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On Pillai’s Diophantine equation

Yann Bugeaud and Florian Luca

Abstract. Let A, B, a, b and c be fixed nonzero integers. We prove several
results on the number of solutions to Pillai’s Diophantine equation

Aax − Bby = c

in positive unknown integers x and y.

Contents

1. Introduction 193
2. Results 194
3. Preparations 195
4. Preliminary results 196
5. Proof of Theorem 2.1 203
6. The ABC conjecture and the equation ax1 − ax2 = by1 − by2 206
7. Comments and remarks 216
References 216

1. Introduction

Let a, b and c be nonzero integers with a ≥ 2 and b ≥ 2. As noticed by Pólya
[16], it follows from a theorem of Thue that the Diophantine equation

ax − by = c, in positive integers x, y(1)

has only finitely many solutions. If, moreover, a and b are coprime and c is suffi-
ciently large compared with a and b, then (1) has at most one solution. This is due
to Herschfeld [9] in the case a = 2, b = 3, and to Pillai [15] in the general case. (Pillai
also claimed that (1) can have at most one solution even if a and b are not coprime.
This is incorrect, however, as shown by the example 64 − 34 = 65 − 38 = 1215.)
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Further results on Equation (1) are due to Shorey [21], Le [10] (both papers are
concerned with the more general equation Aax − Bby = c, in positive integers x,
y) and, more recently, to Scott and Styer [20] and to Bennett [1, 2]. We direct the
reader to [23, 1] for more references.

In view of Pólya’s result, the above quoted theorem of Pillai can be rephrased
as follows.

Theorem 1.1. Let a ≥ 2 and b ≥ 2 be coprime integers. Then the Diophantine
equation

ax1 − ax2 = by1 − by2 ,(2)

in positive integers x1, x2, y1, y2 with x1 �= x2 has at most finitely many solutions.

In (2), the bases a and b are fixed. Scott and Styer [20] allowed a to be a variable,
under some additional, mild assumptions. A particular case of their Theorem 2 can
be formulated as follows.

Theorem 1.2. The Diophantine equation

ax1 − ax2 = 2y1 − 2y2 ,(3)

in positive integers a, x1, x2, y1, y2 with x1 �= x2 and a prime has no solution,
except for four specific cases, or unless a is a sufficiently large Wieferich prime.

Since we still do not know whether or not infinitely many Wieferich primes exist,
Theorem 1.2 does not imply that (3) has only finitely many solutions. Such a result
has been recently established by Luca [11]. Luca’s result is the following.

Theorem 1.3. Let b be a prime number. The Diophantine equation

ax1 − ax2 = by1 − by2 ,(4)

in positive integers a, x1, x2, y1, y2 with a �= b prime and x1 �= x2 has only finitely
many solutions.

The proof of Theorem 1.3 uses a broad variety of techniques from Diophantine
approximation, ranging from Ridout’s Theorem to the theory of linear forms in
logarithms.

In the present paper, our aim is to generalize Theorem 1.3 in two directions.
First, we remove the assumption ‘b is prime’ and we allow b to be any fixed positive
integer. Secondly, under some mild coprimality conditions, we also allow arbitrary
coefficients which need not be fixed, but whose prime factors should be in a fixed
finite set of prime numbers.

Acknowledgments. We thank the referee for useful suggestions. The second au-
thor also thanks Andrew Granville for enlightening conversations.

2. Results

Let P = {p1, . . . , pt} be a fixed, finite set of prime numbers. We write S =
{±pα1

1 . . . pαt
t : αi ≥ 0, i = 1, . . . , t} for the set of all nonzero integers whose prime

factors belong to P. This notation will be kept throughout this paper.
Our main result is the following extension of Theorem 1.3.
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Theorem 2.1. Let b be a fixed nonzero integer. The Diophantine equation

A(ax1 − ax2) = B(by1 − by2),(5)

in positive integers A, B, a, x1, x2, y1, y2 has only finitely many solutions
(A, B, a, x1, x2, y1, y2) with x1 �= x2, a prime, A, B ∈ S and gcd(Aa, Bb) = 1.

We display two immediate corollaries concerning Equation (1).

Corollary 2.2. Let b be a fixed positive integer. There exists a positive constant
a0 depending only on b and S such that for any nonzero integer c, for any prime
a ≥ a0, and for every positive integers A, B in S coprime to c, the equation

Aax − Bby = c,

in positive integers x, y has at most one solution.

Corollary 2.3. Let b be a fixed positive integer. There exists a positive constant
c0 depending only on b and S such that for any prime a ≥ 2, and for any integer
c ≥ c0 coprime to a, and for every coprime integers A, B in S, the equation

Aax − Bby = c,

in positive integers x, y has at most one solution.

Besides the introduction of the coefficients A and B, the important new point
in Corollary 2.2 (resp. Corollary 2.3) is that the constant a0 (resp. c0) does not
depend on c (resp. a).

The proof of Theorem 2.1 follows the same general lines as that of Theorem 1
from [11]. However, there are many additional difficulties since b is no longer prime
and since the coefficients A, B are not even fixed. To overcome some of these
difficulties, we are led to use the Schmidt Subspace Theorem instead of Ridout’s
Theorem.

We have tried to clearly separate the different steps of the proof of Theorem 2.1
and to point out where our assumptions on a and b are needed. A short discussion
on possible extensions to our theorem is given in Section 6.

Throughout this paper, we use the symbols ‘O’, ‘�’, ‘�’, ‘�’ and ‘o’ with their
usual meaning (we recall that A � B and B � A are equivalent to A = O(B) and
that A � B means that both A � B and B � A hold).

3. Preparations

In this section, we review some standard notions of Diophantine approximation.
For a prime number p and a nonzero rational number x, we denote by ordp(x)

the order at which p appears in the factorization of x.
Let M = {2, 3, 5, . . . } ∪ {∞} be all the places of Q. For a nonzero rational

number x and a place μ in M, we let the normalized μ-valuation of x, denoted by
|x|μ, be |x|μ = |x| if μ = ∞, and |x|μ = p−ordp(x) if μ = p is finite.

These valuations satisfy the product formula∏
μ∈M

|x|μ = 1, for all x ∈ Q∗.

Our basic tool is the following simplified version of a result of Schlickewei (see
[18], [19]), which is commonly known as the Schmidt Subspace Theorem.



196 Yann Bugeaud and Florian Luca

Lemma 3.1. Let P ′ be a finite set of places of Q containing the infinite place. For
any μ ∈ P ′, let {L1,μ, . . . , LN,μ} be a set of linearly independent linear forms in N
variables with coefficients in Q. Then, for every fixed 0 < ε < 1, the set of solutions
x = (x1, . . . , xN ) ∈ ZN\{0} to the inequality

∏
μ∈P′

N∏
i=1

|Li,μ(x)|μ < max{|xi| : i = 1, . . . , N}−ε(6)

is contained in finitely many proper linear subspaces of QN .

Let P and S be as in Section 2. An S-unit x is a nonzero rational number such
that |x|w = 1 for every finite valuation w stemming for a prime outside P. We shall
need the following version of a theorem of Evertse [8] on S-unit equations.

Lemma 3.2. Let a1, . . . , aN be nonzero rational numbers. Then the equation
N∑

i=1

aiui = 1

in S-unit unknowns ui for i = 1, . . . , N , and such that
∑

i∈I aiui �= 0 for each
nonempty proper subset I ⊂ {1, . . . , N}, has only finitely many solutions.

Finally, we will need lower bounds for linear forms in p-adic logarithms, due to
Yu [24], and for linear forms in complex logarithms, due to Matveev [12].

Lemma 3.3. Let p be a fixed prime and a1, . . . , aN be fixed rational numbers. Let
x1, . . . , xN be integers such that ax1

1 . . . axN

N �= 1. Let X ≥ max{|xi| : i = 1, . . . , N},
and assume that X ≥ 3. Then,

ordp (ax1
1 . . . axN

N − 1) � log X,

where the constant implied by � depends only on p, N, a1, . . . , aN .

