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Image partition regularity over the integers,
rationals and reals

Neil Hindman and Dona Strauss

Abstract. There is only one reasonable definition of kernel partition regular-
ity over any subsemigroup of the reals. On the other hand, there are several
reasonable definitions of image partition regularity. We establish the exact
relationships that can hold among these various notions for finite matrices and
infinite matrices with rational entries. We also introduce some hybrid notions
and describe their relationship to what is probably the major unsolved prob-
lem in kernel partition regularity, namely whether an infinite matrix which is
kernel partition regular over Q must be kernel partition regular over N.
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1. Introduction

Image partition regularity is one of the most important concepts of Ramsey
Theory. Suppose that A is a finite or infinite matrix over Q in which there are
only a finite number of nonzero entries in each row. A is said to be image partition
regular over the set N of positive integers, if given any finite partition of N, there
is a vector �x, with entries in N, such that A�x is defined and all the entries of A�x
lie in the same cell of the partition.

The significance of this concept can be illustrated by considering some of the
historically important theorems of Ramsey theory. For example, Schur’s Theorem
[16], which states that in any finite partition of N, there is a cell containing inte-
gers x, y and x + y, is equivalent to the image partition regularity of the matrix
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⎛
⎝ 1 0

0 1
1 1

⎞
⎠. Van der Waerden’s Theorem [17], which states that, for any l ∈ N

and any finite partition of N, there is a cell containing an arithmetic progression of

length l, is equivalent to the image partition regularity of the matrix

⎛
⎜⎜⎜⎜⎜⎝

1 0
1 1
1 2
...

...
1 l − 1

⎞
⎟⎟⎟⎟⎟⎠.

The Finite Sums Theorem [6], which states that, in any finite partition of N there is
a cell which contains all the finite sums of distinct terms of some infinite sequence in
N, is equivalent to the statement that an infinite matrix is image partition regular
if its entries are in {0, 1}, with only a finite number of nonzero entries in each row
and no row identically zero.

See [5, Theorems 2.1 and 3.1] for proofs of van der Waerden’s Theorem and
Schur’s Theorem. See [12, Corollary 5.10] for a proof of the Finite Sums Theorem.

In this paper we investigate image partition regularity of finite and infinite ma-
trices over subsemigroups of (R,+). We represent countable infinity by the ordinal
ω = N∪ {0}. For consistency of treatment between the finite and infinite cases, we
shall treat u ∈ N as an ordinal, so that u = {0, 1, . . . , u−1}. Thus, if u, v ∈ N∪{ω}
and A is a u×v matrix, the rows and columns of A will be indexed by u = {i : i < u}
and v = {i : i < v}, respectively.

The concept of image partition regularity is closely related to that of kernel
partition regularity. A matrix A over Q is said to be kernel partition regular over
N if, in any finite partion of N, there is a vector �x, whose entries all lie in the same
cell of the partition, such that A�x = �0.

It is natural to consider the extensions of these concepts of partition regularity
from N to more general subsemigroups of (R,+). As we shall explain, there is only
one reasonable way to define kernel partition regularity over a subsemigroup of R;
but this statement is not true for image partition regularity.

Definition 1.1. A matrix A is admissible provided there exist u, v ∈ N∪{ω} such
that A is a u×v matrix with entries from Q which has finitely many nonzero entries
in each row.

Definition 1.2. Let S be a subsemigroup of (R,+), let T be the subgroup of (R,+)
generated by S, let u, v ∈ N ∪ {ω} and let A be an admissible u× v matrix.

(a) A is kernel partition regular over S (KPR/S) if and only if whenever S \{0} is
finitely colored there exists a monochromatic �x ∈ (S\{0})v such that A�x = �0.

(b) A is image partition regular over S (IPR/S) if and only if whenever S \ {0}
is finitely colored, there exists �x ∈ (S \ {0})v such that the entries of A�x are
monochrome.

(c) A is weakly image partition regular over S (WIPR/S) if and only if whenever
S \ {0} is finitely colored, there exists �x ∈ T v \ {�0} such that the entries of
A�x are monochrome.

When defining kernel partition regularity ofA over S, there is only one reasonable
definition, namely the one given in Definition 1.1. Since the entries of �x are to
be monochrome, they must come from the set being colored. And if 0 were not



Image partition regularity 521

excluded from the set being colored, one would allow the trivial solution �x = �0 and
so all admissible matrices would be KPR/S. (One might argue for the requirement
that S be colored and the entries of �x should be monochrome and not constantly
0. But then, by assigning 0 to its own color, one sees that this is equivalent to the
definition given.)

By contrast, when defining image partition regularity, there are several reason-
able choices that can be made. If 0 ∈ S, then one may color S or S \ {0} and
one may demand that one gets the entries of A�x monochrome with �x ∈ (S \ {0})v,
�x ∈ Sv \{�0}, �x ∈ (T \{0})v, or �x ∈ T v \{�0}. If 0 /∈ S one may demand that one gets
the entries of A�x monochrome with �x ∈ Sv, �x ∈ (T \ {0})v, or �x ∈ T v \ {�0}. (We
note that there is never a point in allowing �x = �0. If S \ {0} is colored, then �x = �0
is impossible, and if 0 ∈ S and S is colored, then �x = �0 yields a trivial solution
for any matrix.) Since these choices are all reasonable, it is natural to consider the
relations between them.

In Section 2 we consider all of these reasonable choices for each of the sub-
semigroups N, Z, Q+, Q, R+ and R of R. (Here Q+ = {x ∈ Q : x > 0} and
R+ = {x ∈ R : x > 0}.) If S is N, Q+, or R+, then 0 /∈ S and S �= T so there
are exactly three of these reasonable choices for S. If S is Z, Q, or R, then 0 ∈ S
and S = T so there are exactly four of these reasonable choices for S. Thus, for
these semgroups there are a total of 21 possible reasonable choices. Some of these
are, however, equivalent. We show that there are a total of 15 distinct notions and
establish the exact pattern of implications that hold among them.

In [15, Theorem VII], Rado established that for any subring R of C, a finite
matrix with coefficients from C is kernel partition regular over R \ {0} if and only
if it satisfies the columns condition over the field generated by R. We now give this
condition.

