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T-homotopy and refinement of observation. III.
Invariance of the branching and merging

homologies

Philippe Gaucher

Abstract. This series explores a new notion of T-homotopy equivalence of
flows. The new definition involves embeddings of finite bounded posets pre-
serving the bottom and the top elements and the associated cofibrations of
flows. In this third part, it is proved that the generalized T-homotopy equiva-
lences preserve the branching and merging homology theories of a flow. These
homology theories are of interest in computer science since they detect the
nondeterministic branching and merging areas of execution paths in the time
flow of a higher-dimensional automaton. The proof is based on Reedy model
category techniques.
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1. Outline of the paper

The main feature of the algebraic topological model of higher dimensional au-
tomata (or HDA) introduced in [Gau03], the category of flows, is to provide a
framework for modelling continuous deformations of HDA corresponding to sub-
division or refinement of observation. The equivalence relation induced by these
deformations, called dihomotopy, preserves geometric properties like the initial or
final states, and therefore computer-scientific properties like the presence or not
of deadlocks or of unreachable states in concurrent systems [Gou03]. More gener-
ally, dihomotopy is designed to preserve all computer-scientific properties invariant
under refinement of observation. Figure 2 represents a very simple example of re-
finement of observation, where a 1-dimensional transition from an initial state to a
final state is identified with the composition of two such transitions.

In the framework of flows, there are two kinds of dihomotopy equivalences
[Gau00]: the weak S-homotopy equivalences (the spatial deformations of [Gau00])
and the T-homotopy equivalences (the temporal deformations of [Gau00]). The
geometric explanations underlying the intuition of S-homotopy and T-homotopy
are given in the first part of this series [Gau05c], but the reference [GG03] must be
preferred.

It is very fortunate that the class of weak S-homotopy equivalences can be in-
terpreted as the class of weak equivalences of a model structure [Gau03] in the
sense of Hovey’s book [Hov99]. This fact makes their study easier. Moreover, this
model structure is necessary for the formulation of the only known definition of
T-homotopy.

The purpose of this paper is to prove that the new notion of T-homotopy equiv-
alence is well-behaved with respect to the branching and merging homologies of a
flow. The latter homology theories are able to detect the nondeterministic higher
dimensional branching and merging areas of execution paths in the time flow of a
higher-dimensional automaton [Gau05b]. More precisely, one has:

Theorem (Corollary 11.3). Let f : X −→ Y be a generalized T-homotopy equiva-
lence. Then for any n � 0, the morphisms of abelian groups H−

n (f) : H−
n (X) −→

H−
n (Y ), H+

n (f) : H+
n (X) −→ H+

n (Y ) are isomorphisms of groups where H−
n (resp.

H+
n ) is the n-th branching (resp. merging) homology group.

The core of the paper starts with Section 3 which recalls the definition of a
flow and the description of the weak S-homotopy model structure. The latter is a
fundamental tool for the sequel. Section 4 recalls the new notion of T-homotopy
equivalence.

Section 5 recalls the definition of the branching space and the homotopy branch-
ing space of a flow. The same section explains the principle of the proof of the
following theorem:

Theorem (Theorem 9.8). The homotopy branching space of a full directed ball at
any state different from the final state is contractible (it is empty at the final state).

We give the idea of the proof for a full directed ball which is not too simple, and
not too complicated. The latter theorem is the technical core of the paper because
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a generalized T-homotopy equivalence consists in replacing in a flow a full directed
ball by a more refined full directed ball (Figure 3), and in iterating this replacement
process transfinitely.

Section 6 introduces a diagram of topological spaces P−
α (X) whose colimit cal-

culates the branching space P−
αX for every loopless flow X (Theorem 6.3) and

every α ∈ X0. Section 7 builds a Reedy structure on the base category of the dia-
gram P−

α (X) for any loopless flow X whose poset (X0, �) is locally finite so that
the colimit functor becomes a left Quillen functor (Theorem 7.5). Section 8 then
shows that the diagram P−

α (X) is Reedy cofibrant as soon as X is a cell complex
of the model category Flow (Theorem 8.4). Section 9 completes the proof that
the homotopy branching and homotopy merging spaces of every full directed ball
are contractible (Theorem 9.8). Section 10 recalls the definition of the branching
and merging homology theories. Finally, Section 11 proves the invariance of the
branching and merging homology theories with respect to T-homotopy.

Warning. This paper is the third part of a series of papers devoted to the study of
T-homotopy. Several other papers explain the geometrical content of T-homotopy.
The best reference is probably [GG03] (it does not belong to the series). The
knowledge of the first and second parts is not required, except for the left properness
of the weak S-homotopy model structure of Flow available in [Gau05d]. The latter
fact is used twice in the proof of Theorem 11.2. The material collected in the
appendices A, B and C will be reused in the fourth part [Gau06b]. The proofs of
these appendices are independent from the technical core of this part.

2. Prerequisites and notations

The initial object (resp. the terminal object) of a category C, if it exists, is
denoted by ∅ (resp. 1).

Let C be a cocomplete category. If K is a set of morphisms of C, then the
class of morphisms of C that satisfy the RLP (right lifting property) with respect
to any morphism of K is denoted by inj(K) and the class of morphisms of C that
are transfinite compositions of pushouts of elements of K is denoted by cell(K).
Denote by cof(K) the class of morphisms of C that satisfy the LLP (left lifting
property) with respect to the morphisms of inj(K). It is a purely categorical fact
that cell(K) ⊂ cof(K). Moreover, every morphism of cof(K) is a retract of a
morphism of cell(K) as soon as the domains of K are small relative to cell(K)
([Hov99] Corollary 2.1.15). An element of cell(K) is called a relative K-cell com-
plex. If X is an object of C, and if the canonical morphism ∅ −→ X is a relative
K-cell complex, then the object X is called a K-cell complex.

Let C be a cocomplete category with a distinguished set of morphisms I. Then
let cell(C, I) be the full subcategory of C consisting of the object X of C such
that the canonical morphism ∅ −→ X is an object of cell(I). In other words,
cell(C, I) = (∅↓C) ∩ cell(I).

It is obviously impossible to read this paper without a strong familiarity with
model categories. Possible references for model categories are [Hov99], [Hir03]
and [DS95]. The original reference is [Qui67] but Quillen’s axiomatization is not
used in this paper. The axiomatization from Hovey’s book is preferred. If M is
a cofibrantly generated model category with set of generating cofibrations I, let
cell(M) := cell(M, I): this is the full subcategory of cell complexes of the model
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category M. A cofibrantly generated model structure M comes with a cofibrant
replacement functor Q : M −→ cell(M). For any morphism f of M, the mor-
phism Q(f) is a cofibration, and even an inclusion of subcomplexes ([Hir03] Defini-
tion 10.6.7) because the cofibrant replacement functor Q is obtained by the small
object argument.

A partially ordered set (P, �) (or poset) is a set equipped with a reflexive an-
tisymmetric and transitive binary relation �. A poset is locally finite if for any
(x, y) ∈ P × P , the set [x, y] = {z ∈ P, x � z � y} is finite. A poset (P, �) is
bounded if there exist 0̂ ∈ P and 1̂ ∈ P such that P = [0̂, 1̂] and such that 0̂ �= 1̂.
Let 0̂ = min P (the bottom element) and 1̂ = max P (the top element). In a poset
P , the interval ]α,−] (the sub-poset of elements of P strictly bigger than α) can
also be denoted by P>α.

A poset P , and in particular an ordinal, can be viewed as a small category
denoted in the same way: the objects are the elements of P and there exists a
morphism from x to y if and only if x � y. If λ is an ordinal, a λ-sequence in a
cocomplete category C is a colimit-preserving functor X from λ to C. We denote
by Xλ the colimit lim−→X and the morphism X0 −→ Xλ is called the transfinite
composition of the Xμ −→ Xμ+1.

Let C be a category. Let α be an object of C. The latching category ∂(C ↓α) at α
is the full subcategory of C ↓α containing all the objects except the identity map of
α. The matching category ∂(α ↓C) at α is the full subcategory of α↓C containing
all the objects except the identity map of α.

Let B be a small category. A Reedy structure on B consists of two subcategories
B− and B+, a map d : Obj(B) −→ λ from the set of objets of B to some ordinal
λ called the degree function, such that every nonidentity map in B+ raises the
degree, every nonidentity map in B− lowers the degree, and every map f ∈ B can
be factored uniquely as f = g ◦ h with h ∈ B− and g ∈ B+. A small category
together with a Reedy structure is called a Reedy category.

If C is a small category and if M is a category, the notation MC is the category
of functors from C to M, i.e., the category of diagrams of objects of M over the
small category C.

Let C be a complete and cocomplete category. Let B be a Reedy category. Let
i be an object of B. The latching space functor is the composite Li : CB −→
C∂(B+↓i) −→ C where the latter functor is the colimit functor. The matching space
functor is the composite Mi : CB −→ C∂(i↓B−) −→ C where the latter functor is the
limit functor.

A model category is left proper if the pushout of a weak equivalence along a
cofibration is a weak equivalence. The model categories Top and Flow (see below)
are both left proper.