Lemma 3.4. Let a1, . . . , aN be fixed rational numbers and, for 1 ≤ i ≤ N , let
Ai ≥ 3 be an upper bound for the numerator and for the denominator of ai, written
in its lowest form. Let x1, . . . , xN be integers such that ax1

1 . . . axN

N �= 1. Let

X ≥ max
{ |xN |

log Ai
+

|xi|
log AN

: i = 1, . . . , N − 1
}

,

and assume that X ≥ 3. Then,

log |ax1
1 . . . axN

N − 1| � −(log A1) . . . (log An)(log X),

where the constant implied by � depends only on N .

4. Preliminary results

Let P and S be as in Section 2. We start with the following result regarding the
size of the coefficient A in Equation (5).

Lemma 4.1. Assume that the Diophantine equation

A(ax1 − ax2) = B(qy1 − qy2)(7)

admits infinitely many positive integer solutions (A, B, a, q, x1, x2, y1, y2) such
that A, B, q in S, x1 > x2, y1 > y2, a > 1, and gcd(Aa, Bq) = 1. Let M be the
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common value of the number appearing in either side of Equation (7). We then
have A = Mo(1) as max{A, B, q, x1, x2, y1, y2} tends to infinity.

Proof. Let q =
∏

p∈P pzp and let Z = max{3, zp : p ∈ P}. Assume that pap ||A.
Since Aa and Bq are coprime, it follows that pap |(qy1−y2 − 1). By Lemma 3.3, we
have that

ap � log(Zy1).
Since this is true for all p ∈ P, it follows that

log A =
∑
p∈P

ap log p � log(Zy1) � log(qy1)
(

log(Zy1)
Zy1

)
(8)

� (log M)
(

log(Zy1)
Zy1

)
.

Thus, it suffices to show that Zy1 → ∞ when M → ∞. Suppose, on the contrary,
that Zy1 remains bounded for infinitely many solutions. Then, we may assume
that q and y1 are fixed, and, since y1 > y2, we may assume that y2 is fixed as well.
Since Aax2 |qy1−y2 − 1, it follows that we may further assume that a and A are
fixed. It then follows that the largest prime factor of ax1−x2 − 1 remains bounded.
However, (an−1)n≥1 is a nondegenerate binary recurrent sequence, and it is known
that P (an − 1) tends to infinity with n (in fact, by the well-known properties of
primitive divisors to Lucas sequences, see e.g., [6] and [3], P (an − 1) ≥ n + 1 holds
for all a > 1 and n ≥ 7). Hence, x1 − x2 is bounded as well, contradicting the fact
that M tends to infinity. �

We can now present the following theorem.

Theorem 4.2. Let m > n > 0 be fixed positive integers. Then, the Diophantine
equation

A(zm − zn) = B(qy1 − qy2)(9)

has only finitely many positive integer solutions (A, B, z, q, y1, y2) with z > 1 and
A, B, q in S such that gcd(Az, Bq) = 1.

Proof. We assume that the given equation has infinitely many solutions. We write
again M for the common value of the two sides in Equation (9). Thus, we assume
that M tends to infinity. By Lemma 4.1, it follows that we may assume that
A = Mo(1). In particular, A = zo(1) because M � Azm, m is fixed and z tends
to infinity. From Equation (9), we now conclude that zm(1+o(1)) � Bqy1 . This
observation will be used several times in the course of the present proof.

We now prove a lemma about solutions of Equation (9) of a certain type.

Lemma 4.3. Let c0 �= 1 be a fixed rational number. Then there exist only finitely
many solutions of Equation (9) with z = s + c0 > 1 and s a rational number which
is a S-unit.

Proof. We assume again, for a contradiction, that we have infinitely many such
solutions. Since z is an integer, it follows that the denominator of s is � 1. If
c0 = 0, it follows that z ∈ S. In this case, Equation (9) is the S-unit equation

X1 + X2 + X3 + X4 = 0,
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where X1 = Azm, X2 = −Azn, X3 = −Bqy1 and X4 = −Byy2 . Since z > 1 and
gcd(Az, Bq) = 1, it follows that it is nondegenerate. In particular, it can have only
finitely many solutions (A, B, z, q, y1, y2). Assume now that c0 �= 0. Equation (9)
can be rewritten as

Q(s) = qy1B/A − qy2B/A,

where Q(s) is a polynomial in s whose constant term is d0 = cn
0 (cm−n

0 − 1) �= 0.
Dividing both sides of the above equation by d0 and rearranging some terms, it
follows that the above equation can be rewritten as

m+2∑
i=1

aiXi = 1,(10)

where a1 = 1/d0 �= 0, a2 = −1/d0 �= 0, ai are fixed rational numbers for i =
3, . . . , m + 2, X1 = qy1B/A, X2 = −qy2B/A, and Xi = si−2 for i ∈ {3, . . . , m + 2}.
Let I ⊂ {1, 2, . . . , m+2} be the subset of those indices i such that ai �= 0. Equation
(10) is an S-unit equation in the variables Xi for i ∈ I. Let J be the subset of I
(which can be the full set I) such that∑

j∈J
ajXj = 1(11)

is nondegenerate; i.e., has the property that if K is any nonempty proper subset of
J , then

∑
k∈K akXk �= 0. It is clear that for each solution of Equation (10) such a

subset J exists. Since we have infinitely many solutions, we may assume that J
is fixed. By Lemma 3.2, it follows that Equation (11) admits only finitely many
solutions (Xj)j∈J . If 1 ∈ J , then qy1B/A takes only finitely many values, and
since gcd(Bq, A) = 1, it follows that A, B, q, y1 are all bounded. Since y1 > y2,
we get that y2 is bounded as well. Hence, M is bounded in this case. If i ∈ J
for some i ≥ 3, it follows that si−2 is bounded. Hence, z is bounded, which is a
contradiction. Finally, if J = {2}, then −qy2B/A is fixed. Hence, we may assume
that A, B, q, y2 are all fixed. With C = qy2B/A, we get zm − zn + C = qy1B/A.
One verifies immediately that if m ≥ 3 or if (m, n) = (2, 1) and C �= 1/4, then the
polynomial R(z) = zm − zn + C has at least two distinct roots. It is known that
if Q(X) ∈ Q[X] is a polynomial which has at least two distinct roots and if x is a
positive rational number with bounded denominator, then Q(x) is a rational number
whose numerator has the property that its largest prime factor tends to infinity
with x (see, e.g., [23]). This shows that the equation R(z) = qy1B/A can have only
finitely many solutions (z, y1) in this case as well (note that the denominator of z
divides A which is fixed). Hence, it remains to look at the case (m, n) = (2, 1) and
C = 1/4. But since gcd(Bq, A) = 1, this leads to A = 4, B = 1, q = 1, which is
impossible because in this case M = 0; hence, z = 1, which is not allowed. �

We now resume the proof of Theorem 4.2. We rewrite Equation (7) as

Azn(zm−n − 1) = Bqy2(qy1−y2 − 1).(12)

Since z and q are coprime, it follows that Bqy2 divides zm−n − 1.

We first assume that m ≥ 3. If n = m− 1, then Bqy2 |(z− 1), which implies that
Bqy2 � z. Equation (9), after multiplying both sides of it by mm, can be rewritten
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as

|A(mz − 1)m − Bmmqy1 | = |Af(z) − Bmmqy2 |,(13)

where f(z) is a polynomial in z with integer coefficients and of degree m − 2. We
now write q = dqm

1 , A = A1A
m
0 , B = B1B

m
0 , where d, A1, B1 are mth power free.

Clearly, since A, B, q ∈ S and m is fixed, d, A1, B1 can take only finitely many
values. In what follows, we assume that d, A1, B1 are fixed. Equation (13) implies
easily that ∣∣∣A0(mz − 1)

B0q
y1
1

− m(dB1/A1)1/m
∣∣∣� Azm−2

Bqy1
� 1

z2
,(14)

when M is sufficiently large. Since B0q1 is in S, Ridout’s Theorem [17] tells us that
the above inequality (14) can have only finitely many solutions (A0, B0, z, q1, y1)
if (dB1/A1)1/m is not rational. Indeed, recall that (a particular version of) Rid-
out’s Theorem says that if α is algebraic and irrational, then for every ε > 0, the
Diophantine inequality ∣∣∣α − p

q

∣∣∣ < 1
q1+ε

has only finitely many integer solutions (p, q) with q ∈ S. However, for us, if
dB1/A1 = cm

1 for some rational number m, then for large z the above inequality
(14) leads to the conclusion that A0(mz−1)−mB0c1q

y1
1 = 0, which gives z = s+c0,

where s = c1B0q
y1
1 /A0, and c0 = 1/m �= 1. However, by Lemma 4.3, Equation (9)

can have only finitely many solutions of this type also.