Definition 1.3. Let u, v ∈ N, let A be a u× v matrix with entries from Q, denote
the columns of A by �c0,�c1, . . . ,�cv−1, and let R be a subring of (R,+, ·). Then A sat-
isfies the columns condition over R if and only if there is a partition {I1, I2, . . . , Im}
of {0, 1, . . . , v − 1} such that:

(a)
∑

i∈I1
�ci = �0.

(b) For each t ∈ {2, 3, . . . ,m} (if any),
∑

i∈It
�ci is a linear combination of mem-

bers of
⋃t−1

i=1 Ii with coefficients from R.

It follows easily that, for a finite admissible matrix A, the statements that A is
kernel partition regular over each of the subsemigroups N, Z, Q+, Q, R+, and R of
R, are equivalent (see Theorem 1.4). However, this statement is not true for image
partition regularity or weak image partition regularity.

Call a set C ⊆ N large provided that C contains a solution set for every partition
regular finite system of homogeneous linear equations with coefficients from Q.
Rado’s Theorem then easily implies that whenever N is partitioned into finitely
many cells, one of those cells is large. Rado conjectured that whenever any large
set is partitioned into finitely many cells, one of those cells must be large. This
conjecture was proved by W. Deuber [2] whose proof utilized what Deuber called
(m, p, c)-sets. These sets are images of certain image partition regular matrices.
(See [11] for an algebraic proof of Deuber’s result.)
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Several characterizations of finite matrices that are image partition regular over
N were found in [8], and one of these characterizations was in terms of the kernel
partition regularity of a related matrix (and thus image partition regularity can
be determined by means of the columns condition applied to this related matrix).
Thus there is an intimate connection, in both directions, between kernel partition
regular and image partition regular finite matrices.

The question of which infinite matrices are image partition regular or kernel
partition regular is a difficult open problem, which we have addressed in previous
papers. (See, for example, [3] and [13].) We shall not be specifically concerned with
this question in this paper.

In Section 3 we investigate the relationship between kernel and image partition
regularity for infinite matrices. We also introduce some additional “hybrid” notions
of partition regularity. (For example “very weakly image partition regular” refers
to coloring N and asking for �x ∈ Qv \ {�0} with the entries of A�x monochrome.) In
these cases, the exact pattern of implications is not known, and the unanswered
questions about them turn out to be intimately related to the main open problem
about kernel partition regularity. That is, does KPR/Q imply KPR/N?

We shall have need of the following result, which is well-known among afficiana-
dos.

Theorem 1.4. Let u, v ∈ N and let A be a u× v matrix with entries from Q. The
following statements are equivalent:

(a) A is KPR/N.
(b) A is KPR/Z.
(c) A is KPR/Q+.
(d) A is KPR/Q.
(e) A is KPR/R+.
(f) A is KPR/R.

Proof. The implications in the following diagram are all trivial:

KPR/N

↙ ↘
KPR/Z KPR/Q+

↘ ↙ ↘
KPR/Q KPR/R+

↘ ↙
KPR/R .

We shall show that KPR/R ⇒ KPR/N. So assume that A is KPR/R. Then by [15,
Theorem VII] A satisfies the columns condition over R. But since a rational vector
is in the linear span over R of a set of rational vectors if and only if it is in the
linear span over Q of those same vectors, this tells us that A satisfies the columns
condition over Q. But then, by the original version of Rado’s Theorem ([14, Satz
IV], or see [5, Theorem 3.5] or [12, Theorem 15.20]) A is KPR/N. �

We also shall need the following deep result of Baumgartner and Hajnal. We
denote by [A]k the set of k-element subsets of A.
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Theorem 1.5. Let A be a linearly ordered set with the property that whenever
ϕ : A → ω, there is an infinite increasing sequence in A on which ϕ is constant.
Then for any k < ω, any countable ordinal α, and any ψ : [A]2 → {0, 1, . . . , k}
there is a subset B of A which has order type α such that ψ is constant on [B]2.

Proof. This is [1, Theorem 1], where it was proved using Martin’s Axiom and then
shown by absoluteness considerations to be a theorem of ZFC. A direct combina-
torial proof was obtained by Galvin [4, Theorem 4]. �

We shall only need the following very special case. It is an indication of the
strength of Theorem 1.5 that even this special case does not seem to be easy to
prove.

Corollary 1.6. Let [R+]2 be finitely colored. There is a set B ⊆ R+ of order type
ω + 1 such that [B]2 is monochrome.

Proof. To see that R+ satisfies the hypotheses of Theorem 1.5, note that by the
Baire Category Theorem, when R+ is colored with countably many colors, the
closure of one of the color classes has nonempty interior. �

We mention two conventions that we will use throughout. The entries of a matrix
will be denoted by lower case letters corresponding to the upper case letter which
denotes the matrix. Also, we shall use the notation �x for both column and row
vectors, expecting the reader to rely on the context to determine which is intended.

Acknowledgement. The authors would like to thank Fred Galvin for some very
helpful correspondence.

2. Image partition regularity over N, Z, Q+, Q, R+ and R

Let S be a subsemigroup of (R,+) and let T be the group generated by S. Let
u, v ∈ N ∪ {ω}, and let A be an admissible u × v matrix. As we observed in the
introduction, when defining image partition regularity, there are several reasonable
choices that can be made. One may color S or S \ {0} and one may demand
that one gets the entries of A�x monochrome with �x ∈ (S \ {0})v, �x ∈ Sv \ {�0},
�x ∈ (T \ {0})v, or �x ∈ T v \ {�0}. We show in this section that there are exactly
fifteen distinct nontrivial notions arising from these choices for the semigroups N,
Z, Q+, Q, R+ and R. We also establish the exact patterns of implications among
these notions. We first need to define two additional notions.

Definition 2.1. Let u, v ∈ N ∪ {ω} and let A be an admissible u× v matrix.
(a) A satisfies the statement θS if, whenever S is finitely colored, there exists

�x ∈ (S \ {0})v such that A�x is monochrome.
(b) A satisfies the statement ψS if, whenever S is finitely colored, there exists

�x ∈ Sv \ {�0} such that A�x is monochrome.

