra of a Fell bundle over a groupoid. These
isomorphisms will be presented in Propositions 8.2–8.4. We will use the
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following notation for canonical maps related to the double-crossed product
C∗(G,A ) oδ Goδ̂ G:

kA = iC∗(G,A )oδG ◦ jC∗(G,A ) : C∗(G,A ) →M(C∗(G,A ) oδ Goδ̂ G)

kC(G) = iC∗(G,A )oδG ◦ jG : C0(G) →M(C∗(G,A ) oδ Goδ̂ G)

kG = iG : G→M(C∗(A,G) oδ Goδ̂ G).

Note that the double-crossed product is densely spanned by products of the
form

kA (f)kC(G)(g)kG(h) for f ∈ Γc(G;A ) and g, h ∈ Cc(G).

Our first isomorphism involves an iterated product Fell bundle. As in
Section 4, let A ×lt G be the transformation Fell bundle over the transfor-
mation groupoid G×lt G. The group G acts on both G×lt G and A ×lt G
by right translation in the second coördinate:

(idG × rt)r(s, t) = (s, tr−1) and (idA × rt)r(as, t) = (as, tr
−1).

Thus we get a semidirect-product Fell bundle

A ×lt G×idA×rt G;

for simplicity, we will denote the corresponding semidirect-product groupoid
(G×lt G)×idG×rt G by S.

The action of G on G×ltG is invariant in the sense of Definition 6.3, since
for each (e, u) ∈ (G×lt G)0 = {e} ×G, f ∈ Cc(G×lt G), and r ∈ G we have∫

G×ltG
f
(
(idG × rt)r(s, t)

)
dλ(e,u)(s, t) =

∫
G
f((idG × rt)r(s, s−1u) ds

=
∫

G
f(s, s−1ur−1) ds

=
∫

G×ltG
f(s, t) dλ(e,ur−1)(s, t)

=
∫

G×ltG
f(s, t) dλ(idG×rt)r(e,u).

Therefore Proposition 6.4 gives a Haar system on S, so we can form the
Fell-bundle C∗-algebra C∗(S,A ×lt G×idA×rt G).

Proposition 8.2. There is an isomorphism

Θ : C∗(G,A ) oδ Goδ̂ G→ C∗(S,A ×lt G×idA×rt G)

such that, for f ∈ Γc(G;A ) and g, h ∈ Cc(G), the image

Θ(kA (f)kC(G)(g)kG(h))

is in Γc(S;A ×lt G×idA×rt G), with

(8.1) Θ
(
kA (f)kC(G)(g)kG(h)

)
(r, s, t) =

(
f(r)g(s)h(t)∆(rt)

1
2 , s, t

)
.
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Proof. Theorem 5.1 gives an isomorphism

θ : C∗(G,A ) oδ G→ C∗(G×lt G,A ×lt G)

such that
θ(jC∗(G,A )(f)jG(g)) = (∆

1
2 f) � g

for f ∈ Γc(G;A ) and g ∈ Cc(G). We want to parlay this into our isomor-
phism Θ. First, we verify that θ is equivariant for the dual action of G on
C∗(G,A ) oδ G and the action (idA × rt) coming from the action of G on
A ×lt G. Note that for h ∈ Γc(G×lt G;A ×lt G),

(idA × rt) s(h)(t, r) =
(
h1(t, rs), r

)
.

Thus for f ∈ Γc(G;A ), g ∈ Cc(G) and s ∈ G we have

(idA × rt) s ◦ θ
(
jC∗(G,A )(f)jG(g)

)
(t, r) = (idA × rt) s

(
(∆

1
2 f) � g

)
(t, r)

=
(
∆(t)

1
2 f(t)g(rs), t

)
=

(
∆(t)

1
2 f(t)rts(g)(r), t

)
=

(
(∆

1
2 f) � rts(g)

)
(t, r),

so that

(idA × rt) s ◦ θ
(
jC∗(G,A )(f)jG(g)

)
= θ

(
jC∗(G,A )(f)jG(rts(g))

)
= θ

(
δ̂s

(
jC∗(G,A )(f)jG(g)

))
= θ ◦ δ̂s

(
jC∗(G,A )(f)jG(g)

)
.