We now assume that m − n ≥ 2. If n ≥ 2, then Bqy2 |zm−n − 1, therefore
Bqy2 ≤ zm−2. Hence,

|Azm − Bqy1 | = |Azn − Bqy2 | � z(m−2)+o(1).

With the notation q = dqm
1 , A = A1A

m
0 , B = B1B

m
0 , we get∣∣∣ A0z

B0q
y1
1

− (dB1/A1)1/m
∣∣∣� Azm−2

Bqy1
� 1

z2
,

and Ridout’s Theorem implies once again that the above inequality can have only
finitely many positive integer solutions (A0, B0, z, q1, y1) with A0, B0, q1 ∈ S unless
dB1/A1 = cm

1 for a rational number c1. If dB1/A1 = cm
1 , we then get for large z

that z = c1q
y1
1 B0/A0 = s ∈ S, and Equation (9) has only finitely many solutions of

this type by Lemma 4.3.

We now assume that n = 1. We then write

zm−1 − 1 = (z − 1)
(

zm−1 − 1
z − 1

)
,

and note that

gcd
(

z − 1,
zm−1 − 1

z − 1

) ∣∣∣ m − 1.

From Equation (12), it follows that we may write B = B2B3, q = q2q3,

z − 1 = B2q
y2
2 u and

zm−1 − 1
z − 1

= B3q
y2
3 v,
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where B2, B3, q2, q3 are positive integers and u, v are positive rational numbers
with bounded denominators. Let δ > 0 be some small number to be fixed later. If
either

u > zδ or v > zδ,

then either

B2q
y2
2 < z1−δ or B3q

y2
3 � zm−2−δ,

and in both cases we have that Bqy2 = B2B3(q2q3)y2 � zm−1−δ. We now get that

|Azm − Bqy1 | = |Az − Bqy2 | � zm−1−δ,

and again with the notations q = dqm
1 , A = A1A

m
0 , B = B1B

m
0 we arrive at∣∣∣ A0z

B0q
y1
1

− (dB1/A1)1/m
∣∣∣� zm−1−δ

Bqy1
� 1

z1+δ+o(1)
� 1

z1+δ/2
.

Here, we used the fact that δ is fixed and that A = zo(1). Since δ > 0 is fixed,
Ridout’s Theorem implies once again that the above inequality can have only
finitely many positive integer solutions (A0, B0, z, q1, y1) with B0, q1 ∈ S unless
dB1/A1 = cm

1 for some rational number c1, and as we have already seen, when this
last condition holds, then for large z, we get that z = qy1

1 B/A = s ∈ S, and there
can be only finitely many solutions of this type by Lemma 4.3.

From now on, we consider only those solutions for which both inequalities

u < zδ and v < zδ

hold. Write D � 1 for the least common multiple of the denominators of u and v.
Note that the greatest prime divisor of D is at most m. We now get

B3q
y2
3 v =

zm−1 − 1
z − 1

=
(B2q

y2
2 u + 1)m−1 − 1

B2q
y2
2 u

=
m−1∑
k=1

(
m − 1

k

)
(B2q

y2
2 u)k−1

,

which can be rewritten as

−(m − 1)Dm−2 = −B3q
y2
3 vDm−2 +

m−1∑
k=2

(
m − 1

k

)
B

(k−1)
2 q

(k−1)y2
2 uk−1Dm−2.(15)

We now apply Lemma 3.1 to (15). Put N = m − 1, P ′ = P ∪ {∞}. Let
x = (x1, . . . , xN ) ∈ QN . For all μ ∈ P ′ and all i = 1, . . . , N , we set Li(x) = xi

except for (i, μ) = (1,∞), for which we put

L1,∞ = −x1 +
m−1∑
k=2

(
m − 1

k

)
xk.

We evaluate the double product appearing at inequality (6) for our system of forms
and points x = (x1, . . . , xN ) given by

x1 = B3q
y2
3 vDm−2, and

xk = B
(k−1)
2 q

(k−1)y2
2 uk−1Dm−2, k = 2, . . . , m − 1.
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It is clear that xi ∈ Z for i = 1, . . . , N . We may also enlarge P in such a way as to
contain all the primes p ≤ m. Clearly,∏

μ∈P′
|Lk(x)|μ ≤ uk−1 for k ≥ 2,

∏
μ∈P

|L1(x)|μ ≤ 1
B3q

y2
3

, and

|L1(x)|∞ = (m − 1)Dm−2.

Thus,

∏
μ∈P′

N∏
i=1

|Li(x)|μ ≤ (m − 1)Dm−2uN2

B3q
y2
3

� (zδ)m2

zm−1−δ
=

1
zm−1−δ(m2+1)

.(16)

We now observe that

max{|xi| : i = 1, . . . , N} = B3q
y2
3 vDm−2 � zm−2,

therefore inequality (16) implies that

∏
μ∈P′

N∏
i=1

|Li(x)|μ � (max{|xi| : i = 1, . . . , N})−m−1−δ(m2+1)
m−2 .

Choosing δ =
m − 1

2(m2 + 1)
, we get that the inequality

∏
μ∈P′

N∏
i=1

|Li(x)|μ � (max{|xi| : i = 1, . . . , N})−ε

holds with ε =
m − 1

2(m − 2)
. Lemma 3.1 now immediately implies that there exist

only finitely many proper subspaces of QN such that each one of our points x lies
on one of those subspaces. This leads to an equation of the form

N∑
i=1

Cixi = 0,

with some integer coefficients Ci for i = 1, . . . , N not all zero, which is equivalent
to

C1B3q
y2
3 vDm−2 +

m−1∑
k=2

CkBk−1
2 q

(k−1)y2
2 uk−1Dm−2 = 0.

If C1 = 0, then we divide by Dm−2 and the above relation becomes g(w) = 0, where
w = B2q

y2
2 u, and g(X) is the nonzero polynomial

m−1∑
k=2

CkXk−1.

Hence, w can take only finitely many values, and, since w = z − 1, it follows that z
can take only finitely many values. If C1 �= 0, then w|C1B3q

y2
3 uDm−2. Further, the

greatest common divisor of w = z−1 and B3q
y2
3 vDm−2 = Dm−2(zm−1−1)/(z−1)

divides Dm−2(m− 1). Hence, this greatest common divisor is O(1). It then follows
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that w � C1. In particular, w = z − 1 can take only finitely many values in this
case as well.

This completes the discussion for the case when m ≥ 3. We now deal with the
case (m, n) = (2, 1). In this last case, we have

Az(z − 1) = Bqy2(qy1−y2 − 1).

Since Bq and Az are coprime, we get z − 1 = Bqy2λ for some positive integer λ.
Hence,

qy1−y2 − 1
Aλ

= z = Bqy2λ + 1,

therefore qy1−y2 − ABλ2qy2 = Aλ + 1. We let δ be some small positive number,
and we show that the above equation has only finitely many solutions with Aλ <
(Bqy2)1−δ. Indeed, assume that this is not the case. We then take N = 2, P ′ =
P∪{∞}, and Li,μ(X1, X2) = Xi for all (i, μ) ∈ {1, 2}×P ′, except for (i, μ) = (2,∞),
case in which we put L2,∞(X1, X2) = X1 −X2. It is easy to see that L1,μ and L2,μ

are linearly independent for all μ ∈ P ′. Taking x1 = qy1−y2 and x2 = ABλ2, we
get easily that

2∏
i=1

∏
μ∈P′

|Li,μ(x1, x2)|μ =
Aλ + 1
ABqy2

� 1
(Bqy2)δ

.