The fifteen notions that we shall investigate are the notions IPR/S for S ∈
{N,Z,Q+,Q,R+,R}, and the notions WIPR/S, θS and ψS for S ∈ {Z,Q,R}.
Theorem 2.2. Theorem. Let S be one of N, Q+, R+, Z, Q, or R and let T be the
subgroup of (R,+) generated by S. Let u, v ∈ N∪{ω} and let A be an admissible u×v
matrix. Let B ∈ {

S, S \{0}} and let C ∈ {
(S \{0})v, (T \{0})v, Sv \{�0}, T v \{�0}}.

Define the property (∗) by:
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(∗) Whenever B is finitely colored, there exists �x ∈ C such that the entries of A�x
are monochrome.

Then (∗) is equivalent to one of the fifteen notions described above. In particular,
WIPR/Z ⇔ WIPR/N, WIPR/Q ⇔ WIPR/Q+ and WIPR/R ⇔ WIPR/R+.

Proof. Notice that if S = N, S = Q+, or S = R+, then S = S\{0} and (S\{0})v =
Sv \ {�0}. Also if S = Z, S = Q, or S = R, then S = T . Thus, in addition to our
fifteen notions, we have the following possibilities to consider:

S B C
(16) N N (Z \ {0})v

(17) N N Zv \ {�0}
(18) Q+ Q+ (Q \ {0})v

(19) Q+ Q+ Qv \ {�0}
(20) R+ R+ (R \ {0})v

(21) R+ R+ Rv \ {�0}.
Notice that (17), (19) and (21) are WIPR/N, WIPR/Q+ and WIPR/R+, re-

spectively. We claim that (16) ⇔ IPR/Z, (17) ⇔ WIPR/Z, (18) ⇔ IPR/Q, (19) ⇔
WIPR/Q, (20) ⇔ IPR/R and (21) ⇔ WIPR/R. The proofs of these equivalences
are essentially identical. We shall write out the proof that (16) ⇔ IPR/Z.

Trivially (16) implies IPR/Z. To see that IPR/Z implies (16), let r ∈ N and let
ϕ : N → {1, 2, . . . , r}. Define ψ : Z \ {0} → {1, 2, . . . , 2r} by

ψ(x) =
{

ϕ(x) if x > 0
r + ϕ(−x) if x < 0 .

Pick �x ∈ (Z \ {0})v and j ∈ {1, 2, . . . , 2r} such that A�x ∈ (ψ−1[{j}])u. If j ≤ r,
let �y = �x and let i = j. If j > r, let �y = −�x and let i = j − r. Then A�y ∈
(ϕ−1[{i}])u. �

We show in the following lemma that, for S ∈ {Z,Q,R}, the properties θS and
ψ

S are simply described in terms of the properties IPR/S and WIPR/S.

Lemma 2.3. Let S ∈ {Z,Q,R}. Let u, v ∈ N∪{ω} and let A be a u×v admissible
matrix.

(a) A satisfies property θS of Definition 2.1 if and only if either A is IPR/S or
there exists �x ∈ (S \ {0})v such that A�x = �0.

(b) A satisfies property ψS of Definition 2.1 if and only if either A is WIPR/S
or there exists �x ∈ Sv \ {�0} such that A�x = �0.

Proof. In each case the sufficiency is trivial. For the necessity, given an r-coloring
of S \ {0} define an (r + 1)-coloring of S by assigning 0 to its own color. �

If the matrix is finite, the fifteen properties collapse to four, as we shall see in
the following theorem. The proof that (I)(c) ⇒ (I)(a) uses the algebraic structure
of the Stone–Čech compactification of a discrete semigroup. (By R+

d we mean R+

with the discrete topology.) The reader is referred to [12] for background material
on this structure.
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Theorem 2.4. Let u, v ∈ N and let A be an admissible u× v matrix.
(I) The following are equivalent:

(a) A is IPR/N.
(b) A is IPR/Q+.
(c) A is IPR/R+.

(II) The following are equivalent:
(a) A is IPR/Z.
(b) A is IPR/Q.
(c) A is IPR/R.
(d) A is WIPR/Z.
(e) A is WIPR/Q.
(f) A is WIPR/R.

(III) The following are equivalent:
(a) A satisfies property θZ of Definition 2.1.
(b) A satisfies property θQ of Definition 2.1.
(c) A satisfies property θR of Definition 2.1.

(IV) The following are equivalent:
(a) A satisfies property ψZ of Definition 2.1.
(b) A satisfies property ψQ of Definition 2.1.
(c) A satisfies property ψR of Definition 2.1.

Proof. (I) We show that IPR/R+ ⇒ IPR/N. Assume that A is IPR/R+. If k is
a common multiple of the denominators of entries of A, then kA is also IPR/R+

and, if kA is IPR/N then A is IPR/N. Thus we may assume that the entries of A
are integers.

Define ϕ : (R+)v → Ru by ϕ(�x) = A�x and let ϕ̃ : β
(
(R+

d )v
) → (βRd)u be its

continuous extension. Let p be an idempotent in the smallest ideal K(βR+
d ) of βR+

d

and let

p =

⎛
⎜⎜⎜⎝

p
p
...
p

⎞
⎟⎟⎟⎠ ∈ (βRd)u .

Pick by [7, Lemma 2.8 and Theorem 4.1] an idempotent q ∈ K
(
β
(
(R+)v

))
such

that ϕ̃(q) = p. Notice that [1,∞)v is an ideal of
(
(R+)v,+

)
so by [12, Theorem

4.17] c	
(
[1,∞)v

)
is an ideal of β

(
(R+

d )v
)

and so [1,∞)v ∈ q.
Let r ∈ N and let ψ : N → {1, 2, . . . , r}. Define g : R+ → N by

g(x) =
{ �x+ 1

2� if x ≥ 1
2

1 if 0 < x < 1
2 .

Then ψ ◦g : R+ → {1, 2, . . . , r} so pick l ∈ {1, 2, . . . , r} such that (ψ ◦g)−1[{l}] ∈ p.
Let B = [1,∞) ∩ (ψ ◦ g)−1[{l}]. Then B ∈ p and so ϕ−1[Bu] ∈ q.