Therefore we have an isomorphism

θ oG : C∗(G,A ) oδ Goδ̂ G→ C∗(G×lt G,A ×lt G)×(idA×rt) G.

Now, Theorem 7.1 gives an isomorphism

σ : C∗(G×lt G,A ×lt G) o(idA×rt) G→ C∗(S,A ×lt G×idA×rt G)

taking a generator iC∗(G×ltG,A×ltG)(k)iG(h) for k ∈ Γc(G ×lt G;A ×lt G)
and h ∈ Cc(G) to the section of A ×lt G×idA×rt G given by

σ
(
iC∗(G×ltG,A×ltG)(k)idG(h)

)
(r, s, t) =

(
k(r, s)h(t)∆(t)

1
2 , s, t

)
.

We now define Θ to be σ ◦ (θ o G), and it only remains to verify (8.1).
We have

Θ
(
kA (f)kC(G)(g)kG(h)

)
= σ ◦ (θ ×G)

(
iC∗(A,G)×δG

(
jC∗(G,A )(f)jG(g)

)
iG(h)

)
= σ

(
(θ ×G)

(
iC∗(A,G)×δG

(
jC∗(G,A )(f)jG(g)

)
iG(h)

))
= σ

(
iC∗(G×ltG,A×ltG) ◦ θ

(
jC∗(G,A )(f)jG(g)

)
iG(h)

)
= σ

(
iC∗(G×ltG,A×ltG)

(
(∆

1
2 f) � g

)
iG(h)

)
,



COACTIONS AND FELL BUNDLES 353

so

Θ
(
kA (f)kC(G)(g)kG(h)

)
(r, s, t) =

((
(∆

1
2 f) � g

)
(r, s)h(t)∆(t)

1
2 , t

)
=

(
f(r)g(s)h(t)∆(rt)

1
2 , s, t

)
. �

For our second isomorphism, we let E denote the equivalence relation
groupoid G×G on the set G, and we endow E with the Haar system λ(s,s) =
δs×λ, where δs is the point mass at s, and λ is Haar measure on G. We then
form the Cartesian product Fell bundle A × E over the Cartesian product
groupoid G× E , in analogy with the group case in Section 2.

Proposition 8.3. There is an isomorphism

Ψ : C∗(S,A ×lt G×idA×rt G) → C∗(G× E ,A × E)

such that, for f ∈ Γc(S;A ×lt G×idA×rt G), the image

Ψ(f) ∈ Γc(G× E ;A × E),

with

(8.2) Ψ(f)(r, s, t) = (f1(r, r−1s, s−1rt), s, t).

Proof. First notice that the groupoids S = (G×lt G)×idA×rt G and G×E
are isomorphic via the homeomorphism ψ : S → G× E given by ψ(r, s, t) =
(r, rs, st). Furthermore, the homeomorphism Ψ0 : A ×lt G ×idA×rt G →
A × E given by Ψ0(ar, s, t) = (ar, rs, st) is a bundle map which covers ψ
and is an isometric isomorphism on each fibre. Routine computations show
that Ψ0 also preserves the multiplication and involution. Hence we can
define a ∗-isomorphism Ψ : Γc(S;A ×lt G ×idA×rt G) → Γc(G × E ;A × E)
by

Ψ(f)(r, s, t) = Ψ0(f(ψ−1(r, s, t)) = (f1(r, r−1s, s−1rt), s, t).

Because Ψ0 is a homeomorphism, Ψ is homeomorphic for the inductive limit
topologies; therefore Ψ extends to an isomorphism of the bundle C∗-algebras
which satisfies (8.2). �

Proposition 8.4. There is an isomorphism

Υ : C∗(G× E ,A × E) → C∗(G,A )⊗K
(
L2(G)

)
such that, for every faithful nondegenerate representation π : C∗(G,A ) →
B(H), f ∈ Γc(G× E ;A × E), and ξ ∈ Cc(G,H), we have

(8.3)
(
(π ⊗ id) ◦Υ(f)ξ

)
(s) =

∫
G

∫
G
π0

(
f1(r, s, t)

)
ξ(t)∆(r)−

1
2 dr dt,

where π0 = π ◦ ι as in Lemma 1.3.