In this paper, the notation � � �� means cofibration, the notation �� �� means
fibration, the notation 	 means weak equivalence, and the notation ∼= means iso-
morphism.

A categorical adjunction L : M � N : R between two model categories is a
Quillen adjunction if one of the following equivalent conditions is satisfied:

(1) L preserves cofibrations and trivial cofibrations.
(2) R preserves fibrations and trivial fibrations.

In that case, L (resp. R) preserves weak equivalences between cofibrant (resp. fi-
brant) objects.
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If P is a poset, let us denote by Δ(P ) the order complex associated with
P . Recall that the order complex is a simplicial complex having P as under-
lying set and having the subsets {x0, x1, . . . , xn} with x0 < x1 < · · · < xn as
n-simplices [Qui78]. Such a simplex will be denoted by (x0, x1, . . . , xn). The or-
der complex Δ(P ) can be viewed as a poset ordered by the inclusion, and there-
fore as a small category. The corresponding category will be denoted in the
same way. The opposite category Δ(P )op is freely generated by the morphisms
∂i : (x0, . . . , xn) −→ (x0, . . . , x̂i, . . . , xn) for 0 � i � n and by the simplicial rela-
tions ∂i∂j = ∂j−1∂i for any i < j, where the notation x̂i means that xi is removed.

If C is a small category, then the classifying space of C is denoted by BC [Seg68]
[Qui73].

The category Top of compactly generated topological spaces (i.e., of weak Haus-
dorff k-spaces) is complete, cocomplete and cartesian closed (more details for this
kind of topological spaces in [Bro88, May99], the appendix of [Lew78] and also the
preliminaries of [Gau03]). For the sequel, all topological spaces will be supposed to
be compactly generated. A compact space is always Hausdorff.

3. Reminder about the category of flows

The category Top is equipped with the unique model structure having the weak
homotopy equivalences as weak equivalences and having the Serre fibrations1 as
fibrations.

The time flow of a higher-dimensional automaton is encoded in an object called
a flow [Gau03]. A flow X consists of a set X0 called the 0-skeleton and whose
elements correspond to the states (or constant execution paths) of the higher-
dimensional automaton. For each pair of states (α, β) ∈ X0 × X0, there is a
topological space Pα,βX whose elements correspond to the (nonconstant) execu-
tion paths of the higher-dimensional automaton beginning at α and ending at β.
For x ∈ Pα,βX, let α = s(x) and β = t(x). For each triple (α, β, γ) ∈ X0×X0×X0,
there exists a continuous map ∗ : Pα,βX ×Pβ,γX −→ Pα,γX called the composition
law which is supposed to be associative in an obvious sense. The topological space
PX =

⊔
(α,β)∈X0×X0 Pα,βX is called the path space of X. The category of flows is

denoted by Flow. A point α of X0 such that there are no nonconstant execution
paths ending at α (resp. starting from α) is called an initial state (resp. a final
state). A morphism of flows f from X to Y consists of a set map f0 : X0 −→ Y 0

and a continuous map Pf : PX −→ PY preserving the structure. A flow is therefore
“almost” a small category enriched in Top.

An important example is the flow Glob(Z) defined by

Glob(Z)0 = {0̂, 1̂}
PGlob(Z) = Z

s = 0̂

t = 1̂

and a trivial composition law (cf. Figure 1).

1That is a continuous map having the RLP with respect to the inclusion Dn × 0 ⊂ Dn × [0, 1]
for any n � 0 where Dn is the n-dimensional disk.
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TIME

Z

Figure 1. Symbolic representation of Glob(Z) for some topolog-
ical space Z

0̂
U �� 1̂

0̂
U ′

�� A
U ′′

�� 1̂

Figure 2. The simplest example of refinement of observation

The category Flow is equipped with the unique model structure such that
[Gau03]:

• The weak equivalences are the weak S-homotopy equivalences, i.e., the mor-
phisms of flows f : X −→ Y such that f0 : X0 −→ Y 0 is a bijection and
such that Pf : PX −→ PY is a weak homotopy equivalence.

• The fibrations are the morphisms of flows f : X −→ Y such that Pf :
PX −→ PY is a Serre fibration.

This model structure is cofibrantly generated. The set of generating cofibrations is
the set Igl

+ = Igl ∪ {R : {0, 1} −→ {0}, C : ∅ −→ {0}} with

Igl = {Glob(Sn−1) ⊂ Glob(Dn), n � 0}
where Dn is the n-dimensional disk and Sn−1 the (n− 1)-dimensional sphere. The
set of generating trivial cofibrations is

Jgl = {Glob(Dn × {0}) ⊂ Glob(Dn × [0, 1]), n � 0}.
If X is an object of cell(Flow), then a presentation of the morphism ∅ −→ X

as a transfinite composition of pushouts of morphisms of Igl
+ is called a globular

decomposition of X.

4. Generalized T-homotopy equivalence

We recall here the definition of a T-homotopy equivalence already given in
[Gau05c] and [Gau05d].

Definition 4.1. A flow X is loopless if for any α ∈ X0, the space Pα,αX is empty.
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Recall that a flow is a small category without identity morphisms enriched over
a category of topological spaces. So the preceding definition is meaningful.

Lemma 4.2. If a flow X is loopless, then the transitive closure of the set

{(α, β) ∈ X0 × X0 such that Pα,βX �= ∅}
induces a partial ordering on X0.

Proof. If (α, β) and (β, α) with α �= β belong to the transitive closure, then there
exists a finite sequence (x1, . . . , x�) of elements of X0 with x1 = α, x� = α, � > 1 and
for any m, Pxm,xm+1X is nonempty. Consequently, the space Pα,αX is nonempty
because of the existence of the composition law of X: contradiction. �

Definition 4.3. 2 A full directed ball is a flow −→
D such that:

• −→
D is loopless (so by Lemma 4.2, the set −→

D 0 is equipped with a partial
ordering �).

• (−→D 0, �) is finite bounded.
• for all (α, β) ∈ −→

D 0×−→
D 0, the topological space Pα,β

−→
D is weakly contractible

if α < β, and empty otherwise by definition of �.

Let −→D be a full directed ball. Then by Lemma 4.2, the set −→D 0 can be viewed as a
finite bounded poset. Conversely, if P is a finite bounded poset, let us consider the
flow F (P ) associated with P : it is of course defined as the unique flow F (P ) such
that F (P )0 = P and Pα,βF (P ) = {uα,β} if α < β and Pα,βF (P ) = ∅ otherwise.
Then F (P ) is a full directed ball and for any full directed ball −→D , the two flows −→D
and F (−→D 0) are weakly S-homotopy equivalent.

Let −→
E be another full directed ball. Let f : −→D −→ −→

E be a morphism of flows
preserving the initial and final states. Then f induces a morphism of posets from−→
D 0 to −→

E 0 such that f(min−→
D 0) = min−→

E 0 and f(max−→D 0) = max−→E 0. Hence the
following definition:

Definition 4.4. Let T be the class of morphisms of posets f : P1 −→ P2 such
that:

(1) The posets P1 and P2 are finite and bounded.
(2) The morphism of posets f : P1 −→ P2 is one-to-one; in particular, if x and

y are two elements of P1 with x < y, then f(x) < f(y).
(3) One has f(min P1) = minP2 and f(max P1) = max P2.

Then a generalized T-homotopy equivalence is a morphism of

cof({Q(F (f)), f ∈ T })
where Q is the cofibrant replacement functor of the model category Flow.

One can choose a set of representatives for each isomorphism class of finite
bounded posets. One obtains a set of morphisms T ⊂ T such that there is the
equality of classes

cof({Q(F (f)), f ∈ T }) = cof({Q(F (f)), f ∈ T }).

2The statement of the definition is slightly different, but equivalent to the statement given in
other parts of this series.
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T−HOMOTOPY

MORE REFINED

FULL DIRECTED BALL

FULL DIRECTED BALL

Figure 3. Replacement of a full directed ball by a more refined one

By [Gau03] Proposition 11.5, the set of morphisms {Q(F (f)), f ∈ T } permits
the small object argument. Thus, the class of morphisms cof({Q(F (f)), f ∈ T })
contains exactly the retracts of the morphisms of cell({Q(F (f)), f ∈ T }) by [Hov99]
Corollary 2.1.15.

The inclusion of posets {0̂ < 1̂} ⊂ {0̂ < A < 1̂} corresponds to the case of
Figure 2.

A T-homotopy consists in locally replacing in a flow a full directed ball by a
more refined one (cf. Figure 3), and in iterating the process transfinitely.

5. Principle of the proof of the main theorem

In this section, we collect the main ideas used in the proof of Theorem 9.3. These
ideas are illustrated by the case of the flow F (P ) associated with the poset P of
Figure 4. More precisely, we will explained the reason for the contractibility of the
homotopy branching space hoP−

0̂
F (P ) of the flow F (P ) at the initial state 0̂.

First of all, we recall the definition of the branching space functor. Roughly
speaking, the branching space of a flow is the space of germs of nonconstant exe-
cution paths beginning in the same way.