Define τ : (R+)v → (R/Z)v by τ(�x)j = Z + xj and let τ̃ : β
(
(R+)v

) → (R/Z)v

be its continuous extension. By [12, Corollary 4.22] τ̃ is a homomorphism so τ̃(q)
is an idempotent, and thus τ̃(q)j = Z + 0 for each j ∈ {0, 1, . . . , v − 1}. There
exists δ > 0 such that the entries of A�x are contained in (− 1

2 ,
1
2 ) whenever the

entries of �x are contained in (−δ, δ). Let U = ×v−1
j=0{Z + x : −δ < x < δ}. Then

U is a neighborhood of τ̃(q) so τ−1[U ] ∈ q. Pick �x ∈ τ−1[U ] ∩ ϕ−1[Bu] ∩ [1,∞)v.
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Let yj = g(xj) for each j ∈ {0, 1, . . . , v − 1}. Then �y ∈ Nv and for each j,
yj = �xj + 1

2�. Let �w = A�y. We claim that �w ∈ (ψ−1[{l}])u. Let �z = ϕ(�x) = A�x.
Then �z ∈ Bu ⊆ (

(ψ ◦ g)−1[{l}])u. Thus it suffices to show that for each i ∈ {0, 1,
. . . , u − 1}, wi = g(zi), so let i ∈ {0, 1, . . . , u − 1}. Since �x ∈ τ−1[U ], for each
j ∈ {0, 1, . . . , v−1}, xj = g(xj)+γ

j for some γj ∈ (−δ, δ). So zi =
∑v−1

j=0 ai,j ·xj =∑v−1
j=0 ai,j · yj +

∑v−1
j=0 ai,j · γj = wi +

∑v−1
j=0 ai,j · γj . Since |∑v−1

j=0 ai,j · γj | < 1
2 , we

have that g(zi) = wi as required.

(II) We show that WIPR/R ⇒ IPR/Z. Assume that A is WIPR/R. Let
l = rank(A). Rearrange the rows of A so that the first l rows are linearly in-
dependent over Q (and therefore are linearly independent over R because find-
ing α0, α1, . . . , αl−1 such that

∑l−1
i=0 αi�ri = �0 amounts to solving linear equa-

tions with rational coefficients). Let �r0, �r1, . . . , �ru−1 be the rows of A. For each
t ∈ {l, l + 1, . . . , u − 1}, if any, let γt,0, γt,1, . . . , γt,l−1 ∈ Q be determined by
�rt =

∑l−1
i=0

γt,i · �ri. If u > l, let D be the (u − l) × v matrix such that, for
t ∈ {0, 1, . . . , u− l − 1} and i ∈ {0, 1, . . . , u− 1},

dt,i =

⎧⎨
⎩

γl+t,i if i < l
−1 if i = l + t
0 otherwise.

Then by [7, Theorem 3.1], l = u or D is KPR/R. Thus by Theorem 1.4 either
l = u or D is KPR/Q and thus by [8, Theorem 2.2] we may pick b0, b1, . . . , bv−1 ∈
Q \ {0} such that the matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b0 0 . . . 0
0 b1 . . . 0
...

...
. . .

...
0 0 . . . bv−1

A

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is WIPR/Z. Now let Z \ {0} be finitely colored and pick �x ∈ Zv \ {�0} such that the
entries of B�x are monochrome (and in particular the entries of A�x are monochrome).
Since each bixi �= 0 we have that �x ∈ (Z \ {0})v.

The equivalence of the statements in (III) and the equivalence of the statements
in (IV) now follow from Lemma 2.3 and the fact that, if A�x = �0 for some �x ∈ Rv,
then A�r = �0 for some �r ∈ Qv, with the property that, for each i ∈ {0, 1, 2, · · · , v−1},
xi = 0 if and only if ri = 0. See [9, Lemma 2.5] for a proof of this elementary
fact. �

Theorem 2.5. The collections (I), (II), (III) and (IV) of equivalent properties in
Theorem 2.4 are listed in strictly decreasing order of strength.

Proof. It is trivial that collections (I), (II) and (III) imply collections (II), (III)
and (IV) respectively.

The matrix

⎛
⎝ 1 −1

3 2
4 6

⎞
⎠ was shown in [8, pages 461–462] to be WIPR/Z but

not IPR/N, so (II) �⇒ (I).
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To see that (III) �⇒ (II), consider the matrix A =
(

1 2
2 4

)
. Then A

(
2
−1

)
=(

0
0

)
so A satisfies θZ. Any 2-coloring of Z for which one never has a nonzero x

with x and 2x the same color establishes that A is not IPR/Z.
To see that (IV) �⇒ (III), consider the matrix

A =

⎛
⎝ 1 2 1

3 6 4
2 4 2

⎞
⎠ . Then A

⎛
⎝ 2

−1
0

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠

so A satsifies ψZ. If �x ∈ Z3 and A�x = �0, then x2 = 0. Thus by Lemma 2.3(a), to
see that A does not satisfy θZ, it suffices to show that A is not IPR/Z. To this end,
color Z \ {0} with two colors so that there is no x ∈ Z \ {0} such that x and 2x
have the same color. Given any �x ∈ Z3, if �y = A�x, then y2 = 2y0. �

The situation is more complicated when infinite matrices are allowed.

Theorem 2.6. Consider the following diagram among the properties of Defini-
tion 2.1:

IPR/N

↙ ↘
IPR/Z IPR/Q+

↙↓↘ ↙↘
WIPR/Z θZ IPR/Q IPR/R+

↓ ↘↙ ↘↙ ↓ ↘↙
ψ

Z WIPR/Q θQ IPR/R

↘ ↓ ↘↙ ↘↙ ↓
ψ

Q WIPR/R θR↘ ↓ ↙
ψ

R.

Each of the diagramed implications is valid, and no implication among these no-
tions holds in general unless it is forced to hold by the diagramed implications and
transitivity.

Proof. Each of the listed implications is trivial. To establish that none of the
missing implications is valid, it suffices to show that:

(A) IPR/Z �⇒ IPR/R+.
(B) IPR/Q+ �⇒ ψ

Z.
(C) WIPR/Z �⇒ θR.
(D) IPR/R+ �⇒ ψ

Q.
(E) θZ �⇒ WIPR/R.

By Theorem 2.5 there are finite matrices establishing (A) and (E).
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To see that IPR/Q+ �⇒ ψ
Z, consider

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 . . .
1/2 1 0 0 . . .
1/3 0 1 0 . . .
1/4 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ and let �z =

⎛
⎜⎜⎜⎜⎜⎝

1
1/2
2/3
3/4
...