The proposition depends on the following lemma, which may be of general
interest. As above, A × G denotes the Cartesian product bundle over the
Cartesian product groupoid G× G.
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Lemma 8.5. Let G be a second countable locally compact groupoid such that
C∗(G) is nuclear. There exists an an isomorphism ω : C∗(G×G,A ×G) →
C∗(G,A )⊗ C∗(G) such that

ω(g � h) = (∆− 1
2 g)⊗ h for g ∈ Γc(G;A ) and h ∈ Cc(G),

where g � h ∈ Γc(G× G;A × G) is defined by (g � h)(s, x) = (g(s)h(x), x).

Proof. For at ∈ At, define a linear operator ρA
0 (at) on Γc(G × G;A × G)

by10 (
ρA
0 (at)h

)
1
(s, x) = ath1(t−1s, x)∆(t)

1
2 .

Then a computation shows that〈
ρA
0 (at)h , k

〉
=

〈
h , ρA

0 (a∗t )k
〉

for h, k ∈ Γc(G× G;A × G),

where we are viewing C∗(G×G,A ×G) as a right Hilbert module over itself
with dense subspace Γc(G× G;A × G). Just as in the proof of Lemma 1.2,
it follows that ρA

0 (at) is bounded as an operator on C∗(G×G,A ×G) with
adjoint ρA

0 (a∗t ), and that the rule at 7→ ρA
0 (at) therefore extends to a ∗-

homomorphism ρA
0 of A into M(C∗(G × G,A × G)). The proof that ρA

0

is nondegenerate and strictly continuous also closely parallels the proof in
Lemma 1.2 and will be omitted. Using Lemma 1.3, we get a nondegenerate
homomorphism ρA : C∗(G,A ) →M(C∗(G× G,A × G)).

Similarly, for g ∈ Cc(G) we define an operator ρG(g) on Γc(G×G;A ×G)
by

(ρG(g)h)1(s, x) =
∫
G
g(y)h1(s, y−1x) dλr(x)(y).

Another computation shows that

〈ρG(g)h , k〉=
〈
h , ρG(g∗)k

〉
for h, k ∈ Γc(G× G;A × G).

Thus condition (i) of Proposition 1.7 is satisfied, and condition (ii) is not
hard to check. Condition (iii) follows from the existence of an approxi-
mate identity for Cc(G) in the inductive limit topology (cf. [15, Corol-
lary 2.11]). Hence, ρG extends to a nondegenerate homomorphism of C∗(G)
into M(C∗(G× G,A × G)) by Proposition 1.7.

Clearly, ρA and ρG commute. Since C∗(G) is nuclear, we obtain a ho-
momorphism ρA ⊗ ρG of C∗(G,A )⊗ C∗(G) into M(C∗(G× G,A × G)). If
g ∈ Γc(G;A ), h ∈ Cc(G) and k ∈ Γc(G × G;A × G), then an argument
patterned after the proof of [24, Lemma 1.108] implies that ρA (g)ρG(h)k is
in Γc(G× G;A × G) and that evaluation at (s, x) ∈ G× G “passes through
the integral” in the second step in the next calculation:

10Although this construction almost exactly parallels that in Lemma 1.2, we need to
insert a modular function here (compare with (1.5)) because, just as with (5.3) in the
proof of Theorem 5.1, there is no modular function in the definition of the involution in
the ∗-algebra associated to a Fell bundle over a groupoid.
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ρA (g)ρG(h)k

)
1
(s, x)

=
(∫

G

(
ρA
0 (g(t))(ρG(h)k)

)
1
dt

)
(s, x)

=
∫

G
ρA
0 (g(t))

(
ρG(h)k

)
1
(s, x) dt

=
∫

G
g(t)

(
ρG(h)k

)
1
(t−1s, x)∆(t)

1
2 dt

=
∫

G

∫
G
g(t)h(y)k1(t−1s, y−1x)dλr(x)(y)∆(t)

1
2 dt

=
∫

G×G

(
(∆

1
2 g) � h

)
1
(t, y)k1((t, y)−1(s, x)) dλr(s,x)(t, y)

=
(
((∆

1
2 g) � h) ∗ k

)
1
(s, x).

Therefore

(8.4) ρA ⊗ ρG(g ⊗ h) = (∆
1
2 g) � h for g ∈ Γc(G;A ) and h ∈ Cc(G).