Furthermore, since Aλ < (Bqy2)1−δ, it follows that

Aλ2Bqy2 ≤ (Aλ)2(Bqy2) ≤ (Bqy2)2(1−δ)+1,

and
qy1−y2 = ABλ2qy2 + Aλ + 1 ≤ 2ABλ2qy2 � (Bqy2)3−2δ.

Hence,
2∏

i=1

∏
μ∈P′

|Li,μ(x1, x2)|μ � (max{x1, x2})−
δ

3−2δ .

Applying Lemma 3.1, it follows that once δ is fixed there are only finitely many
choices for the ratio x1/x2. In particular, qy1−2y2/(ABλ2) can take only finitely
many values. Enlarging P, if needed, it follows that we may assume that λ is
also an S-unit. In this case, the equation qy1−y2 − ABλ2qy2 = Aλ + 1 becomes
a S-unit equation which is obviously nondegenerate, therefore it has only finitely
many solutions (A, B, q, λ, y1, y2). Hence, there are only finitely many solutions
of Equation (9) which satisfy the above property. From now on, we assume that
Aλ > (Bqy2)1−δ with some small δ. We now set δ = 1/2 and get that

z = Bqy2λ + 1 � (Bqy2)2−δA−1 ≥ (Bqy2)3/2zo(1).

Thus, Bqy2 � z2/3+o(1) < z3/4. We now write again q = dq2
1 , A = A1A

2
0, B =

B1B
2
0 and rewrite Equation (9) as

|A1(A0(2z − 1))2 − 4dB1B
2
0q2y1

1 | = |4Bqy2 − A| � z3/4,

which gives ∣∣∣A0(2z − 1)
B0q

y1
1

− 2(dB1/A1)1/2
∣∣∣� z3/4

Bqy1
� 1

z5/4
.

Ridout’s Theorem implies once again that the above inequality can have only finitely
many positive integer solutions (A0, B0, z, q1, y1) with q1 ∈ S unless dB1/A1 = cm

1
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with some rational number m. In this last case, for large z we get that z = s + c0,
where s = c1q

y1
1 B0/A0 ∈ S and c0 = 1/2 �= 1, and there are only finitely many

solutions of this kind by Lemma 4.3. �

5. Proof of Theorem 2.1

We follow the method of proof of Theorem 1 from [11].

We assume that b is not a perfect power of some integer and that x1 > x2.
Thus, y1 > y2. We also assume that Equation (5) has infinitely many positive
integer solutions (A, B, a, x1, x2, y1, y2) with a prime, A, B in S, gcd(Aa, Bb) = 1
and x1 > x2. We shall eventually reach a contradiction.

Note that, if x1 � 1 holds for all such solutions, then the contradiction will
follow from Theorem 4.2. Hence, it suffices to show that x1 � 1. In Steps 1 to 3,
we will establish that, if x1 and y1 are sufficiently large, then there exists δ > 0,
depending only on b, such that all the solutions of Equation (5) have

max{x2/x1, y2/y1} < 1 − δ.(17)

Then, in Step 4, we adapt the argument used at Step 4 of the proof of Theorem 1
from [11], based on a result of Shorey and Stewart from [22], to get that x1 � 1.

We already know that A = Mo(1). We shall show that B = Mo(1) as well. Let
pbp ||B. Then pbp |ax1−x2 − 1. It is known that

bp ≤ log(a2 − 1) + O(log(x1 − x2)) � log a + log x1 � (log a)(log x1).

Hence,

log B =
∑
p∈P

bp log p � (log a)(log x1) = log(ax1)
(

log x1

x1

)
,

therefore B = Mo(1) because A = Mo(1) and x1 tends to infinity.

We now proceed in several steps.

Step 1. The case a is fixed.

In this case, Equation (5) is a particular case of an S-unit equation in four terms,
which is obviously nondegenerate. In particular, there are only finitely many such
solutions. These solutions are even effectively computable by using the theory of
lower bounds for linear forms in logarithms, as in [14].

From now on, by Step 1, we may assume that a > b2. Since

b2x1 � 1
2
ax1 < ax1−1(a − 1) ≤ ax1 − ax2 = (by1 − by2)B/A < by1(1+o(1)),(18)

we get that x1 < y1.

Moreover, inequality (18) shows that there are only finitely many solutions
(A, B, a, x1, y1, x2, y2) of Equation (5) with bounded y1, and so, from now on, we
shall assume that y1 is as large as we wish.

Step 2. There exists a constant δ1 > 0 depending only b such that the inequality
y2 < y1(1 − δ1) holds for large values of y1.

For positive integers m and r, with r a prime number, we write ordr(m) for
the exact order at which the prime r divides m. We write b =

∏t
i=1 rβi

i , where
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r1 < r2 · · · < rt are distinct primes and βi are positive integers for i = 1, . . . , t.
Rewriting Equation (5) as

ax2(ax1−x2 − 1) = by2(by1−y2 − 1)B/A,(19)

we recognize that βiy2 ≤ ordri(a
x1−x2 −1). Let fi be the following positive integer:

If ri is odd, we then let fi be the multiplicative order of a modulo ri. If ri = 2, and
x1 − x2 is odd, we then let fi = 1, and if x1 − x2 is even, we then let fi = 2. Since
y2 > 0, it is clear that fi|x1 − x2. We write ui = ordri

(afi − 1). We then have

βiy2 ≤ ordri(a
x1−x2 − 1) ≤ ui + ordri

(x1 − x2

fi

)
(20)

≤ ui +
log(x1 − x2)

log ri
< ui +

log y1

log ri
.

For a positive integer m, we write Fm(X) = Φm(X) ∈ Z[X] for the mth cyclotomic
polynomial if m ≥ 3 and Fm(X) = Xm − 1 for m = 1, 2. From the definition of fi

and ui, we have that
rui
i |Ffi(a).

Let F = {fi : i = 1, . . . , t}, and let � = #F . Observe that

Mo(1)by1 = (by1 − by2)B/A = ax2(ax1−x2 − 1)(21)

≥ a
∏
f∈F

Ff (a) =
∏
f∈F

(
a1/�Ff (a)

)
.

For f ∈ F , we put df = deg(Ff ). Hence, df = f if f ≤ 2, and df = φ(f) otherwise,
where φ is the Euler function. We now remark that

a1/�Ff (a) � Ff (a)
�df +1

�df .(22)

Indeed, since � ≤ t = ω(b) is bounded, the above inequality is equivalent to

adf � Ff (a).

Since all the roots of Ff (X) are roots of unity, the above inequality is implied by

adf � (a + 1)df ,

which is equivalent to (
1 +

1
a

)df

� 1.

In turn, this last inequality follows from the fact that df ≤ f together with the fact
that fi|ri − 1 whenever ri > 2 by Fermat’s Little Theorem. Let d = max{df : f ∈
F}. Inequalities (21), (22) and (20) show that

by1(1+o(1)) �
⎛
⎝∏

f∈F
Ff (a)

⎞
⎠

�d+1
�d

�
(

t∏
i=1

rui
i

) �d+1
�d

�
(

t∏
i=1

rβiy2
i

y1

) �d+1
�d

� b(
�d+1

�d )y2

y2t
1

.

Therefore

y1(1 + o(1)) >

(
�d + 1

�d

)
y2 − 2t log y1 + O(1),
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and so

y2 <

(
�d

�d + 1

)
y1(1 + o(1)) + O(log y1) =

(
�d

�d + 1

)
y1(1 + o(1)),

which implies the assertion of Step 2 with δ1 = 1/(2�d) once y1 is sufficiently large.

Step 3. There exists a constant δ2 > 0 depending only on b such that the inequality
x2 < (1 − δ2)x1 holds for large values of y1.

We look again at Equation (19). We put z = y1 − y2, and we notice that, by
Step 2, the inequality z/y1 � 1 holds for all positive integer solutions of Equation
(5), with a a prime not dividing b, and x1 > x2. From Equation (19), we learn
that x2 = orda(bz − 1). We let g be the multiplicative order of b modulo a. It then
follows that a|Φg(b). Furthermore, if we put v = orda(Φg(b)), we then have that

x2 = orda

(
ax2(ax1−x2 − 1)

)
= orda

(
by2(by1−y2 − 1)

)− orda(A)

≤ orda(bz − 1) = v + O

(
log z

log a

)
.