⎞
⎟⎟⎟⎟⎟⎠ .

Then A�z = �1 so A is IPR/Q+.
To see that A does not satisfy ψZ, observe first that if �x �= �0, then A�x �= �0. (If

x0 �= 0, the first entry of A�x is x0 while if x0 = 0 and xn �= 0, then entry n of A�x
is xn.) Thus by Lemma 2.3(b) it suffices to show that A is not WIPR/Z. To this
end, let �x ∈ Zω. If x0 = 0, then the first entry of A�x is 0. Otherwise there is some
n ∈ N such that x0/n /∈ Z so the entry n of A�x, namely x0/n + xn, is not in Z.
Therefor e A�x /∈ (Z ∪ {0})ω.

To see that WIPR/Z �⇒ θR, let

B =

⎛
⎜⎜⎜⎝

1 1
1 2
1 3
...

...

⎞
⎟⎟⎟⎠ .

Then B
(

1
0

)
= �1 so B is WIPR/Z. To see that B does not satisfy θR, two color

R so that there are no monochrome infinite arithmetic progressions.

Finally we show that IPR/R+ �⇒ ψ
Q. Let D =

⎛
⎜⎜⎜⎝

1 −1 0 0 0 . . .
0 1 −1 0 0 . . .
0 0 1 −1 0 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎠

and let C =
(

I
D

)
, where I is the ω × ω identity matrix. So for �x ∈ Rω, the

entries of C�x consist of {xn : n < ω} ∪ {xn − xn+1 : n < ω}.
To see that C is IPR/R+, we choose a finite coloring of R+ and color [R+]2 by

giving {x, y} the color of |x − y|. By Corollary 1.6, there is an increasing ω + 1
sequence 〈yi〉i<ω+1 in R+ such that {yj − yi : i < j < ω + 1} is monochrome. If
xi = yω − yi for every i < ω, A�x is monochrome.

To see that C does not satisfy ψQ, we use an argument due to I. Leader. Suppose
that C does satisfy ψQ. There is no �x ∈ Qω\{�0} such that C�x = �0 so by Lemma 2.3,
C is WIPR/Q and thus, by Theorem 2.2, C is WIPR/Q+. However, if �x ∈ Qω and
the entries of C�x are in Q+, then in fact �x ∈ (Q+)ω, so C is IPR/Q+.

Given a positive rational x, write x as

x =
n(x)∑
t=1

b(x, t)/t!

where for each t, b(x, t) ∈ ω, b(x, t) < t if t > 1 and b
(
x, n(x)

) �= 0. Color Q+

according to the value of n(x) mod 3, the parity of b
(
x, n(x)

)
and the parity of

b(x, n(x) − 2).
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Choose �x ∈ (Q+)ω for which C�x is monochrome. This implies that 〈xi〉i<ω is
a strictly decreasing sequence in Q+. We can therefore choose i ∈ ω for which
n(xi+1) > n(xi). We have xi = xi+1 + y, where {xi, xi+1, y} is monochrome.
In particular, n(xi+1) ≥ n(xi) + 3 consequently, one must have carrying in the
rightmost three positions when xi+1 and y are added so that n = n(y) and

b(xi+1, n) + b(y, n) = n

1 + b(xi+1, n− 1) + b(y, n− 1) = n− 1, and

1 + b(xi+1, n− 2) + b(y, n− 2) = n− 2 .

The first of these equations implies that that n is even and the third implies that
n is odd, a contradiction. �

Notice that in particular we have the following simple pattern of implications
among the named notions:

IPR/N

↙ ↘
IPR/Z IPR/Q+

↙ ↘ ↙ ↘
WIPR/Z IPR/Q IPR/R+

↘ ↙ ↘ ↙
WIPR/Q IPR/R

↘ ↙
WIPR/R.

3. Connections between image and kernel partition
regularity

As we remarked in the introduction, there is an intimate relationship between
the notions of image and kernel partition regularity for finite matrices. We shall see
in this section that some of that relationship carries over to infinite matrices. The
following auxiliary notions provide a connection between image and kernel partition
regularity.

Definition 3.1. Let u, v ∈ N∪{ω}, let A be an admissible u×v matrix, and denote
the rows of A by {�ri : i < u}. Choose a subset I(A) of u which is maximal with
respect to the property that {�ri : i ∈ I(A)} is linearly independent (and �ri �= �rj for
i �= j in I(A) ). Let J(A) = u \ I(A). For each i ∈ J(A), if any, let 〈γi,t〉t∈I(A) be
the members of Q for which �ri =

∑
t∈I(A) γi,t · �rt. If J(A) �= ∅, let B(A) be the

matrix with rows indexed by J(A) and columns indexed by u such that for i ∈ J(A)
and t ∈ u,

bi,t =

⎧⎨
⎩

γi,t if t ∈ I(A)
−1 if i = t
0 if t ∈ J(A) \ {i} .

To be definite, in our examples we shall suppose that I(A) is chosen inductively
by always taking the first row which is not a linear combination of those previously
chosen.
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Lemma 3.2. Let S be any subsemigroup of (R,+), let u, v ∈ N ∪ {ω}, and let A
be an admissible u× v matrix. If A is WIPR/S, then either J(A) = ∅ or B(A) is
KPR/S.

Proof. Let T be the subgroup of (R,+) generated by S. Assume that J(A) �= ∅
and let S \ {0} be finitely colored. Pick �x ∈ T v \ {�0} such that the entries of
�w = A�x are monochrome. Let B = B(A). We show that B�w = �0. Since for each
i ∈ J(A), �ri =

∑
t∈I(A) γi,t · �rt, one has that for each i ∈ J(A) and each j < v,

ai,j =
∑

t∈I(A) γi,t ·at,j . Also for each t < u, wt =
∑

j<v at,j ·xj . Now let i ∈ J(A).
Then ∑

t<u

bi,t · wt =
∑

t∈I(A)

γi,t · wt − wi

=
∑

t∈I(A)

γi,t ·
∑
j<v

at,j · xj −
∑
j<v

ai,j · xj

=
∑
j<v

xj ·
⎛
⎝ ∑

t∈I(A)

γi,t · at,j − ai,j

⎞
⎠ = 0. �

For finite matrices we obtain characterizations of the properties in group (II) of
Theorem 2.4.