Since such elements (∆
1
2 g) � h span a dense subspace of Γc(G×G;A ×G),

ρA ⊗ ρG maps C∗(G,A )⊗ C∗(G) (into and) onto C∗(G× G,A × G).
Now fix a faithful nondegenerate representation π of C∗(G,A ) on a

Hilbert space H, and let π0 : A → B(H) be the nondegenerate repre-
sentation whose integrated form is π (as in Lemma 1.3). Further let τ be
a faithful nondegenerate representation of C∗(G) on a Hilbert space K. By
the Disintegration Theorem ([23, Proposition 4.2] or [17, Theorem 7.8]), we
can assume K = L2(G(0) ∗ V , µ), where G(0) ∗ V is a Borel Hilbert bundle
and µ is a finite quasi-invariant Radon measure on G(0), such that τ is the
integrated form of a groupoid representation τ0 of G; thus

(8.5)
(
τ(h)κ

)
(u) =

∫
G
h(x)τ0(x)κ(s(x))∆G(x)−

1
2 dλu(x) for h ∈ Cc(G),

where ∆G is the Radon–Nikodym derivative of ν−1 with respect to ν = µ◦λ.
Note that we can identify (G × G)(0) with G(0). Then we can form a Borel
Hilbert bundle G(0) ∗ (H⊗ V ) such that (H⊗ V )(u) = H⊗ V (u) and such
that L2(G(0) ∗ (H⊗ V ), µ) can be identified with H ⊗L2(G(0) ∗ V , µ). Then
we can define a Borel ∗-functor (see [16, Definition 4.5]) Π from A × G to
End(G(0) ∗ (H⊗ V )) by

Π(a, x) = π0(a)⊗ τ0(x).

If µG is a left Haar measure on G, then we get a Haar system {λu }u∈G(0)

on G × G via λu = µG × λu. Notice that the Radon–Nikodym derivative
of ν−1 with respect to ν := λ ◦ µ is given by (s, x) 7→ ∆(s)∆G(x). Then
[16, Proposition 4.10] implies that Π integrates up to a ∗-homomorphism
L : Γc(G× G;A × G) → B(H⊗ L2(G(0) ∗ V , µ)) given by
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(8.6) L(f)(η ⊗ κ)(u)

=
∫

G

∫
G
π0

(
f1(t, x)

)
η ⊗ τ0(x)κ(s(x))∆G(x)−

1
2 ∆(t)−

1
2 dλu(x) dt

which extends to a representation of C∗(G× G,A × G).
Now, using (8.4), for g ∈ Γc(G;A ) and h ∈ Cc(G) we have

L
(
ρA ⊗ ρG(g ⊗ h)

)
(η ⊗ κ)(u)

= L
(
(∆

1
2 g) � h

)
(η ⊗ κ)(u)

=
∫

G

∫
G
π0

(
∆

1
2 (t)g(t)h(x)

)
η ⊗ τ0(x)κ(s(x))∆G(x)−

1
2 dλu(x) ∆(t)−

1
2 dt

=
(∫

G
π0(g(t))η dt

)
⊗

(∫
G
h(x)τ0(x)κ(s(x))∆G(x)−

1
2 dλu(x)

)
= π(g)η ⊗

(
τ(h)κ

)
(u)

= (π ⊗ τ)(g ⊗ h)(η ⊗ κ)(u).

It follows that L ◦ (ρA ⊗ ρG) = π ⊗ τ , and since the latter is a faithful
representation of C∗(G,A )⊗ C∗(G), it follows that ρA ⊗ ρG is faithful.

To complete the proof, we just let ω = (ρA ⊗ ρG)−1. Then ω is an
isomorphism of C∗(G× G,A × G) onto C∗(G,A )⊗ C∗(G) and satisfies

ω(g � h) = (∆− 1
2 g)⊗ h. �

Proof of Proposition 8.4. Note that C∗(E) = C∗(E , λ) ∼= K(L2(G)). In
fact, since E is groupoid-equivalent to the trivial group, C∗(E) is simple, so
the representation τ : C∗(E) → B(L2(G)) defined by(

τ(h)κ
)
(s) =

∫
G
h(s, t)κ(t) dt for h ∈ Cc(E) and κ ∈ Cc(G) ⊆ L2(G)

is an isomorphism onto K(L2(G)). In particular, C∗(E) is nuclear, so by
Lemma 8.5, we have an isomorphism

Υ := (id⊗ τ) ◦ ω : C∗(G× E ,A × E) → C∗(G,A )⊗K
(
L2(G)

)
.