Proposition 5.1 ([Gau05b] Proposition 3.1). Let X be a flow. There exists a
topological space P−X unique up to homeomorphism and a continuous map h− :
PX −→ P−X satisfying the following universal property:

(1) For any x and y in PX such that t(x) = s(y), the equality h−(x) = h−(x∗y)
holds.
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A
� �� B

�

���
��

��
��

�

0̂
�

���
��

��
��

�

�
����������

1̂

C

�
����������������

Figure 4. Example of finite bounded poset

(2) Let φ : PX −→ Y be a continuous map such that for any x and y of PX
such that t(x) = s(y), the equality φ(x) = φ(x ∗ y) holds. Then there exists
a unique continuous map φ : P−X −→ Y such that φ = φ ◦ h−.

Moreover, one has the homeomorphism

P−X ∼=
⊔
α∈X0

P−
αX

where P−
αX := h−

(⊔
β∈X0 P−

α,βX
)
. The mapping X → P−X yields a functor P−

from Flow to Top.

Definition 5.2. Let X be a flow. The topological space P−X is called the branch-
ing space of the flow X. The functor P− is called the branching space functor.

Theorem 5.3 ([Gau05b] Theorem 5.5). The branching space functor

P− : Flow −→ Top

is a left Quillen functor.

Definition 5.4. The homotopy branching space hoP− X of a flow X is by defini-
tion the topological space P−Q(X). For α ∈ X0, let hoP−

α X = P−
αQ(X).

The first idea would be to replace the calculation of P−
0̂

Q(F (P )) by the cal-
culation of P−

0̂
F (P ) because there exists a natural weak S-homotopy equivalence

Q(F (P )) −→ F (P ). However, the flow F (P ) is not cofibrant because its composi-
tion law contains relations, for instance u0̂,A ∗ uA,1̂ = u0̂,C ∗ uC,1̂. In any cofibrant
replacement of F (P ), a relation like u0̂,A ∗ uA,1̂ = u0̂,C ∗ uC,1̂ is always replaced
by a S-homotopy between u0̂,A ∗ uA,1̂ and u0̂,C ∗ uC,1̂. Moreover, it is known from
[Gau05b] Theorem 4.1 that the branching space functor does not necessarily send
a weak S-homotopy equivalence of flows to a weak homotopy equivalence of topo-
logical spaces. So this first idea fails, or at least it cannot work directly.

Let X = Q(F (P )) be the cofibrant replacement of F (P ). Another idea that
we did not manage to work out can be presented as follows. Every nonconstant
execution path γ of PX such that s(γ) = 0̂ is in the same equivalence class as an
execution path of P0̂,1̂X since the state 1̂ is the only final state of X. Therefore,
the topological space hoP−

0̂
F (P ) = P−

0̂
X is a quotient of the contractible cofibrant
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space P0̂,1̂X. However, the quotient of a contractible space is not necessarily con-
tractible. For example, identifying in the 1-dimensional disk D1 the points −1 and
+1 gives the 1-dimensional sphere S1.

The principle of the proof given in this paper consists in finding a diagram of
topological spaces P−

0̂
(X) satisfying the following properties:

(1) There is an isomorphism of topological spaces

P−
0̂

X ∼= lim−→P−
0̂

(X).

(2) There is a weak homotopy equivalence of topological spaces

lim−→P−
0̂

(X) 	 holim−−−→P−
0̂

(X)

because the diagram of topological spaces P−
0̂

(X) is cofibrant for an ap-
propriate model structure and because for this model structure, the colimit
functor is a left Quillen functor.

(3) Each vertex of the diagram of topological spaces P−
0̂

(X) is contractible.
Hence, its homotopy colimit is weakly homotopy equivalent to the classifying
space of the underlying category of P−

0̂
(X).

(4) The underlying category of the diagram P−
0̂

(X) is contractible.

To prove the second assertion, we will build a Reedy structure on the underlying
category of the diagram P−

0̂
(X). The main ingredient (but not the only one) of this

construction will be that for every triple (α, β, γ) ∈ X0 ×X0 ×X0, the continuous
map Pα,βX×Pβ,γX −→ Pα,γX induced by the composition law of X is a cofibration
of topological spaces since X is cofibrant.

The underlying category of the diagram of topological spaces P−
0̂

(X) will be
the opposite category Δ(P\{0̂})op of the order complex of the poset P\{0̂}. The
latter looks as follows (it is the opposite category of the category generated by the
inclusions, therefore all diagrams are commutative):

(A, B, 1̂)

���
�

�
�

�

�������������

(C, 1̂)

���
�
�

		��
��

��
��

�
(A, 1̂)

��	
	

	
	

	

��

(B, 1̂)

���
�

�
�

�

������������
(A, B)

��












��
(C) (1̂) (A) (B)

The diagram P−
0̂

(X) is then defined as follows:

• P−
0̂

(X)(A, B, 1̂) = P0̂,AX × PA,BX × PB,1̂X.
• P−

0̂
(X)(A) = P0̂,AX.

• P−
0̂

(X)(B) = P0̂,BX.
• P−

0̂
(X)(C) = P0̂,CX.

• P−
0̂

(X)(1̂) = P0̂,1̂X.
• P−

0̂
(X)(A, B) = P0̂,AX × PA,BX.

• P−
0̂

(X)(B, 1̂) = P0̂,BX × PB,1̂X.
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• P−
0̂

(X)(A, 1̂) = P0̂,AX × PA,1̂X.
• P−

0̂
(X)(C, 1̂) = P0̂,CX × PC,1̂X.

• The morphisms ����� are induced by the projection.
• The morphisms �� are induced by the composition law.

Note that the restriction P−
0̂

(X) �p−
0̂

(X) of the diagram of topological spaces

P−
0̂

(X) to the small category p−
0̂

(X) ⊂ Δ(P\{0̂})op

(C, 1̂)

���
�
�

		��
��

��
��

�
(A, 1̂)

		�
�

�
�

�

��

(B, 1̂)

		�
�

�
�

�




(A, B)











��
(C) (1̂) (A) (B)

has the same colimit, that is P−
0̂

(X), since the category p−
0̂

(X) is a final subcategory
of Δ(P\{0̂})op. However, the latter restriction cannot be Reedy cofibrant because
of the associativity of the composition law. Indeed, the continuous map

P0̂,AX × PA,1̂X � P0̂,BX × PB,1̂X −→ P−
0̂

(X)�p−
0̂

(X) (1̂) = P0̂,1̂X

induced by the composition law of X is not even a monomorphism: if (u, v, w) ∈
P0̂,AX × PA,BX × PB,1̂X, then u ∗ v ∗ w = (u ∗ v) ∗ w ∈ P0̂,BX × PB,1̂X and
u∗v∗w = u∗(v∗w) ∈ P0̂,AX×PA,1̂X. So the second assertion of the main argument
cannot be true. Moreover, the classifying space of p−

0̂
(X) is not contractible: it is

homotopy equivalent to the circle S1. So the fourth assertion of the main argument
cannot be applied either.

On the other hand, the continuous map

(P0̂,AX × PA,1̂X) �(P0̂,AX×PA,BX×PB,1̂X) (P0̂,BX × PB,1̂X) −→ P−
0̂

(X)(1̂) = P0̂,1̂X

is a cofibration of topological spaces and the classifying space of the order complex
of the poset P\{0̂} is contractible since the poset P\{0̂} =]0̂, 1̂] has a unique top
element 1̂ [Qui78].

6. Calculating the branching space of a loopless flow

Theorem 6.1. Let X be a loopless flow. Let α ∈ X0. There exists one and only
one functor

P−
α (X) : Δ(X0

>α)op −→ Top

satisfying the following conditions:
(1) P−

α (X)(α0,...,αp) := Pα,α0X × Pα0,α1X × . . . × Pαp−1,αp
X.

(2) The morphism ∂i : P−
α (X)(α0,...,αp) −→ P−

α (X)(α0,...,α̂i,...,αp) for 0 < i < p
is induced by the composition law of X, more precisely by the morphism

Pαi−1,αiX × Pαi,αi+1X −→ Pαi−1,αi+1X.

(3) The morphism ∂0 : P−
α (X)(α0,...,αp) −→ P−

α (X)(α̂0,...,αi,...,αp) is induced by
the composition law of X, more precisely by the morphism

Pα,α0X × Pα0,α1X −→ Pα,α1X.
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(4) The morphism ∂p : P−
α (X)(α0,...,αp) −→ P−

α (X)(α0,...,αp−1,α̂p) is the projec-
tion map obtained by removing the component Pαp−1,αp

X.

Proof. The uniqueness on objects is exactly the first assertion. The uniqueness on
morphisms comes from the fact that every morphism of Δ(X0

>α)op is a composite
of ∂i. We have to prove existence.