Consequently,
bz − 1
ax2

≥ bz − 1
zO(1)Φg(b)

.

Since g|z, and since
Φz(m) = mφ(z)+O(τ(z))

holds for all positive integers m, where τ(z) is the number of divisors of z (see [6]),
we get that

bz − 1
ax2

≥ bz−φ(g)+O(τ(z)+log z) = bz−φ(g)+O(z1/2),

where we used the well-known fact that τ(z) � z1/2. Note that since z/y1 � 1
and since y1 is as large as we wish, it follows that z1 is as large as we wish. Since

bz−φ(g)+O(τ(z)) ≤ bz − 1
ax2

= Mo(1)

(
ax1−x2 − 1

by2

)
= bo(z)

(
ax1−x2 − 1

by2

)
,

it suffices to show that z − φ(g) � z. If g < z, then z − φ(g) ≥ z − g ≥ z/2. Thus,
we may assume that g = z. Since the order of b modulo a is g, we get that a ≡ 1
(mod g), therefore z|a − 1. In particular, z|bx2(bz − 1). The argument from the
end of Step 3 of the proof of Theorem 1 in [11] shows that if we write p(m) for the
smallest prime factor of m, then p(z)|b(b − 1). Hence, p(z) � 1, so

z − φ(g) = z − φ(z) ≥ z/p(z) � z,

which completes the proof of the assertion of Step 3.

The combination of Steps 2 and 3 shows that Equation (17) holds with δ =
min{δ1, δ2}.
Step 4. The exponent x1 is bounded.

Recall that A = Mo(1) and B = Mo(1). It then follows from (17) that there
exists a positive real number η such that

|AB−1ax1b−y1 − 1| < a−ηx1 .(23)
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Write AB−1 = pu1
1 . . . put

t . If x1 is sufficiently large, then, for 1 ≤ j ≤ t, we
have p

|uj |
j ≤ ax1 ; hence, |uj |/ log a ≤ 2x1. Furthermore, we have y1/ log a �b x1.

Applying Lemma 3.4, we get

log |AB−1ax1b−y1 − 1| � −(log a)(log x1),

where the constant implied in � depends only on b and P. Combined with (23),
this gives an upper bound for x1, in terms of b and P. According to the observation
made at the beginning of Section 5, this finishes the proof of our theorem.

6. The ABC conjecture and the equation
ax1 − ax2 = by1 − by2

In this section, we discuss conditional results. Bennett [1] conjectured that there
exist only finitely many triples of positive integers (a, b, c) with a and b coprime
such that the Diophantine equation ax − by = c has two positive integer solutions
(x, y). Note that if (a, b, c) is such a triple, then there exists (x, y) �= (x1, y1) such
that

ax − by = c = ax1 − by1 .

Thus, we are led to a nontrivial solution (x, y) �= (x1, y1) of the equation

ax − ax1 = by − by1 .(24)

In Theorem 2 in [11], it is shown that the ABC-conjecture implies that there are
only finitely many positive integer solutions (a, b, x, x1, y, y1) with a and b coprime
and (x, y) �= (x1, y1), subject to the additional restriction that both a and b are
primes. We point out that an equation related to (24), namely xp − x = yq − y,
was treated by Mignotte and Pethő in [13]. For example, it is shown there that
if 2 ≤ p < q and q ≥ 4 are fixed, then the above equation has only finitely many
rational solutions (x, y). Further, the ABC conjecture is used there to suggest
that perhaps the above equation has only finitely many integer solutions in all four
unknowns (x, y, p, q) with 2 ≤ p < q.

Here, we remove both the restrictions that a and b are coprime, as well as the
arithmetic restrictions that a and b are prime in Equation (24), and we prove the
following result.

Theorem 6.1. The ABC conjecture implies that the diophantine equation

ax1 − ax2 = by1 − by2(25)

has only finitely many positive integer solutions (a, b, x1, x2, y1, y2) with a > 1, b >
1, x1 �= x2 and ax1 �= by1 .

Recall that the ABC conjecture asserts that for every ε > 0 there exists a
constant Cε depending on ε such that whenever

A + B = C

with nonzero integers A, B and C such that A and B are coprime, then

max{|A|, |B|, |C|} ≤ Cε

⎛
⎝ ∏

p|ABC

p

⎞
⎠

1+ε

.
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Proof. We may assume that x1 > x2 and that a > b (in particular, a ≥ 3).
We then also get that y1 > y2. We may further assume that gcd(x1, x2) = 1
and that gcd(y1, y2) = 1. Indeed, for if say gcd(x1, x2) = d, we may then write
z1 = x1/d, z2 = x2/d and a1 = ad, and note that (a1, b, z1, z2, y1, y2) is also
a solution in positive integers of the given equation, and it satisfies as well the
conditions a1 > 1, z1 �= z2 and az1

1 �= by1 .

Note also that x1 �= y1, for if x1 = y1, then

max{ax2 , by2} > |ax2 − by2 | = |ax1 − bx1 | = |a − b|(ax1−1 + · · · + bx1−1)

≥ ax2 + by2 ,

which is a contradiction.

Further, since

by1 > by1 − by2 = ax1 − ax2 ≥ ax1

(
1 − 1

a

)
>

ax1

2
> ax1−1 > bx1−1,

we get that y1 > x1−1, and since y1 �= x1, we have y1 > x1. Thus, y1 is the largest
one of all four exponents.

We shall first show that x1 = O(1), later that y1 = O(1) and finally that a is
O(1).

Step 1. x1 = O(1).

Let p be a prime dividing both a and b, and put prp ‖ a and psp ‖ b. It is then
clear that the order at which p divides the left-hand side of Equation (25) is prpx2 ,
while the order at which p divides the right-hand side of the same equation is pspy2 .
Identifying those orders we get

rpx2 = spy2,

showing that there exists a positive integer tp such that rp = tpy2/ gcd(x2, y2) and
sp = tpx2/ gcd(x2, y2). Setting

c =
∏

p | gcd(a,b)

ptp ,

we get a = a0c
y2/ gcd(x2,y2) and b = b0c

x2/ gcd(x2,y2), where now a0 and b0 are
coprime and free of primes p dividing c. Inserting the above expressions for a and
b in Equation (25) and cancelling in both sides a factor of cx2y2/ gcd(x2,y2), we get

ax1
0 cy2(x1−x2)/ gcd(x2,y2) − ax2

0 = by1
0 cx2(y1−y2)/ gcd(x2,y2) − by2

0 ,(26)

which we rewrite as

ax2
0

(
ax1−x2
0 cy2(x1−x2)/ gcd(x2,y2) − 1

)
= by2

0

(
by1−y2
0 cx2(y1−y2)/ gcd(x2,y2) − 1

)
.(27)

Since a0 and b0 are coprime, we deduce the existence of a positive integer D (note
that one of a0, b0 or c is larger than 1 so the two sides of the above equation are
nonzero) such that both equations

ax1−x2
0 cy2(x1−x2)/ gcd(x2,y2) − 1 = Dby2

0

by1−y2
0 cx2(y1−y2)/ gcd(x2,y2) − 1 = Dax2

0

(28)
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are satisfied. In the sequel, ε denotes a very small positive real number. We
now apply the ABC conjecture to each of the above equations (28) (note that the
coprimality conditions are satisfied as in both cases one of the terms is −1), getting

Dby2
0 � (a0b0cD)1+ε and Dax2

0 � (a0b0cD)1+ε,

which, after multiplying them side by side and cancelling a factor of D2, lead to
the inequality

ax2
0 by2

0 � D2ε(a0b0c)3.(29)