If we let E(0)∗C be the trivial bundle G×C, then we can identify L2(G) with
L2(E(0) ∗ C, λ) in the obvious way. Notice also that λ is a quasi-invariant
measure on E(0) with ∆E ≡ 1. Thus the representation τ is essentially
presented as in (8.5). (The representation τ0 acts on (s, z) ∈ G × C by
τ0(t, s)(s, z) = (t, z).) Thus, in the current situation, (8.6) reduces to(

L(f)ξ
)
(s) =

∫
G

∫
G
π0

(
f1(r, s, t)

)
ξ(t)∆(r)−

1
2 dr dt

for ξ ∈ Cc(G,H) ⊆ H ⊗ L2(G). Now (8.3) is easily verified using the
observation (from the proof of Lemma 8.5) that (π ⊗ τ) ◦ ω = L. �
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Proof of Theorem 8.1. We need to show that Φ is injective, and to do
this we will show that the diagram

C∗(G,A )×δ G×δ̂ G
Θ
∼=

//

Φ
��

C∗(S,A ×lt G×idA×rt G)

Ψ∼=
��

C∗(G,A )⊗K(L2(G)) C∗(Γ× E ,A × E)
Υ

∼=oo

commutes, where Θ, Ψ, and Υ are the isomorphisms of Propositions 8.2,
8.3, and 8.4, respectively.

Let π : C∗(G,A ) → B(H) be a faithful nondegenerate representation on
a Hilbert space H. Let f ∈ Γc(G;A ), g, h, κ ∈ Cc(G), and η ∈ H. Then,
to show that the diagram commutes, the following computation suffices.
Applying Proposition 8.4, we have(

(π ⊗ id) ◦Υ ◦Ψ ◦Θ
(
kA (f)kC(G)(g)kG(h)

)
(η ⊗ κ)

)
(s)

=
∫

G

∫
G
π0

(
Ψ ◦Θ

(
kA (f)kC(G)(g)kG(h)

)
1
(r, s, t)

)
(η ⊗ κ)(t)∆(r)−

1
2 dr dt

which, by Proposition 8.3, is

=
∫

G

∫
G
π0

(
Θ

(
kA (f)kC(G)(g)kG(h)

)
1
(r, r−1s, s−1rt)

)
ηκ(t)∆(r)−

1
2 dr dt

which, by Proposition 8.2, is

=
∫

G

∫
G
π0

(
f(r)∆(r)

1
2 g(r−1s)h(s−1rt)∆(s−1rt)

1
2
)
ηκ(t)∆(r)−

1
2 dr dt

which, after using Fubini and sending t 7→ r−1st, is

=
∫

G

∫
G
π(f(r))g(r−1s)h(t)∆(t)

1
2 ηκ(r−1st) dt dr

which, since ρtκ(r−1s) = κ(r−1st)∆(t)
1
2 , is

=
∫

G

∫
G
π0(f(r))ηg(r−1s)(ρtκ)(r−1s)h(t) dt dr

=
∫

G
π0(f(r))ηg(r−1s)

(
ρ(h)κ

)
(r−1s) dr

=
∫

G
π0(f(r))η

(
Mgρ(h)κ

)
(r−1s) dr

=
∫

G
π0(f(r))η

(
λrMgρ(h)κ

)
(s) dr

=
∫

G

(
π0(f(r))η ⊗ λrMgρ(h)κ

)
(s) dr
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=
∫

G

(
π0(f(r))⊗ λrMgρ(h)

)
(η ⊗ κ)(s) dr

=
∫

G

(
(π ⊗ λ)(f(r)⊗ r)(1⊗Mgρ(h)

)
(η ⊗ κ)(s) dr

= (π ⊗ id)
(∫

G

(
(id⊗ λ) ◦ δ(f(r))(1⊗Mgρ(h)

)
(η ⊗ κ)(s) dr

)
= (π ⊗ id)(id⊗ λ) ◦ δ(f)

(
1⊗Mgρ(h)

)
(s)

= (π ⊗ id) ◦ Φ
(
kA (f)kC(G)(g)kG(h)

)
(s). �
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