Theorem 3.3. Let u, v ∈ N and let A be a u× v admissible matrix. The following
statements are equivalent:

(a) A is IPR/Z.
(b) A is WIPR/Z.
(c) A is IPR/Q.
(d) A is WIPR/Q.
(e) A is IPR/R.
(f) A is WIPR/R.
(g) J(A) = ∅ or B(A) is KPR/N.
(h) J(A) = ∅ or B(A) is KPR/Z.
(i) J(A) = ∅ or B(A) is KPR/Q+.
(j) J(A) = ∅ or B(A) is KPR/Q.
(k) J(A) = ∅ or B(A) is KPR/R+.
(l) J(A) = ∅ or B(A) is KPR/R.

Proof. Statements (a) through (f) are equivalent by Theorem 2.4, statements (g)
through (l) are equivalent by Theorem 1.4, and by [8, Theorem 2.2], statement (g)
is equivalent to the assertion that A is WIPR/Z. �

When infinite matrices are allowed, the correspondence between IPR/S and
KPR/S given in Theorem 3.3 completely disappears.

Theorem 3.4. There is an admissible ω × 2 matrix A such that B(A) is KPR/N

(and thus KPR/Z, KPR/Q+, KPR/Q, KPR/R+ and KPR/R) but A is not IPR/R

(and thus not IPR/R+, IPR/Q, IPR/Q+, IPR/Z, or IPR/N).
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Proof. Let

A =

⎛
⎜⎜⎜⎝

1 1
1 2
1 3
...

...

⎞
⎟⎟⎟⎠ .

We saw in the proof of Theorem 2.6 that A does not satisfy θR and so is not IPR/R.
We have I(A) = {0, 1} and for j ≥ 2, �rj = (1 − j) · �r0 + j · �r1 so

B(A) =

⎛
⎜⎜⎜⎝

−1 2 −1 0 0 . . .
−2 3 0 −1 0 . . .
−3 4 0 0 −1 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

Since B(A) ·�1 = �0, we have that B(A) is KPR/N. �

On the other hand, we shall see in Theorem 3.6 that the correspondence between
WIPR/Q and KPR/Q given in Theorem 3.3 remains.

Lemma 3.5. Let u, v ∈ N∪{ω} and let A be a u×v admissible matrix whose rows
are linearly independent. For each �w ∈ Qu there exists �x ∈ Qv such that A�x = �w.

Proof. Note that u ≤ v and, if u is finite, then there are only finitely many nonzero
columns in A so one may presume that v is finite. If A is finite, the conclusion is
part of any introductory linear algebra course. So we may presume that u = v = ω.

We carry out Gaussian row operations on A, using the last nonzero entry in
each row as a pivot and subtracting multiples of each row in turn from succeeding
rows, so as to reduce to zero all the entries which lie below the pivot entry in the
same column. We then carry out Gaussian column operations, again using the last
nonzero entry in each row as a pivot and subtracting multiples of the column in
which it occurs from preceding columns, so as to obtain a matrix B which has
exactly one nonzero entry in each row, with the nonzero entries of different rows
occurring in different columns. Then B clearly satisfies the conclusion of the lemma.

We have B = EAF , where E is obtained from the identity ω × ω matrix by
carrying out the row operations applied, and F is obtained from the identity matrix
by carrying out the column operations applied. We observe that E and F are
admissible matrices, being lower triangular, with all diagonal entries equal to 1.

We claim that, for any ω× ω admissible matrix C and any �x ∈ Qv, if EC�x = �0,
then C�x = �0. To see this, let �ri denote the ith row of C and let �si denote the ith

row of EC. Then �s0 = �r0 and, for each i > 0, �si = �ri +
∑i−1

k=0 ei,k �rk. Assume that
�x ∈ Qv and EC�x = �0. Then �r0�x = �s0�x = 0 and by induction on i we have that for
each i �ri�x = 0.

We can choose �y ∈ Qv for which B�y = E�w. Let �x = F�y. Then EA�x = EAF�y =
B�y = E�w so E(A�x− �w) = �0 and thus A�x = �w. �

Theorem 3.6. Let u, v ∈ N ∪ {ω} and let A be a u × v admissible matrix. Then
A is WIPR/Q if and only if either J(A) = ∅ or B(A) is KPR/Q.

Proof. The necessity follows from Lemma 3.2.
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For the sufficiency, if J(A) = ∅, then the rows of A are linearly independent
and one can apply Lemma 3.5 to find �x ∈ Qω such that A�x = �1. So assume that
J(A) �= ∅ and B = B(A) is KPR/Q.

Let 〈�ri〉i<u be the rows of A and let C be the matrix with rows 〈�ri〉i∈I(A). Let
Q \ {0} be finitely colored and pick monochrome �w ∈ (Q \ {0})u such that B�w = �0.
Let �z be the restriction of �w to I(A). Pick by Lemma 3.5 some �x ∈ Qv such that
C�x = �z.

We claim that A�x = �w. So let i < u. We show that
∑

j<v ai,j · xj = wi.
If i ∈ I(A), this is immediate, so assume that i ∈ J(A). Then for each j < v,
ai,j =

∑
t∈I(A) bi,t · at,j . Then∑

j<v

ai,j · xj =
∑
j<v

∑
t∈I(A)

bi,t · at,j · xj

=
∑

t∈I(A)

bi,t ·
∑
j<v

at,j · xj

=
∑

t∈I(A)

bi,t · zt =
∑

t∈I(A)

bi,t · wt.

Now
0 =

∑
t<u

bi,t · wt =
∑

t∈I(A)

bi,t · wt − wi

so
wi =

∑
t∈I(A)

bi,t · wt =
∑
j<v

ai,j · xj . �

However, the correspondence between WIPR/Z and KPR/Z given in Theo-
rem 3.3 may fail for infinite matrices.

Theorem 3.7. There is an admissible ω × ω matrix A such that J(A) = ∅ but A
is not WIPR/Z.

Proof. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . .

1
2 1 0 0 . . .

1
3 0 1 0 . . .