We now rewrite Equation (26) as

ax1
0 cy2(x1−x2)/ gcd(x2,y2) − by1

0 cx2(y1−y2)/ gcd(x2,y2) = ax2
0 − by2

0 ,(30)

and put {M−, M+} = {y2(x1 − x2)/ gcd(x2, y2), x2(y1 − y2)/ gcd(x2, y2)}, where
M− ≤ M+. Note first that 1 ≤ M− < M+. Indeed, if not then x2y1 = x1y2;
hence, x2/x1 = y2/y1, and since gcd(x2, x1) = gcd(y2, y1) = 1, we get that x2 = y2

and x1 = y1, which we have already seen to be impossible. Note also that both
sides of Equation (30) are nonzero, for if ax2

0 = by2
0 , we then have ax2 = by2 ;

hence, ax1 = by1 , which is impossible. Equation (30) immediately implies that
cM− | (ax2

0 − by2
0 ), so cM− ≤ |ax2

0 − by2
0 |, and further, after cancelling a factor of cM−

from both sides of Equation (30), we get a relation of the type

A − B = C,(31)

where C = |ax2
0 − by2

0 |/cM− , and

(A, B) = (ax1
0 cM+−M− , by1

0 ), or (ax1
0 , by1

0 cM+−M−),

according to whether y2(x1 − x2)/gcd(x2, y2) = M+, or M−, respectively. We can
now apply the ABC conjecture to Equation (31) (note that the above A and B are
coprime), getting that

max{ax1
0 , cM+−M− , by1

0 } �
(

a0b0c
|ax2

0 − by2
0 |

cM−

)1+ε

� (a0b0(ax2
0 by2

0 ))1+ε,(32)

where we used the fact that M− ≥ 1 and |ax2
0 − by2

0 | ≤ ax2
0 by2

0 . Inserting estimate
(29) into (32), we get

max{ax1
0 , by1

0 , cM+−M−} � (a0b0c)5D3ε.(33)

Using Equations (28), and inequalities (29) and (33), we get

D2 � (ax1−x2
0 by1−y2

0 cM++M−)

= (ax1
0 by1

0 cM+−M−)
(

c2M−

ax2
0 by2

0

)
≤ (ax1

0 by1
0 cM+−M−)ax2

0 by2
0

≤ (a0b0c)18D11ε,

leading to

D � (a0b0c)10.(34)

Let L = max{a0, b0, c}.
Assume that L = b0. Then, D � b30

0 , and now inequality (33) shows that

by1
0 � (a0b0c)5D3ε � b15+90ε

0 � b16
0 ,
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and since b0 > 1 (because L = b0 and a ≥ 3), we get that y1 is bounded. Hence,
all four exponents x1, x2, y1 and y2 are bounded in this case.

Assume now that L = c. Then, D � c30. Further, inequality (33) shows that

cM+−M− � (a0b0c)5D3ε � c15+90ε � c16.

Since also cM− divides |ax2
0 − by2

0 |, we have that, by inequality (29),

cM− ≤ |ax2
0 − by2

0 | ≤ ax2
0 by2

0 � (a0b0c)3D2ε � c9+60ε � c10,

therefore

cM+ � c26.(35)

We may also assume that c is as large as we wish, otherwise Equation (25) be-
comes just a nondegenerate S-unit equation (recall that we have assumed that
c = max{a0, b0, c}), and therefore it has only finitely many solutions. So, if c is
larger than the constant implied in inequality (35), then M+ ≤ 27. This shows now
that each one of the four numbers x1−x2, y1−y2, x2/ gcd(x2, y2) and y2/ gcd(x2, y2)
is at most 27. From Equations (28), we get

c(x1−x2)(y1−y2)x2y2/ gcd(x2,y2)
2

=
(

Dby2
0 + 1

ax1−x2
0

)x2(y1−y2)/ gcd(x2,y2)

=
(

Dax2
0 + 1

by1−y2
0

)y2(x1−x2)/ gcd(x2,y2)

.

The last equality above leads to the conclusion that

D | a
(x1−x2)(y1−y2)x2/ gcd(x2,y2)
0 − b

(x1−x2)(y1−y2)y2/ gcd(x2,y2)
0 .

If the right-hand side of the above divisibility relation is zero, we then get a0 = b0 =
1, therefore ax2 = by2 ; hence, ax1 = by1 , which is impossible. Hence, the right-hand
side of the above relation is nonzero, and since M+ ≤ 27, we get that

D � max{a0, b0}729.

Further, the ABC conjecture applied to the appropriate one of Equations (28) gives

c2 ≤ cM+ � (Da0b0c)1+ε � (Da0b0c)3/2

giving

c � (Da0b0)2 � (max{a0, b0})1462.(36)

If b0 > a0, then inequality (33) gives

by1
0 � (a0b0c)5D3ε � b7320+2187ε

0 � b7321
0 ,

which gives again the conclusion that all four exponents are bounded. Thus, we
may assume that a0 > b0, and we get, from inequalities (33) and (36), that

ax1
0 � (a0b0c)5D3ε � a7320+2187ε

0 � a7321
0 ,(37)

giving that x1 = O(1). Note further that from estimate (36), we also deduce that

cy2/ gcd(x2,y2) ≤ c27 � a39,474
0(38)

in this case, since we have established that y2/(x2, y2) ≤ 27.
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Finally, let us assume that L = a0. We then get that D � a30
0 , and now estimate

(33) leads to

ax1
0 � (a0b0c)5D3ε � a15+90ε

0 ≤ a16
0 ,(39)

which gives x1 � 1. Furthermore, from estimate (33), we also have that

cM+−M− � (a0b0c)5D3ε � a15+90ε
0 ≤ a16

0 ,

while from relation (30) and estimate (29) we get

cM− � |ax2
0 − by2

0 | ≤ ax2
0 by2

0 � (a0b0c)3D2ε � a3+60ε
0 � a4

0,

which leads to the conclusion that cM+ � a20
0 . Since y2/ gcd(x2, y2) ≤ M+, we

deduce, in particular, that in both cases when L = c and when L = a0, inequality
(38) holds.

Step 2. y1 = O(1).

From now on, we may assume that both x1 and x2 are fixed. We show that
y1 = O(1). Note that in either case when L = a0 or L = c, we have, by estimates
(37), (39), and (38), that

a3·108

0 > (a7321
0 )40,000 � (ax1

0 )40,000 = (a0 · a39,474
0 )x1

≥ (a0 · cy2/ gcd(x2,y2))x1 = ax1 > ax1 − ax2 = by1 − by2 � by1 ;

hence, b = a
O(1/y1)
0 . Since c | b, we also have that c = a

O(1/y1)
0 . Hence, b0c =

a
O(1/y1)
0 . From now on, we will assume that y1 is so large so that b0c < a0. In

particular, we are in the case L = a0.

Case 1. x2 ≥ 2.
Applying the ABC conjecture to the second equation (28), we get

Dax2
0 � (Da0b0c)1+ε,

so

ax2−1−ε
0 � (b0c)1+εDε = a

O(1/y1)
0 Dε.(40)

Since clearly D < ax1 = aO(1), we get

D � aO(1) ≤ (a0c
y2)O(1) = a

O(1+y2/y1)
0 = a

O(1)
0 ,

and now from inequality (40), we get that

ax2−1−ε
0 � a

O(1/y1+ε)
0 .

The last inequality above leads to the conclusion that y1 � 1, because x2 ≥ 2 and
ε > 0 is arbitrarily small.

Case 2. x2 = 1 but x1 ≥ 3.
Applying the ABC conjecture to the first of Equations (28), we get

ax1−1 = (a0c
y2/gcd(x2,y2))x1−1 � (a0b0cD)1+ε =

(
a0b0c

ax1−1

by2
0

)1+ε

,

giving

by2
0 � (a0b0c)1+εa(x1−1)ε = a

1+O(1/y1+ε)
0 (a0c

y2)O(ε) = a
1+O(1/y1+ε)
0 .(41)
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Now inequality (32) becomes

ax1
0 � (a0b0|a0 − by2

0 |)1+ε
.

If a0 > by2
0 , we then get

a
x1−2(1+ε)
0 � b2

0 = a
O(1/y1)
0 ,

which shows that y1 � 1 if ε > 0 is small (because x1 ≥ 3), while if by2
0 > a0, then,

by estimate (41), we get

ax1
0 � (a0b0b

y2
0 )1+ε � a

2+O(1/y1+ε)
0 ,

which again leads to the conclusion that y1 � 1 if ε > 0 is sufficiently small, since
x1 ≥ 3.