The diagram of topological spaces

P−
α (X)(α0,...,αp)

∂i ��

∂j

��

P−
α (X)(α0,...,α̂i,...,αp)

∂j−1

��
P−
α (X)(α0,...,α̂j ,...,αp)

∂i �� P−
α (X)(α0,...,α̂i,...,α̂j ,...,αp)

is commutative for any 0 < i < j < p and any p � 2. Indeed, if i < j − 1, then one
has

∂i∂j(γ0, . . . , γp) = ∂j−1∂i(γ0, . . . , γp) = (γ0, . . . , γiγi+1, . . . , γjγj+1, . . . , γp)

and if i = j − 1, then one has

∂i∂j(γ0, . . . , γp) = ∂j−1∂i(γ0, . . . , γp) = (γ0, . . . , γj−1γjγj+1, . . . , γp)

because of the associativity of the composition law of X. (This is the only place in
this proof where this axiom is required.)

The diagram of topological spaces

P−
α (X)(α0,...,αp)

∂i ��

∂p

��

P−
α (X)(α0,...,α̂i,...,αp)

∂p−1

��
P−
α (X)(α0,...,αp−1)

∂i �� P−
α (X)(α0,...,α̂i,...,αp−1)

is commutative for any 0 < i < p − 1 and any p > 2. Indeed, one has

∂i∂p(γ0, . . . , γp) = ∂p−1∂i(γ0, . . . , γp) = (γ0, . . . , γiγi+1, . . . , γp−1) .

Finally, the diagram of topological spaces

P−
α (X)(α0,...,αp)

∂p−1 ��

∂p

��

P−
α (X)(α0,...,α̂p−1,αp)

∂p−1

��
P−
α (X)(α0,...,αp−1)

∂p−1 �� P−
α (X)(α0,...,αp−2)

is commutative for any p � 2. Indeed, one has

∂p−1∂p(γ0, . . . , γp) = (γ0, . . . , γp−2)

and

∂p−1∂p−1(γ0, . . . , γp) = ∂p−1(γ0, . . . , γp−2, γp−1γp) = (γ0, . . . , γp−2) .

In other words, the ∂i maps satisfy the simplicial identities. Hence the result. �

The following theorem is used in the proofs of Theorem 6.3 and Theorem 8.3.
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Theorem 6.2 ([ML98] Theorem 1, p. 213). Let L : J ′ −→ J be a final functor
between small categories, i.e., such that for any k ∈ J , the comma category (k ↓L)
is nonempty and connected. Let F : J −→ C be a functor from J to a cocomplete
category C. Then L induces a canonical morphism lim−→(F ◦ L) −→ lim−→F which is
an isomorphism.

Theorem 6.3. Let X be a loopless flow. Then there exists an isomorphism of
topological spaces P−

αX ∼= lim−→P−
α (X) for any α ∈ X0.

Proof. Let p−α (X) be the full subcategory of Δ(X0
>α)op generated by the arrows

∂0 : (α0, α1) −→ (α1) and ∂1 : (α0, α1) −→ (α0).
Let k = (k0, . . . , kq) be an object of Δ(X0

>α)op. Then k → (k0) is an object of
the comma category (k↓p−α (X)). So the latter category is not empty. Let k → (x0)
and k → (y0) be distinct elements of (k ↓ p−α (X)). The pair {x0, y0} is therefore a
subset of {k0, . . . , kq}. So either x0 < y0 or y0 < x0. Without loss of generality,
one can suppose that x0 < y0. Then one has the commutative diagram

k

��

k

��

k

��
(x0) (x0, y0)

∂1�� ∂0 �� (y0).

Therefore, the objects k → (x0) and k → (y0) are in the same connected component
of (k ↓p−α (X)). Let k → (x0) and k → (y0, y1) be distinct elements of (k ↓p−α (X)).
Then k → (x0) is in the same connected component as k → (y0) by the previous
calculation. Moreover, one has the commutative diagram

k

��

k

��
(y0) (y0, y1).

∂1��

Thus, the objects k → (x0) and k → (y0, y1) are in the same connected component
of (k ↓ p−α (X)). So the comma category (k ↓ p−α (X)) is connected and nonempty.
Thus for any functor F : Δ(X0

>α)op −→ Top, the inclusion functor i : p−α (X) −→
Δ(X0

>α)op induces an isomorphism of topological spaces lim−→(F ◦ i) −→ lim−→F by
Theorem 6.2.

Let p̂−α (X) be the full subcategory of p−α (X) consisting of the objects (α0). The
category p̂−α (X) is discrete because it does not contain any nonidentity morphism.
Let j : p̂−α (X) −→ p−α (X) be the canonical inclusion functor. It induces a canonical
continuous map lim−→(F ◦ j) −→ lim−→(F ◦ i) for any functor F : Δ(X0

>α)op −→ Top.
For F = P−

α (X), one obtains the diagram of topological spaces

lim−→(P−
α (X) ◦ j) −→ lim−→(P−

α (X) ◦ i) ∼= lim−→P−
α (X).

It is clear that lim−→(P−
α (X) ◦ j) ∼=

⊔
α0

Pα,α0X. Let g : lim−→(P−
α (X) ◦ j) −→ Z be a

continuous map such that g(x∗y) = g(x) for any x and any y such that t(x) = s(y).
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So there exists a commutative diagram

Ps(x),t(x)X × Pt(x),t(y)X

∂1

��

∂0 ��

�������������������
Ps(x),t(y)X

g

��
Ps(x),t(x)X

g �� Z

for any x and y as above. Therefore, the topological space lim−→(P−
α (X) ◦ i) satisfies

the same universal property as the topological space P−
αX (cf. Proposition 5.1). �

7. Reedy structure and homotopy colimit

Lemma 7.1. Let X be a loopless flow such that (X0, �) is locally finite. If (α, β)
is a 1-simplex of Δ(X0) and if (α0, . . . , αp) is a p-simplex of Δ(X0) with α0 = α
and αp = β, then p is at most the cardinal card(]α, β]) of ]α, β].

Proof. If (α0, . . . , αp) is a p-simplex of Δ(X0), then one has α0 < · · · < αp by
definition of the order complex. So one has the inclusion {α1, . . . , αp} ⊂]α, β], and
therefore p � card(]α, β]). �

The following choice of notation is therefore meaningful.

Notation 7.2. Let X be a loopless flow such that (X0, �) is locally finite. Let
(α, β) be a 1-simplex of Δ(X0). We denote by �(α, β) the maximum of the set of
integers {

p � 1,∃(α0, . . . , αp) p-simplex of Δ(X0) s.t. (α0, αp) = (α, β)
}

One always has 1 � �(α, β) � card(]α, β]).

Lemma 7.3. Let X be a loopless flow such that (X0, �) is locally finite. Let
(α, β, γ) be a 2-simplex of Δ(X0). Then one has

�(α, β) + �(β, γ) � �(α, γ).

Proof. Let α = α0 < · · · < α�(α,β) = β. Let β = β0 < · · · < β�(β,γ) = γ. Then

(α0, . . . , α�(α,β), β1, . . . , β�(β,γ))

is a simplex of Δ(X0) with α = α0 and β�(β,γ) = γ. So �(α, β) + �(β, γ) � �(α, γ).
�

Proposition 7.4. Let X be a loopless flow such that (X0, �) is locally finite. Let
α ∈ X0. Let Δ(X0

>α)op+ be the subcategory of Δ(X0
>α)op generated by the

∂i : (α0, . . . , αp) −→ (α0, . . . , α̂i, . . . , αp)

for any p � 1 and 0 � i < p. Let Δ(X0
>α)op− be the subcategory of Δ(X0

>α)op

generated by the

∂p : (α0, . . . , αp) −→ (α0, . . . , αp−1)

for any p � 1. If (α0, . . . , αp) is an object of Δ(X0
>α)op, let:

d(α0, . . . , αp) = �(α, α0)2 + �(α0, α1)2 + · · · + �(αp−1, αp)2.

Then the triple (Δ(X0
>α)op, Δ(X0

>α)op+ , Δ(X0
>α)op− ) together with the degree function

d is a Reedy category.
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Note that the subcategory Δ(X0
>α)op+ is precisely generated by the morphisms

sent by the functor P−
α (X) (Theorem 6.1) to continuous maps induced by the com-

position law of the flow X. And note that the subcategory Δ(X0
>α)op− is precisely

generated by the morphisms sent by the functor P−
α (X) (Theorem 6.1) to contin-

uous maps induced by the projection obtained by removing the last component on
the right.

Proof. Let ∂i : (α0, . . . , αp) −→ (α0, . . . , α̂i, . . . , αp) be a morphism of Δ(X0
>α)op+

with p � 1 and 0 � i < p . Then (with the convention α−1 = α)

d(α0, . . . , αp) = �(α, α0)2 + · · · + �(αp−1, αp)2

d(α0, . . . , α̂i, . . . , αp) = �(α, α0)2 + · · · + �(αi−1, αi+1)2 + · · · + �(αp−1, αp)2.

So one obtains

d(α0, . . . , αp) − d(α0, . . . , α̂i, . . . , αp) = �(αi−1, αi)2 + �(αi, αi+1)2 − �(αi−1, αi+1)2.

By Lemma 7.3, one has

(�(αi−1, αi) + �(αi, αi+1))2 � �(αi−1, αi+1)2

and one has

�(αi−1, αi)2 + �(αi, αi+1)2 < (�(αi−1, αi) + �(αi, αi+1))2

since 2�(αi−1, αi)�(αi, αi+1) � 2. So every morphism of Δ(X0
>α)op+ raises degree.