1
4 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Trivially J(A) = ∅. Also there is no �x ∈ Zω with all entries of A�x in Z \ {0}. (The
first row would force x0 ∈ Z \ {0} and then for some n, x0/n /∈ Z.) �

We now introduce two other notions of image partition regularity. The reader
is certainly justified in asking whether we don’t have quite enough notions already.
We introduce them because of the connection they provide with a major unsolved
problem, namely whether KPR/N and KPR/Q are equivalent for infinite admissible
matrices. (This connection will be presented in Theorem 3.14.)

Definition 3.8. Let u, v ∈ N ∪ {ω} and let A be an admissible u× v matrix.
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(a) A is very weakly image partition regular over N (VWIPR/N) if and only if
whenever N is finitely colored, there exists �x ∈ Qv \ {�0} such that the entries
of A�x are monochrome.

(b) Let S be a subsemigroup of (R,+). Then A is specially image partition regular
over S (SIPR/S) if and only if whenever S \{0} is finitely colored there exists
�x ∈ Sv such that, if �y = A�x, then {xj : j < v} ∪ {yi : i < u} is monochrome.

Notice that VWIPR/N is a hybrid notion where the entries of �x are not taken
from the subgroup of (R,+) generated by N.

Theorem 3.9. Let u, v ∈ N ∪ {ω} and let A be a u × v admissible matrix. Then
A is VWIPR/N if and only if either J(A) = ∅ or B(A) is KPR/N.

Proof. The proof of the necessity is nearly identical to the proof of Lemma 3.2
and the proof of the sufficiency is nearly identical to the proof of the sufficiency of
Theorem 3.6. �

As a consequence of Theorems 3.9 and 3.3 we see that for finite matrices, the
notion of VWIPR/N is equivalent to the notions of group (II) of Theorem 2.4.

There are three trivial characterizations of SIPR/S.

Observation 3.10. Let u, v ∈ N ∪ {ω}, let A be a u × v admissible matrix, and
let S be a subsemigroup of (R,+). Let Iu and Iv be the u × u and v × v identity
matrices respectively. The following statements are equivalent:

(a) A is SIPR/S.
(b)

(
A −Iu

)
is KPR/S.

(c)
(
Iv
A

)
is IPR/S.

(d)
(
Iv
A

)
is WIPR/S.

Among the semigroups N, Z, Q+, Q, R+, and R, there are only three notions of
special image partition regularity.

Theorem 3.11. Let u, v ∈ N ∪ {ω} and let A be a u× v admissible matrix.
(a) A is SIPR/N ⇔ A is SIPR/Z.
(b) A is SIPR/Q+ ⇔ A is SIPR/Q.
(c) A is SIPR/R+ ⇔ A is SIPR/R.

If u, v ∈ N, then all six notions are equivalent, and strictly stronger than the notions
of group (I) of Theorem 2.4.

Proof. Conclusions (a), (b), and (c) are immediate consequences of Observa-
tion 3.10(b) and the fact that, for example, the notions of KPR/N and KPR/Z

are equivalent.
The fact that the notions are equivalent for finite matrices follows from Obser-

vation 3.10(b) and Theorem 1.4. To see that they are strictly stronger than the
notions of group (I) of Theorem 2.4, consider the matrix (2). Any coloring of N for
which one never has x and 2x the same color establishes that (2) is not SIPR/N. �

For finite matrices, we see that the notion of SIPR/N provides characterizations
of matrices that are IPR/S.
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Lemma 3.12. Let u, v ∈ N and let A be an admissible u× v matrix.
(a) Let S be any of N, Q+, or R+. Then A is IPR/S if and only if there exist

s0, s1, . . . , sv−1 ∈ Q+ such that

B = A ·

⎛
⎜⎜⎜⎝

s0 0 . . . 0
0 s1 . . . 0
...

...
. . .

...
0 0 . . . sv−1

⎞
⎟⎟⎟⎠

is SIPR/N.
(b) Let S be any of Z, Q, or R. Then A is IPR/S if and only if there exist

s0, s1, . . . , sv−1 ∈ Q \ {0} such that

C = A ·

⎛
⎜⎜⎜⎝

s0 0 . . . 0
0 s1 . . . 0
...

...
. . .

...
0 0 . . . sv−1

⎞
⎟⎟⎟⎠

is SIPR/N.

Proof. (a) By Theorem 2.4 it suffices to establish the equivalence for S = N. By
[8, Theorem 3.1] A is IPR/N if and only if there exist s0, s1, . . . , sv−1 ∈ Q+ such
that

(
B −Iu

)
is KPR/N, so the conclusion follows from Observation 3.10.

(b) By Theorems 2.2 and 2.4 it suffices to show that A is WIPR/N if and only
if there exist s0, s1, . . . , sv−1 ∈ Q \ {0} such that C is SIPR/N. By [8, Theorem
2.2] A is WIPR/N if and only if there exist s0, s1, . . . , sv−1 ∈ Q \ {0} such that(
C −Iu

)
is KPR/N, so the conclusion follows from Observation 3.10. �

Consider now the following extension of the diagram of Theorem 2.6:

SIPR/N

↙ ↘
IPR/N SIPR/Q+

↙ ↘ ↙ ↘
IPR/Z IPR/Q+ SIPR/R+

↙↓↘ ↙↘ ↙
WIPR/Z θZ IPR/Q IPR/R+

↓ ↘↙ ↘↙ ↓ ↘↙
ψ

Z WIPR/Q θQ IPR/R

↘ ↓ ↘↙ ↘↙ ↓
ψ

Q WIPR/R θR↘ ↓ ↙
ψ

R.

The matrix C in the proof of Theorem 2.6 is SIPR/R+ (because {xn : n < ω}
is contained in the set of entries of C�x) so SIPR/R+ does not imply any of the
notions in the diagram besides those indicated. However, we do not know whether
the notion of SIPR/Q+ implies SIPR/N, or indeed even whether it implies ψZ.
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Similarly, we do not know whether WIPR/Q implies VWIPR/N, or even whether
IPR/Q+ implies VWIPR/N.

The only unanswered question about the relationships of the various notions of
kernel partition regularity is whether KPR/Q implies KPR/N. (See the discussion
surrounding [10, Question 6].) We shall see in Theorem 3.14 that these unanswered
questions are in fact equivalent.