Case 3. x1 = 2 and x2 = 1.
Here, Equations (28) become

a0c
y2 − 1 = Dby2

0

by1−y2
0 cy1−y2 − 1 = Da0.

(42)

The ABC conjecture applied to the first of Equations (42) above gives

a0c
y2 � (a0b0cD)1+ε <

(
a0b0c

a0c
y2

by2
0

)1+ε

,

giving

by2
0 < b

y2(1+ε)
0 � (a0b0c)1+2εcεy2 = a

1+O(1/y1+ε)
0 .(43)

On the other hand, rewriting Equation (25) as

(2a − 1)2 = 4by1 − (4by2 − 1),

and applying the ABC conjecture to the above equation we get

(a0c
y2)2 = a2 � (ab(by2))1+ε = (a0b0cb

y2
0 c2y2)1+ε,

giving

a0 � (b0c)1+2εb
y2(1+ε)
0 c2εy2

0 = by2
0 a

O(1/y1+ε)
0 ,(44)

and comparing estimates (43) and (44), we get

by2
0 = a

1+O(1/y1+ε)
0 .

The above estimate and the first equation (42) gives

a0c
y2 − 1 = Dby2

0 = Da
1+O(1/y1+ε)
0 ,

so

D = cy2a
O(1/y1+ε)
0 .(45)

Further,

by2 = by2
0 cy2 = a

1+O(1/y1+ε)
0 cy2 = (a0c

y2)1+O(1/y1+ε) = a1+O(1/y1+ε),

and since
a2 � a2 − a = by1 − by2 � by1 ,
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we get that by1/2 = a1+O(ε) provided that a is sufficiently large with respect to
ε. (Of course, if a is bounded, we then get only finitely many solutions). Hence,
y2 = (y1/2)(1 + O(1/y1 + ε)). We thus get that

M− = min{y1 − y2, y2} = y2(1 + O(1/y1 + ε)).

Inequality (32) now gives

a2
0 �

(
a0b0c

|a0 − by2
0 |

cM−

)1+ε

,

which together with the fact that by2
0 = a

1+O(1/y1+ε)
0 gives

cy2(1+O(1/y1+ε)) = cM− < cM−(1+ε) � (b0c)1+εa−1+ε
0 |a0 − by2

0 |1+ε

= a
O(1/y1+ε)
0 ,

giving

cy2 = a
O(1/y1+ε)
0 .

Thus, by (45), we also have

D = cy2a
O(1/y1+ε)
0 = a

O(1/y1+ε)
0 .

Subtracting the first equation (42) from the second one, and reducing the resulting
equation modulo bM− , we get

a0(cy2 + D) ≡ 0 (mod b
M−
0 ).

Since a0 and b0 are coprime,

0 < cy2 + D = a
O(1/y1+ε)
0 ,

while
b
M−
0 = (by2

0 )1+O(1/y1+ε) = a
1+O(1/y1+ε)
0 ,

we get a contradiction if ε is sufficiently small and y1 is sufficiently large. Thus,
y1 � 1.

Step 3. a = O(1).

This part of the proof is unconditional and somewhat independent of the previous
parts of the proof, which is why we record it as follows:

Theorem 6.2. Assume that x1 > x2 > 0, y1 > y2 > 0 are fixed integers with
gcd(x1, x2) = gcd(y1, y2) = 1 and y1 > x1. Then the diophantine equation

ax1 − ax2 = by1 − by2(46)

has only finitely many positive integer solutions (a, b).

The case when x2 = y2 = 1 of Theorem 6.2 appears in [13]. Further, a partial
result along the lines of Theorem 6.2 above appears as Proposition 3 on page 211 in
[11]. However, the proof of that result in [11] uses the condition (imposed in that
statement) that a and b are coprime, which is why we choose to give a complete
and self-contained proof of Theorem 6.2 here.
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Proof. It is easy to check that both curves X2−X = Y 3−Y and X2−X = Y 3−Y 2

are elliptic, therefore there are only finitely many integer solutions (a, b) of Equation
(46) when (x1, x2, y1, y2) = (2, 1, 3, 1) or (2, 1, 3, 2). From now on, we assume that
y1 ≥ 4. Further, when x1 = 2, then x2 = 1, and the given equation becomes

(2a − 1)2 = 4by1 − 4by2 + 1.

It is easy to check that the polynomial g(Y ) = 4Y y1 − 4Y y2 + 1 has only simple
roots. Indeed, if z is a double root of g, then

zy2−1(y1z
y1−y2 − y2) =

g′(z)
4

= 0,

and since 0 is not a root of g, we get zy1−y2 = y2/y1. Furthermore, the relation
g(z) = 0 becomes 4zy2(zy1−y2 − 1) = −1, which implies that 4zy2(y2/y1 − 1) = −1,
therefore 4zy2 = y1/(y1 − y2). Thus,(

y1

y1 − y2

)y1−y2

= 4y1−y2(zy1−y2)y2 = 4y1−y2

(
y2

y1

)y2

.

Since y1 and y2 are coprime, the above relation gives, by looking at the denomina-
tors, that y1 is a power of 2 and that y1−y2 = 1. Now by looking at the numerators,
we get that y2 = y1 − 1 is an odd number, and that every prime factor of it divides
y1, which is obviously impossible.

From now on, we assume that x1 ≥ 3.

Write f(X) = Xx1−Xx2 and let g(Y ) = Y y1−Y y2 . Recall the following theorem
due to Davenport, Lewis and Schinzel (see [7]).

Theorem 6.3. Let f(X) and g(Y ) be polynomials with integer coefficients of de-
grees > 1. Let Df (λ) = disc(f(X) − λ) and Dg(λ) = disc(g(Y ) − λ). Assume
further that there are at least �deg(f)/2� distinct roots of Df (λ) = 0 for which
Dg(λ) �= 0. Then, the polynomial f(X)−g(Y ) is irreducible over the complex num-
bers. Further, the genus of the curve given by the equation f(X) = g(Y ) is strictly
positive except possibly when deg(f) = 2 or deg(f) = deg(g) = 3. Apart from these
possible exceptions, the equation f(x) = g(y) has at most a finite number of integral
solutions (x, y).

In our case, one checks easily that all the roots λ of Df are:
(i) λ = 0 with multiplicity x2 − 1,

(ii) λ = −ζx2 ·
(

x1 − x2

x1

)
·
(

x2

x1

) x2
x1−x2

, with ζ = e
2πik

x1−x2 , k = 0, . . . , x1−x2−1.

The roots λ of Dg are obtained in the same way as at (i) and (ii) above by
replacing the pair (x1, x2) with the pair (y1, y2). Since gcd(x1, x2) = gcd(y1, y2) =
1, we see that all the nonzero roots of both Df and Dg are simple roots. Hence,
assuming that either x2 < x1/2 or y2 < y1/2 holds, we get that either x1 − x2 ≥
�x1/2� or y1 − y2 ≥ �y1/2� holds. Since we also have that deg(g) ≥ 4, we conclude
that in this instance we may apply Theorem 6.3 above to our pair of polynomials
f(X) and g(Y ) and conclude that Equation (46) has only finitely many integer
solutions (a, b) provided that we can show that the only common root of both Df

and Dg is λ = 0. Let us assume that Df and Dg have a nonzero common root,
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say z. Using (ii) above, and identifying the absolute value of this nonzero common
root, we get the diophantine equation(

1 − x2

x1

)
·
(

x2

x1

) x2/x1
1−x2/x1

=
(

1 − y2

y1

)
·
(

y2

y1

) y2/y1
1−y2/y1

.(47)

The above equation can be rewritten as h(u) = h(v), where u = x2/x1, v = y2/y1,
and h(z) is the function defined on (0, 1) and given by

h(z) = (1 − z)z
z

1−z .

We shall first use the above equation to rule out some possible instances.