Let ∂p : (α0, . . . , αp) −→ (α0, . . . , αp−1) with p � 1 be a morphism of Δ(X0
>α)op− .

Then one has

d(α0, . . . , αp) = �(α, α0)2 + · · · + �(αp−2, αp−1)2 + �(αp−1, αp)2

d(α0, . . . , αp−1) = �(α, α0)2 + · · · + �(αp−2, αp−1)2.

So d(α0, . . . , αp) − d(α0, . . . , αp−1) = �(αp−1, αp)2 > 0. Thus, every morphism of
Δ(X0

>α)op− lowers degree.
Let f : (α0, . . . , αp) −→ (β0, . . . , βq) be a morphism of Δ(X0

>α)op. Then one has
p � q and (β0, . . . , βq) = (ασ(0), . . . , ασ(q)) where σ : {0, . . . , q} −→ {0, . . . , p} is a
strictly increasing set map. Then f can be written as a composite

(α0, α1, α2, . . . , αp) �� (α0, α1, α2, . . . , ασ(q))
∂j1∂j2 ...∂jr �� (β1, . . . , βq)

where 0 � j1 < j2 < · · · < jr < σ(q) and {j1, j2, . . . , jr} ∪ {σ(1), σ(2), . . . , σ(q)} =
{0, 1, 2, . . . , σ(q)} and this is the unique way of decomposing f as a morphism of
Δ(X0

>α)op− followed by a morphism of Δ(X0
>α)op+ . �

Theorem 7.5. Let X be a loopless flow such that (X0, �) is locally finite. Let
α ∈ X0. Then the colimit functor

lim−→ : TopΔ(X0
>α)op −→ Top

is a left Quillen functor if the category of diagrams TopΔ(X0
>α)op is equipped with

the Reedy model structure.

Proof. The Reedy structure on Δ(X0
>α)op provides a model structure on the cat-

egory TopΔ(X0
>α)op of diagrams of topological spaces over Δ(X0

>α)op such that if
f : D −→ E is a morphism of diagrams, then:
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(1) f is a weak equivalence if and only if for all objects α of Δ(X0
>α)op, the

morphism Dα −→ Eα is a weak homotopy equivalence of Top, i.e., f is an
objectwise weak homotopy equivalence.

(2) f is a cofibration if and only if for all objects α of Δ(X0
>α)op, the morphism

Dα �LαD LαE −→ Eα is a cofibration of Top.
(3) f is a fibration if and only if for all objects α of Δ(X0

>α)op, the morphism
Dα −→ Eα ×MαE MαD is a fibration of Top.

Consider the categorical adjunction lim−→ : TopΔ(X0
>α)op � Top : Diag where Diag

is the diagonal functor. Let p : E −→ B be a continuous map. If α = (α0), then
the matching category of α is the empty category. So

Diag(B)α ×Mα Diag(B) Mα Diag(E) ∼= Diag(B)α ∼= B

since the spaces Mα Diag(B) and Mα Diag(E) are both equal to singletons. If
α = (α0, . . . , αp) with p � 1, then the matching category of α looks like the
following tower:

(α0, . . . , αp−1) −→ (α0, . . . , αp−2) −→ · · · −→ (α0).

Therefore in that case, one has the isomorphisms

Mα Diag(B) ∼= Diag(B)(α0,...,αp−1)
∼= B

and

Mα Diag(E) ∼= Diag(E)(α0,...,αp−1)
∼= E.

Hence Diag(B)α ×Mα Diag(B) Mα Diag(E) ∼= E. Thus, the continuous map

E ∼= Diag(E)α −→ Diag(B)α ×Mα Diag(B) Mα Diag(E)

is either the identity of E, or p. So if p is a fibration (resp. a trivial fibration),
then Diag(p) : Diag(E) −→ Diag(B) is a Reedy fibration (resp. a Reedy trivial
fibration). One then deduces that Diag is a right Quillen functor and that the
colimit functor is a left Quillen functor. �

8. Homotopy branching space of a full directed ball

Notation 8.1. Let X be a loopless flow. Let α = (α0, . . . , αp) and β = (β0, . . . , βq)
be two simplices of the order complex Δ(X0) of the poset X0. Then we define:

(1) β � α if α0 = β0, αp = βq and {α0, . . . , αp} ⊂ {β0, . . . , βq}.
(2) β � α if α0 = β0, αp = βq and {α0, . . . , αp} � {β0, . . . , βq}.

Notation 8.2. Let X be a loopless flow. Let α = (α0, . . . , αp) be a simplex of
the order complex Δ(X0) of the poset X0. Let α < α0. Then the notation α.α
represents the simplex (α, α0, . . . , αp) of Δ(X0).

Theorem 8.3. Let X be a loopless flow such that (X0, �) is locally finite. Let
α ∈ X0. Then:

(1) For any object α of Δ(X0
>α)op, one has the isomorphism of topological spaces

LαP−
α (X) ∼= lim−→ α.β�α.αP−

α (X)β .



Invariance of the branching and merging homologies 335

(2) For any object α = (α0, . . . , αp), the canonical continuous map

iα.α : LαP−
α (X) −→ P−

α (X)α

is equal to the pushout product (cf. Notation B.2) of the canonical continuous
maps

i(α,α0)�i(α0,α1)� . . .�i(αp−1,αp).

Proof. Let α be a fixed object of Δ(X0
>α)op. Since the subcategory Δ(X0

>α)op+
contains only commutative diagrams, the latching category ∂(Δ(X0

>α)op+ ↓α) is the
full subcategory of Δ(X0

>α)op+ consisting of the simplices β such that α.β � α.α.
Hence the first assertion.

Let α−1 := α . One has α.β � α.α if and only if the simplex α.β can be written
as an expression of the form

α−1.δ0.δ1 . . . δp

with αi−1.δi � (αi−1, αi) for all 0 � i � p and such that at least for one i, one has
αi−1.δi � (αi−1, αi).

Let E be the set of subsets S of {0, . . . , p} such that S �= {0, . . . , p}. For such an
S, let I(S) be the full subcategory of Δ(X0

>α)op+ consisting of the objects β such
that:

• α.β � α.α.
• For each i /∈ S, one has αi−1.δi � (αi−1, αi), and therefore δi �= (αi).
• For each i ∈ S, one has αi−1.δi � (αi−1, αi).

The full subcategory
⋃
S∈E I(S) is exactly the subcategory of Δ(X0

>α)op+ consist-
ing of the objects β such that α.β � α.α, that is to say the subcategory calculating
LαP−

α (X). In other words, one obtains the isomorphism

lim−→
⋃

S∈E I(S)P−
α (X) ∼= LαP−

α (X).(1)

The full subcategory I(S) of Δ(X0
>α)op+ has a final subcategory I(S) consisting

of the objects β such that:

• α.β � α.α.
• For each i /∈ S, one has αi−1.δi � (αi−1, αi), and therefore δi �= (αi).
• For each i ∈ S, one has αi−1.δi = (αi−1, αi) and therefore δi = (αi).

The subcategory I(S) is final in I(S) because for any object β of I(S), there exists
a unique γ of I(S) and a unique arrow β −→ γ. Therefore, by Theorem 6.2, there
is an isomorphism

lim−→ I(S)P−
α (X) ∼= lim−→ I(S)

P−
α (X)(2)

since the comma category (β ↓I(S)) is the one-object category.
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For any object β of I(S), one gets

P−
α (X)β

=
i=p∏
i=0

P−
αi−1

(X)δi by definition of P−

∼=
(∏
i∈S

P−
αi−1

(X)(αi)

)
×
(∏
i/∈S

P−
αi−1

(X)δi

)
by definition of S.

Thus, since the category Top of compactly generated topological spaces is cartesian
closed, one obtains

lim−→ I(S)P−
α (X)

∼= lim−→ I(S)

((∏
i∈S

P−
αi−1(X)(αi)

)
×
(∏

i/∈S

P−
αi−1(X)δi

))

∼=
(∏

i∈S

P−
αi−1(X)(αi)

)
× lim−→ i /∈ S

αi−1.δi � (αi−1, αi)

(∏
i/∈S

P−
αi−1(X)δi

)

∼=
(∏

i∈S

P−
αi−1(X)(αi)

)
×
(∏

i/∈S

lim−→ αi−1.δi�(αi−1,αi)
P−

αi−1(X)δi

)
by Lemma B.1.

Therefore, one obtains the isomorphism of topological spaces

lim−→ I(S)
P−
α (X) ∼=

(∏
i∈S

P−
αi−1

(X)(αi)

)
×
(∏
i/∈S

L(αi)P−
αi−1

(X)

)
(3)

thanks to the first assertion of the theorem.
If S and T are two elements of E such that S ⊂ T , then there exists a canonical

morphism of diagrams I(S) −→ I(T ) inducing a canonical morphism of topological
spaces

lim−→ β∈I(S)P−(X)β −→ lim−→ β∈I(T )P−(X)β .

Therefore, by Equation (2) and Equation (3), the double colimit

lim−→ S∈E
(
lim−→ I(S)P−

α (X)
)

calculates the source of the morphism i(α,α0)�i(α0,α1)� . . .�i(αp−1,αp) by Theo-
rem B.3. It then suffices to prove the isomorphism

lim−→ S∈E
(
lim−→ I(S)P−

α (X)
) ∼= lim−→ α.β�α.αP−

α (X)β

to complete the proof. For that purpose, it suffices to construct two canonical
morphisms

lim−→ S∈E
(
lim−→ I(S)P−

α (X)
)
−→ lim−→ α.β�α.αP−

α (X)β

and

lim−→ α.β�α.αP−
α (X)β −→ lim−→ S∈E

(
lim−→ I(S)P−

α (X)
)
.
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The first morphism comes from the isomorphism of Equation (1). As for the second
morphism, let us consider a diagram of flows of the form:

P−
α (X)β

��

�� lim−→ S∈E
(
lim−→ I(S)P−

α (X)
)

P−
α (X)γ

�������������

One has to prove that it is commutative. Since one has
⋃
S∈E I(S) = Δ(X0

>α)op+ ,
there exists S ∈ E such that γ is an object of I(S). So β is an object of I(S) as
well and there exists a commutative diagram

P−
α (X)β

��

�� lim−→ I(S)P−
α (X)

P−
α (X)γ

�������������

since the subcategory Δ(X0
>α)op+ is commutative. Hence the result. �

Theorem 8.4. Let X be a loopless object of cell(Flow) such that (X0, �) is locally
finite. Let α ∈ X0. Then the diagram of topological spaces P−

α (X) is Reedy cofi-
brant. In other words, for any object α of Δ(X0

>α)op, the topological space P−
α (X)α

is cofibrant and the morphism LαP−
α (X) −→ P−

α (X)α is a cofibration of topological
spaces.

Proof. Let X be an object of cell(Flow). By Proposition A.3 and since the
model category Top is monoidal, one deduces that for any object α of Δ(X0

>α)op,
the topological space P−

α (X)α is cofibrant. The pushout product of two cofibra-
tions of topological spaces is always a cofibration since the model category Top is
monoidal. By Theorem 8.3, it then suffices to prove that for any loopless object X of
cell(Flow) such that (X0, �) is locally finite, for any object (α0) of Δ(X0

>α)op, the
continuous map L(α0)P−

α (X) −→ P−
α (X)(α0) is a cofibration of topological spaces.

Let X be an object of cell(Flow). Consider a pushout diagram of flows with n � 0
as follows:

Glob(Sn−1)

��

φ �� X

��
Glob(Dn) �� Y .

One then has to prove that if X satisfies this property, then Y satisfies this property
as well. One has X0 = Y 0 since the morphism Glob(Sn−1) −→ Glob(Dn) restricts
to the identity of {0̂, 1̂} on the 0-skeletons and since the 0-skeleton functor X → X0
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preserves colimits.3 So one has the commutative diagram

L(α0)P−
α (X) ��
� �

��

L(α0)P−
α (Y )

��
P−
α (X)(α0)

�� P−
α (Y )(α0)

where the symbol � � �� means cofibration. There are two mutually exclusive cases:

(1) (φ(0̂), φ(1̂)) = (α, α0). One then has the situation

L(α0)P−
α (X)
� �

��

L(α0)P−
α (Y )

��
P−
α (X)(α0)

� � �� P−
α (Y )(α0)

where the bottom horizontal arrow is a cofibration since it is a pushout of
the morphism of flows Glob(Sn−1) −→ Glob(Dn). So the continuous map
L(α0)P−

α (Y ) −→ P−
α (Y )(α0) is a cofibration.

(2) (φ(0̂), φ(1̂)) �= (α, α0). Then, one has the pushout diagram of flows

L(α0)P−
α (X) ��
� �

��

L(α0)P−
α (Y )

��
P−
α (X)(α0)

�� P−
α (Y )(α0).

So the continuous map L(α0)P−
α (Y ) −→ P−

α (Y )(α0) is again a cofibration.
In this situation, it may happen that L(α0)P−

α (X) = L(α0)P−
α (Y ).

The proof is complete with Proposition C.1, and because the canonical morphism
of flows X0 −→ X is a relative Igl-cell complex, and at last because the property
above is clearly satisfied for X = X0. �

9. The end of the proof

The two following classical results about classifying spaces are going to be very
useful.

Proposition 9.1 (e.g., [Hir03] Proposition 18.1.6). Let C be a small category. The
homotopy colimit of the terminal object of TopC is homotopy equivalent to the
classifying space of the opposite of the indexing category C.

Proposition 9.2 (e.g., [Hir03] Proposition 14.3.13). Let C be a small category hav-
ing a terminal object. Then the classifying space of C is contractible.

Theorem 9.3. Let X be a loopless object of cell(Flow) such that (X0, �) is locally
finite. Assume there is an element 1̂ such that α � 1̂ for all α ∈ X0. For any 1-
simplex (α, β) of Δ(X0), let us suppose that Pα,βX is weakly contractible. Then
hoP−

α X has the homotopy type of a point for any α ∈ X0\{1̂}.

3One has the canonical bijection Set(X0, Z) ∼= Flow(X, T (Z)) where T (Z) is the flow defined
by T (Z)0 = Z and for any (α, β) ∈ Z × Z, Pα,βT (Z) = {0}.
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Of course, with the hypothesis of the theorem, the topological space hoP−
1̂

X is
the empty space.

Proof. One has the sequence of weak homotopy equivalences (where Q is the cofi-
brant replacement functor, 1 is the terminal diagram, and α ∈ X0\{1̂}):
hoP−

α X

� P−
α Q(X) by definition of the homotopy branching space

� lim−→Δ(X0
>α)opP−

α (Q(X)) by Theorem 6.3

� holim−−−→
Δ(X0

>α)op

P−
α (Q(X)) by Theorem 7.5 and Theorem 8.4

� holim−−−→
Δ(X0

>α)op

1 by homotopy invariance of the homotopy colimit

� B
(
Δ(X0

>α)
)

by Proposition 9.1

� B(X0
>α) since the barycentric subdivision is a homotopy invariant

� B(]α, 1̂]) since X0 has exactly one maximal point

� {0} by Proposition 9.2.

�
Proposition 9.4 ([Gau05b] Proposition A.1). Let X be a flow. There exists a
topological space P+X unique up to homeomorphism and a continuous map h+ :
PX −→ P+X satisfying the following universal property:

(1) For any x and y in PX such that t(x) = s(y), the equality h+(y) = h+(x∗y)
holds.

(2) Let φ : PX −→ Y be a continuous map such that for any x and y of PX
such that t(x) = s(y), the equality φ(y) = φ(x ∗ y) holds. Then there exists
a unique continuous map φ : P+X −→ Y such that φ = φ ◦ h+.

Moreover, one has the homeomorphism

P+X ∼=
⊔
α∈X0

P+
αX

where P+
αX := h+

(⊔
β∈X0 P+

α,βX
)
. The mapping X → P+X yields a functor P+

from Flow to Top.

Roughly speaking, the merging space of a flow is the space of germs of noncon-
stant execution paths ending in the same way.

Definition 9.5. Let X be a flow. The topological space P+X is called the merging
space of the flow X. The functor P+ is called the merging space functor.

Theorem 9.6 ([Gau05b] Theorem A.4). The merging space functor P+ : Flow →
Top is a left Quillen functor.

Definition 9.7. The homotopy merging space hoP+ X of a flow X is by definition
the topological space P+Q(X). If α ∈ X0, let hoP+

α X = P+
αQ(X).

Theorem 9.8. Let −→
D be a full directed ball with initial state 0̂ and final state 1̂.

Then one has the following homotopy equivalences:
(1) hoP−

α
−→
D 	 {0} for any α ∈ −→

D 0\{1̂} and hoP−
1̂

−→
D = ∅.
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(2) hoP+
α
−→
D 	 {0} for any α ∈ −→

D 0\{0̂} and hoP+

0̂

−→
D = ∅.

Proof. The equalities hoP−
1̂

−→
D = ∅ and hoP+

0̂

−→
D = ∅ are obvious. The homotopy

equivalence hoP−
α
−→
D 	 {0} for any α ∈ −→

D 0\{1̂} is the result of Theorem 9.3. Let
us consider the opposite flow −→

D op of −→D defined as follows:
(1) (−→D op)0 = −→

D 0

(2) Pα,β
−→
D op = Pβ,α

−→
D with top(γ) = s(γ) and sop(γ) = t(γ).