Case 1. u < 1/2 or v < 1/2.
In this case, it suffices to prove that the function h(z) shown above is one-to-one

in the interval (0, 1). Indeed, once we have proved this fact, then the equation
h(u) = h(v) will force u = v, and since both u and v are rational numbers in
reduced form, we read that x1 = y1 and x2 = y2, which is a contradiction.

To prove the injectivity of h(z) in (0, 1), note that with

k(z) = log h(z) = log(1 − z) +
z log z

1 − z
,

we have
dk

dz
=

log z

(1 − z)2
< 0, when z ∈ (0, 1),

which proves that h(z) is one-to-one in (0, 1).

From now on, we assume that both u ≥ 1/2 and v ≥ 1/2 hold. Hence, x1 ≤ 2x2

and y1 ≤ 2y2. Since x1 ≥ 3 and y1 ≥ 4, we conclude that both x2 ≥ 2 and y2 ≥ 2.
Furthermore, let us show that y2 ≥ 4. Indeed, assume that y2 ≤ 3. Since y1 ≥ 4
and gcd(y1, y2) = 1, it follows that y2/y1 < 1/2 except when y1 = 5. In this case,
that is, in the case (y1, y2) = (5, 3), we can still have (x1, x2) = (4, 3), (3, 2), and
the Theorem 6.3 does not apply to those cases. However, one checks by hand that
the two curves obtained in this way are irreducible and of genus > 1, so we can
have only finitely many solutions integer solutions (a, b) to the diophantine equation
f(a) = g(b) in these cases.

Case 2. The final contradiction.
From now on, we assume that both u > 1/2 and v > 1/2, that both x2 and y2 are

at least 2, and that one of them is at least 4. To deal with these remaining cases,
we use a finiteness criterion of Bilu and Tichy from [5]. We follow the presentation
from [4]. To use the criterion, we need to define five kinds of standard pairs of
polynomials. In what follows, α and β are nonzero rational numbers, μ, ν and
q are positive integers, ρ is a nonnegative integer and ν(X) ∈ Q[X] is a nonzero
polynomial, which may be constant.

A standard pair of the first kind is a pair of polynomials of the form

(Xq, αXρν(X)q),

or switched, where 0 ≤ ρ < q, gcd(ρ, q) = 1 and ρ + deg(ν) > 0.
A standard pair of the second kind is (X2, (αX2 + β)ν(X)2), or switched.
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Denote by Dμ(X, δ) the μth Dickson polynomial, defined by the functional equa-
tion Dμ(z + δ/z) = zμ + (δ/z)μ, or by the explicit formula

Dμ(X, δ) =
�μ/2�∑
i=0

dμ,iX
μ−2i with dμ,i =

μ

μ − i

(
μ − i

i

)
(−δ)i.

A standard pair of the third kind is a pair of polynomials of the form

(Dμ(X, αν), Dν(X, αμ)),

where gcd(μ, ν) = 1.

A standard pair of the fourth kind is (α−μ/2Dμ(X, α),−β−ν/2Dν(X, β)), where
gcd(μ, ν) = 2.

A standard pair of the fifth kind is ((αX2 − 1)3, 3X4 − 4X3) (or switched).

The following theorem is the main result of [5]. It extends and completes Theo-
rem 6.3.

Theorem 6.4. Let f(X), g(X) ∈ Q[X] be nonconstant polynomials such that the
equation f(a) = g(b) has infinitely many integer solutions (a, b). Then f = φ◦f1◦κ
and g = φ ◦ g1 ◦ λ, where κ(X) ∈ Q[X] and λ(X) ∈ Q[X] are linear polynomials,
φ(X) ∈ Q[X] and (f1(X), g1(X)) is a standard pair.

We assume that the equation f(a) = f(b) has infinitely many positive integer
solutions (a, b), and we use the above Theorem 6.4 to reach a contradiction. Let us
assume that f = φ◦f1 ◦κ and g = φ◦g1 ◦λ. Since, f(X) = Xx1 −Xx2 has z = 1 as
a simple root, we get that φ cannot be a perfect power of exponent > 1 of another
polynomial. Writing φ(X) = a0(X − α1)λ1 . . . (X − αt)λt with t ≥ 1 distinct roots
α1, . . . , αt, where α1 = f1(κ(0)), and positive integers λ1, . . . , λt, we get that

f(X) = Xx2(Xx1−x2 − 1) = a0(f1(κ(X)) − α1)λ1 . . . (f1(κ(X)) − αt)λt .

From the above remark, we have λ1 = 1 if t = 1. We now show that this must
always be the case. Note that the roots of f(X) are among the roots of f1(κ(X))−αi

for i = 1, . . . , t, and that if t ≥ 2 and i �= j, then f1(κ(X))− αi and f1(κ(X))− αj

are coprime as polynomials. Hence, they do not share any root. Thus, since
α1 = f1(κ(0)), we get that z = 0 is a root of multiplicity x2 of (f1(κ(X)) − α1)λ1 ,
and that all other roots have multiplicity one, and are roots of unity of order x1−x2.
Thus, when t ≥ 2, we get at once that λ2 = · · · = λt = 1, and that if λ1 > 1, then
f1(κ(X)) − α1 = γXd for some nonzero number γ, where d = deg(f1). Identifying
the multiplicity of the root z = 0, we get x2 = dλ1 and x1 − x2 = (t − 1)d, giving
that d | gcd(x1, x2). Thus, d = 1, which is not allowed. In conclusion, even if t > 1,
we must then have λ1 = · · · = λt = 1, therefore all the roots of φ are simple.

Assume now that (f1, g1) is a pair of the first or second kind. Then either
f1(X) = Xq or g1(X) = Xq. Assume say that f1(X) = Xq. Then f1(κ(X))−α1 =
(γX + δ)q − δq and this polynomial has z = 0 as a simple root if δ �= 0, and as
root of multiplicity exactly q = d = deg(f) if δ = 0. The case of the simple root at
z = 0 is not convenient (because x2 ≥ 2), and the remaining case leads to d = x2,
and dt = x1, which is again impossible because it gives x2 | x1. The case when
g1(X) = Xq can be dealt with analogously.



216 Yann Bugeaud and Florian Luca

Assume now that (f1, g1) is a pair of the third, fourth or fifth kind. We know
that min{x2, y2} ≥ 4. Then either f1(κ(X)) − α1 or g1(λ(X)) − αs has a root of
multiplicity at least four, where s ∈ {1, . . . , t} is such that αs = g1(λ(0)). But
this implies that either (f1(κ(X)) − α1)′ = f ′

1(κ(X))κ′(X) or (g1(λ(X)) − αs)′ =
g′1(λ(X))λ′(X) has a triple root. Since κ and λ are nonconstant linear polynomials,
we conclude immediately that this last fact is equivalent to the fact that either
f ′
1(X) has a triple root or g′1(X) has a triple root. It is clear that this is not so if

(f1, g1) is a pair of the fifth kind. We now verify that the derivative of any Dickson
polynomial does not have double roots, therefore it does not have triple roots either.
Setting x1 = x/

√
δ, we easily get that Dμ(x, δ) = δμDμ(x1, 1), therefore it is

enough to verify our claim when δ = 1. But since the roots Dμ(X, 1) are precisely
2 cos πk/m for k = 0, . . . , m− 1, which are all real and simple, it follows, by Rolle’s
Theorem, that the roots of its derivative D′

μ(X) are also real and simple.

This completes the proof of Theorem 6.2 and of Theorem 6.1 as well. �

�

7. Comments and remarks

It would certainly be of interest to extend the results of this paper in order to
cover a wider class of equations of the same type as (5). For example, it would be
interesting to relax the condition ‘a is a prime’, to, say, ‘a is an integer’ (or, even,
to ‘a has a bounded number of prime factors’), or to replace the condition ‘b is
fixed’ by the condition ‘b is an S-unit’. We have not succeeded in proving any of
such results. The most difficult point seems to lie in Step 3 of Section 5.

Furthermore, we stress that, as in [11], our results are ineffective, since they
ultimately depend on the Schmidt Subspace Theorem. It would be very interesting
to provide an effective version of even a weaker form of our main theorem.

Moreover, it would be nice to relax the coprimality condition occurring in The-
orem 2.1. This, however, seems to be quite difficult.
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