The weak S-homotopy equivalence Q(−→D ) −→ −→
D from the cofibrant replacement of

−→
D to −→

D becomes a weak S-homotopy equivalence Q(−→D )op −→ −→
D op. Since one has

the isomorphism Glob(Z)op ∼= Glob(Z) for any topological space Z (in particular,
for Z = Sn−1 and Z = Dn for all n � 0), then the transfinite composition ∅ −→
Q(−→D ) of pushouts of morphisms of

{Glob(Sn−1) −→ Glob(Dn), n � 0} ∪ {R, C}
allows us to view ∅ −→ Q(−→D )op as the transfinite composition of pushouts of the
same set of morphisms. Therefore, the flow Q(−→D )op is a cofibrant replacement
functor of −→D op. So one has the homotopy equivalences

hoP+
α
−→
D 	 P+

αQ(−→D ) 	 P−
αQ(−→D )op 	 P−

αQ(−→D op) 	 hoP−
α
−→
D op.

Thus, if α is not the final state of −→
D op, that is the initial state of −→

D , then we
are reduced to verifying that −→

D op is a full directed ball as well. The latter fact is
clear. �

10. The branching and merging homologies of a flow

We recall in this section the definition of the branching and merging homologies.

Definition 10.1 ([Gau05b]). Let X be a flow. Then the (n + 1)-st branching
homology group H−

n+1(X) is defined as the n-th homology group of the augmented
simplicial set N−

∗ (X) defined as follows:
(1) N−

n (X) = Singn(hoP− X) for n � 0.
(2) N−

−1(X) = X0.
(3) The augmentation map ε : Sing0(hoP− X) −→ X0 is induced by the mapping

γ → s(γ) from hoP− X = Sing0(hoP− X) to X0.
Here, Sing(Z) denotes the singular simplicial nerve of a given topological space Z
[GJ99]. In other words:

(1) For n � 1, H−
n+1(X) := Hn(hoP− X).

(2) H−
1 (X) := ker(ε)/ im

(
∂ : N−

1 (X) → N−
0 (X)

)
.

(3) H−
0 (X) := Z(X0)/ im(ε).

Here ∂ is the simplicial differential map, ker(f) is the kernel of f and im(f) is the
image of f .

For any flow X, H−
0 (X) is the free abelian group generated by the final states

of X.

Definition 10.2 ([Gau05b]). Let X be a flow. Then the (n + 1)-st merging ho-
mology group H+

n+1(X) is defined as the n-th homology group of the augmented
simplicial set N+

∗ (X) defined as follows:
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(1) N+
n (X) = Singn(hoP+ X) for n � 0.

(2) N+
−1(X) = X0.

(3) The augmentation map ε : Sing0(hoP+ X) −→ X0 is induced by the mapping
γ → t(γ) from hoP+ X = Sing0(hoP+ X) to X0.

Here, Sing(Z) denotes the singular simplicial nerve of a given topological space Z.
In other words:

(1) For n � 1, H+
n+1(X) := Hn(hoP+ X).

(2) H+
1 (X) := ker(ε)/ im

(
∂ : N+

1 (X) → N+
0 (X)

)
.

(3) H+
0 (X) := Z(X0)/ im(ε).

Here, ∂ is the simplicial differential map, ker(f) is the kernel of f and im(f) is the
image of f .

For any flow X, H+
0 (X) is the free abelian group generated by the initial states

of X.

11. Preservation of the branching and merging homologies

Definition 11.1 ([Gau05a]). Let X be a flow. Let A and B be two subsets of X0.
One says that A is surrounded by B (in X) if for any α ∈ A, either α ∈ B or there
exists execution paths γ1 and γ2 of PX such that s(γ1) ∈ B, t(γ1) = s(γ2) = α and
t(γ2) ∈ B. We denote this situation by A ≪ B.

Theorem 11.2. Let f : X −→ Y be a generalized T-homotopy equivalence. Then
the morphism of flows f satisfies the following conditions (with ε = ±):

(1) Y 0 ≪ f(X0).
(2) For α ∈ X0, f induces a weak homotopy equivalence hoPεα X 	 hoPεf(α) Y .
(3) For α ∈ Y 0\f(X0), the topological space hoPεα Y is contractible.

Proof. First of all, let us suppose that f is a pushout of the form

Q(F (P1))� �

Q(F (u))

��

�� X

f

��
Q(F (P2)) �� Y

where P1 and P2 are two finite bounded posets and where u : P1 −→ P2 belongs
to T (Definition 4.4). Let us factor the morphism of flows Q(F (P1)) −→ X as a
composite of a cofibration Q(F (P1)) −→ W followed by a trivial fibration W −→ X.
Then one obtains the commutative diagram of flows

Q(F (P1))� �

Q(F (u))

��

� � �� W� �

��

� �� �� X

f

��
Q(F (P2))

� � �� T
� �� Y.

The morphism T −→ Y of the diagram above is a weak S-homotopy equivalence
since the model category Flow is left proper by [Gau05d] Theorem 6.4. So the flows
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W and X (resp. T and Y ) have same homotopy branching and merging spaces and
we are reduced to the following situation:

Q(F (P1))� �

Q(F (u))

��

� � �� X� �

f

��
Q(F (P2))

� � �� Y

where the square is both a pushout and a homotopy pushout diagram of flows. The
0-skeleton functor gives rise to the commutative diagram of set maps:

P1

u

��

v �� X0

��
P2

w �� Y 0.

Thus, one obtains the commutative diagram of topological spaces (ε ∈ {−1, +1})⊔
β∈v−1(α) PεβQ(F (P1))� �

�
��

� � �� PεαX� �

�
��⊔

β∈w−1(f(α)) PεβQ(F (P2)) � � �� Pεf(α)Y.

The left vertical arrow is a weak homotopy equivalence for the following reasons:
(1) Theorem 9.8 says that each component of the domain and of the codomain

is weakly contractible, or empty. And since u(0̂) = 0̂ and u(1̂) = 1̂, a
component PεβQ(F (P1)) is empty (resp. weakly contractible) if and only if
Pεu(β)Q(F (P2)) is empty (resp. weakly contractible).

(2) The map u is one-to-one and therefore, the restriction

u : v−1(α) −→ w−1(f(α))

is bijective.
The left vertical arrow is also a cofibration. So the right vertical arrow PεαX −→
Pεf(α)Y is a trivial cofibration as well since the functors Pε with ε ∈ {−1, +1} are
both left Quillen functors.

Let α ∈ Y 0\f(X0), that is to say α ∈ P2\u(P1). Then one obtains the pushout
diagram of topological spaces

∅ = PεαQ(−→I )� �

��

� � �� ∅ = PεαX� �

��
PεαQ(D) � � �� PεαY.

So by Theorem 9.8 again, one deduces that PεαY is contractible as soon as α ∈
Y 0\f(X0).

Now let us suppose that f : X −→ Y is a transfinite composition of morphisms
as above. Then there exists an ordinal λ and a λ-sequence Z : λ −→ Flow with
Z0 = X, Zλ = Y and the morphism Z0 −→ Zλ is equal to f . Since for any u ∈ T ,
the morphism of flows Q(F (u)) is a cofibration, the morphism Zμ −→ Zμ+1 is a
cofibration for any μ < λ. Since the model category Flow is left proper by [Gau05d]
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Theorem 6.4, there exists by [Hir03] Proposition 17.9.4 a λ-sequence Z̃ : λ −→ Flow
and a morphism of λ-sequences Z̃ −→ Z such that for any μ � λ, the flow Z̃μ is
cofibrant and the morphism Z̃μ −→ Zμ is a weak S-homotopy equivalence. So
for any μ � λ, one has PεZ̃μ 	 hoPε Zμ and for any μ < λ, the continuous map
PεZ̃μ −→ PεZ̃μ+1 is a cofibration. So for a given α ∈ Z0

0 = X0, the continuous
map hoPεα X −→ hoPεf(α) Y is a transfinite composition of trivial cofibrations, and
therefore a trivial cofibration as well.

The same argument proves that the continuous map hoPεα Zμ −→ hoPεα′ Y is a
trivial cofibration for any μ � λ where α′ ∈ Y 0 is the image of α ∈ Z0

μ by the
morphism Zμ −→ Y . Let α ∈ Y 0\f(X0). Consider the set of ordinals{

μ � λ,∃βμ ∈ Zμ mapped to α
}
.

This nonempty set (it contains at least λ) has a smallest element μ0. The ordinal
μ0 cannot be a limit ordinal. Otherwise, one would have Zμ0 = lim−→ μ<μ0Zμ and
therefore there would exist a βμ mapped to βμ0 for some μ < μ0: contradiction.
So one can write μ0 = μ1 + 1. Then hoPεβμ0

Zμ0 is contractible because of the first
part of the proof applied to the morphism Zμ1 −→ Zμ0 . Therefore, hoPεα′ Y is
contractible as well.

The condition Y 0 ≪ f(X0) is always clearly satisfied.
This leaves the case where f is a retract of a generalized T-equivalence of the

preceding kinds. The result follows from the fact that everything is functorial and
that the retract of a weak homotopy equivalence (resp. a nonempty set) is a weak
homotopy equivalence (resp. a nonempty set). �

Corollary 11.3. Let f : X −→ Y be a generalized T-homotopy equivalence. Then
for any n � 0, one has the isomorphisms

H−
n (f) : H−

n (X)
∼=−→ H−

n (Y )

H+
n (f) : H+

n (X)
∼=−→ H+

n (Y ).

Proof. This is the same proof as for [Gau05b] Proposition 7.4 (the word con-
tractible being replaced by singleton). �

12. Conclusion

This new definition of T-homotopy equivalence seems to be well-behaved because
it preserves the branching and merging homology theories. For an application of
this new approach of T-homotopy, see the proof of an analogue of Whitehead’s
theorem for the full dihomotopy relation in [Gau06a].

Appendix A. Elementary remarks about flows

Proposition A.1 ([Gau03] Proposition 15.1). If one has the pushout of flows

Glob(∂Z)
φ ��

��

A

��
Glob(Z) �� M
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then the continuous map PA −→ PM is a transfinite composition of pushouts of
continuous maps of the form Id× . . .×Id×f×Id× . . .×Id where f : Pφ(0̂),φ(1̂)A −→
T is the canonical inclusion obtained with the pushout diagram of topological spaces

∂Z ��

��

Pφ(0̂),φ(1̂)A

��
Z �� T.

Proposition A.2. Let Y be a flow such that PY is a cofibrant topological space.
Let f : Y −→ Z be a pushout of a morphism of Igl

+ . Then the topological space PZ
is cofibrant.

Proof. By hypothesis, f is the pushout of a morphism of flows g ∈ Igl
+ . So one has

the pushout of flows

A

g

��

φ �� Y

f

��
B

ψ
�� Z.

If f is a pushout of C : ∅ ⊂ {0}, then PZ = PY . Therefore, the space PZ
is cofibrant. If f is a pushout of R : {0, 1} → {0} and if φ(0) = φ(1), then
PZ = PY again. Therefore, the space PZ is also cofibrant. If f is a pushout of
R : {0, 1} → {0} and if φ is one-to-one, then one has the homeomorphism

PZ ∼= PY �
⊔
r�0

(
P.,φ(0)Y × Pφ(1),φ(0)Y × Pφ(1),φ(0)Y × . . . (r times) × Pφ(1),.Y

)
�
⊔
r�0

(
P.,φ(1)Y × Pφ(0),φ(1)Y × Pφ(0),φ(1)Y × . . . (r times) × Pφ(0),.Y

)
.

Therefore, the space PZ is again cofibrant since the model category Top is monoidal.
This leaves the case where g is the inclusion Glob(Sn−1) ⊂ Glob(Dn) for some
n � 0. Consider the pushout of topological spaces

Sn−1

g

��

Pφ �� Pφ(0̂),φ(1̂)Y

f

��
Dn

Pψ
�� T.

By Proposition A.1, the continuous map PY −→ PZ is a transfinite composition of
pushouts of continuous maps of the form Id× Id× . . .× f × . . .× Id× Id where f is
a cofibration and the identity maps are the identity maps of cofibrant topological
spaces. So it suffices to notice that if k is a cofibration and if X is a cofibrant
topological space, then IdX ×k is still a cofibration since the model category Top
is monoidal. �

Proposition A.3. Let X be a cofibrant flow. Then for any (α, β) ∈ X0 ×X0, the
topological space Pα,βX is cofibrant.
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Proof. A cofibrant flow X is a retract of a Igl
+ -cell complex Y and PX becomes a

retract of PY . So it suffices to show that PY is cofibrant. Proposition A.2 completes
the proof. �

Appendix B. Calculating pushout products

Lemma B.1. Let D : I −→ Top and E : J −→ Top be two diagrams in a complete
cocomplete cartesian closed category. Let D × E : I × J :−→ Top be the diagram
of topological spaces defined by (D × E)(x, y) := D(x) × E(y) if (x, y) is either
an object or an arrow of the small category I × J . Then one has lim−→(D × E) ∼=
(lim−→D) × (lim−→E).

Proof. One has lim−→(D × E) ∼= lim−→ i(lim−→ jD(i) × E(j)) by [ML98]. And one has
lim−→ j(D(i) × E(j)) ∼= D(i) × (lim−→E) since the category is cartesian closed. So
lim−→(D × E) ∼= lim−→ i(D(i) × (lim−→E)) ∼= (lim−→D) × (lim−→E). �

Notation B.2. If f : U −→ V and g : W −→ X are two morphisms of a complete
cocomplete category, then let us denote by f�g : (U×X)�(U×W )(V ×W ) −→ V ×X
the pushout product of f and g. The notation f0� . . .�fp is defined by induction
on p by f0� . . .�fp := (f0� . . .�fp−1)�fp.

Theorem B.3 (Calculating a pushout product of several morphisms). Let

fi : Ai −→ Bi, 0 � i � p

be p + 1 morphisms of a complete cocomplete cartesian closed category C. Let
S ⊂ {0, . . . , p}. Let

Cp(S) :=

(∏
i∈S

Bi

)
×
(∏
i/∈S

Ai

)
.

If S and T are two subsets of {0, . . . , p} such that S ⊂ T , let Cp(iTS ) : Cp(S) −→
Cp(T ) be the morphism(∏

i∈S
IdBi

)
×

⎛⎝ ∏
i∈T\S

fi

⎞⎠×
(∏
i/∈T

IdAi

)
.

Then:
(1) The mappings S → Cp(S) and iTS → Cp(iTS ) give rise to a functor from

Δ({0, . . . , p}) (the order complex of the poset {0, . . . , p}) to C.
(2) There exists a canonical morphism

lim−→ S�{0,...,p}Cp(S) −→ Cp({0, . . . , p}).

and it is equal to the morphism f0� . . .�fp.

Proof. The first assertion is clear. Moreover, for any subset S and T of {0, . . . , p}
such that S ⊂ T , the diagram

S ��

��

{0, . . . , p}

T

�����������
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is commutative since there is at most one morphism between two objects of the
category Δ({0, . . . , p}), hence the existence of the morphism

lim−→ S�{0,...,p}Cp(S) −→ C({0, . . . , p}).

The second assertion is clear for p = 0 and p = 1. We are going to prove it
by induction on p. By definition, the morphism f0� . . .�fp+1 is the canonical
morphism from((

lim−→ S�{0,...,p}Cp(S)
) × Bp+1

) �((
lim−→ S�{0,...,p}Cp(S)

)
×Ap+1

) (Cp({0, . . . , p}) × Ap+1

)
to B0 × . . . × Bp+1. By Lemma B.1, the source of the morphism f0� . . .�fp+1 is
then equal to(

lim−→ p+1∈S�{0,...,p+1}Cp+1(S)
)
�(

lim−→ S�{0,...,p}Cp+1(S)
) (Cp+1({0, . . . , p})

)
,

and the latter is equal to lim−→ S�{0,...,p+1}Cp+1(S). �

Appendix C. Mixed transfinite composition of pushouts and
cofibrations

Proposition C.1. Let M be a model category. Let λ be an ordinal. Let

(fμ : Aμ −→ Bμ)μ<λ

be a λ-sequence of morphisms of M. For μ < λ, suppose that Aμ → Aμ+1 is an
isomorphism or the diagram of objects of M

Aμ ��

fμ

��

Aμ+1

��
Bμ �� Bμ+1

is a pushout, and for μ < λ suppose also that the map Bμ −→ Bμ+1 is a cofibration.
Then: if f0 : A0 −→ B0 is a cofibration, then fλ : Aλ −→ Bλ is a cofibration as
well, where of course Aλ := lim−→Aμ and Bλ := lim−→Bμ.

Proof. It is clear that if fμ : Aμ −→ Bμ is a cofibration, then fμ+1 : Aμ+1 −→
Bμ+1 is a cofibration as well. It then suffices to prove that if ν � λ is a limit ordinal
such that fμ : Aμ −→ Bμ is a cofibration for any μ < ν, then fν : Aν −→ Bν is a
cofibration as well. Consider a commutative diagram

Aν
��

fν

��

C

��
Bν

��

k

���
�

�
�

D

where C −→ D is a trivial fibration of M. Then one has to find k : Bν −→ C
making both triangles commutative. Recall that by hypothesis, fν = lim−→ μ<νfμ.
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Since f0 is a cofibration, there exists a map k0 making both triangles of the diagram

A0
��

f0

��

C

��
B0

��

k0

���
�

�
�

D

commutative. Let us suppose kμ constructed. There are two cases. Either the
diagram

Aμ ��

fμ

��

Aμ+1

��
Bμ

� � �� Bμ+1

is a pushout, and one can construct a morphism kμ+1 making both triangles of the
diagram

Aμ+1 ��

fμ+1

��

C

��
Bμ+1 ��

kμ+1

���
�

�
�

D

commutative and such that the composite Bμ −→ Bμ+1 −→ C is equal to kμ by
using the universal property satisfied by the pushout. Or the morphism Aμ → Aμ+1

is an isomorphism. In that latter case, consider the commutative diagram

Bμ ��
� �

��

kμ �� C

��
Bμ+1 �� D

Since the morphism Bμ −→ Bμ+1 is a cofibration, there exists kμ+1 : Bμ+1 −→ C
making the two triangles of the latter diagram commutative. So, once again, the
composite Bμ −→ Bμ+1 −→ C is equal to kμ.

The map k := lim−→ μ<νkμ is a solution. �
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