Lemma 3.13. Let A be an ω × ω admissible matrix whose rows are linearly inde-
pendent. There exists an ω × ω admissible matrix B such that:

(a) For all �x ∈ Qω, A�x = �0 ⇔ B�x = �0.
(b) For each i < ω, there exists j < ω such that bi,j = −1 and bk,j = 0 for every

k ∈ ω \ {i}.
Proof. For each i ∈ ω, let l(i) = max{j ∈ ω : ai,j �= 0}. For each n ∈ ω,
{i ∈ ω : l(i) < n} is finite. So we can assume that l(i) is nondecreasing, because
this could be ensured by rearranging the rows of A.

We carry out ordinary Gaussian row operations, always choosing as pivot the
last nonzero entry in the current row. We make that entry −1 and make all other
entries in the same column zero. Let B denote the matrix obtained in this way.
Since any row is operated on only finitely often, B is admissible. B clearly satisfies
(b), and we shall show that B satisfies (a).

We define a sequence 〈ni〉i<ω inductively by putting n0 = 0 and ni = min{n ∈
ω : l(n) > l(ni−1)} if i > 0. For each i ∈ ω, let Ai and Bi denote the matrices
formed by the first ni+1 − 1 rows of A and B respectively. Suppose that B�x = �0.
For each i ∈ ω, Bi is obtained from Ai by elementary row operations, which are
invertible. Since Bi�x = �0, Ai�x = �0 and so A�x = �0.

Conversely, A�x = �0 clearly implies that B�x = �0, because each row of B is a
linear combination of rows of A. �

Note that the choice of the last nonzero entry as pivot in the above proof is
crucial. To see this, consider the matrix⎛

⎜⎜⎜⎜⎜⎝

−1 −1 1 0 0 0 0 0 0 . . .
0 0 −1 −1 1 0 0 0 0 . . .
0 0 0 0 −1 −1 1 0 0 . . .
0 0 0 0 0 0 −1 −1 1 . . .
...

...
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

If the algorithm described in the proof of Lemma 3.13 is modified so that the first
nonzero entry in each row is chosen as pivot, then the resulting matrix is⎛

⎜⎜⎜⎜⎜⎝

−1 −1 0 −1 0 −1 0 −1 0 . . .
0 0 −1 −1 0 −1 0 −1 0 . . .
0 0 0 0 −1 −1 0 −1 0 . . .
0 0 0 0 0 0 −1 −1 0 . . .
...

...
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

each row of which has infinitely many nonzero entries.

Theorem 3.14. The following statements are equivalent:
(a) Every admissible matrix which is SIPR/Q+ is also SIPR/N.
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(b) Every admissible matrix which is KPR/Q is also KPR/N.
(c) Every admissible matrix which is WIPR/Q is also VWIPR/N.

Proof. (a) implies (b). Let A be an admissible matrix which is KPR/Q. Let I(A)
be defined as in Definition 3.1, let �ri denote the ith row of A and let A′ denote
the matrix whose rows are {�ri : i ∈ I(A)}. For any �x ∈ Qω, A�x = �0 ⇔ A′�x = �0,
because each row of A is a linear combination of rows of A′. If A′ is finite, we have
by Theorem 1.4 that A′ is KPR/N and hence that A is KPR/N. So we may assume
that A′ is infinite.

Choose B as guaranteed by Lemma 3.13, with A′ in place of A. Then B is
KPR/Q. By rearranging the columns of B, we may write it in the form

(
C −I )

.
Then by Observation 3.10 C is SIPR/Q and thus SIPR/Q+. By assumption C is
SIPR/N and therefore by Observation 3.10

(
C −I )

is KPR/N and consequently
A′ is KPR/N. So A is KPR/N.

(b) implies (c). Let A be an admissible matrix which is WIPR/Q. By Lemma 3.2,
either J(A) = ∅ or B(A) is KPR/Q. If J(A) = ∅, then by Theorem 3.9 A is
VWIPR/N. If B(A) is KPR/Q, then by assumption B(A) is KPR/N so by Theo-
rem 3.9 A is VWIPR/N.

(c) implies (a). Let u, v ∈ N ∪ {ω} and let B be an admissible u × v matrix
which is SIPR/Q+. Then by Observation 3.10

(
B −I )

is KPR/Q. Define the
(v + u) × v matrix A by

ai,j =

⎧⎨
⎩

1 if i = j
0 if i < v and i �= j

bi−v,j if v ≤ i < v + u

where v + u is the ordinal sum. Then B(A) =
(
B −I )

so B(A) is KPR/Q and
hence A is WIPR/Q by Theorem 3.6. Thus by assumption A is VWIPR/N and
thus by Theorem 3.9 B(A) is KPR/N and so by Observation 3.10 B is SIPR/N. �

Observe that any admissible matrix whose row sums are constantly equal to 1
is trivially SIPR/N.

Definition 3.15. Let u, v ∈ N ∪ {ω}, let A be an admissible u × v matrix, and
let S be a subsemigroup of (R,+). Then A is nontrivially SIPR/S if and only if
whenever S \ {0} is finitely colored there exists �x ∈ Sv such that, if �y = A�x, then
{xj : j < v} ∪ {yi : i < u} is monochrome and the entries of �x are all distinct.

We have already observed that there is a matrix which is SIPR/R+, but not
SIPR/Q+, and the proof that it is SIPR/R+ shows that it is nontrivially so. We
now show that there is a matrix which is trivially SIPR/N, nontrivially SIPR/R+,
and not nontrivially SIPR/Q+.

Theorem 3.16. Let

A =

⎛
⎜⎜⎜⎝

1 1 −1 0 0 . . .
1 1 0 −1 0 . . .
1 1 0 0 −1 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

Then A is nontrivially SIPR/R+ but is not nontrivially SIPR/Q+.
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Proof. Let r ∈ N and let ϕ : R+ → {1, 2, . . . , r}. Define ψ : [R+]2 → {1, 2, . . . , r}
by ψ({x, y}) = ϕ(|x − y|). By Corollary 1.6 choose a sequence y0 < y1 < y2 <
· · · < yω in R+ such that ψ is constant on {ym − yn : n < m ≤ ω}. Choose k ∈ N

such that yk − y0 /∈ {yω − yn : k ≤ n < ω}. Let x0 = yk − y0 and for n ∈ N, let
xn = yω −yk+n−1. Then by the choice of k, the sequence 〈xn〉n<ω is injective. And
for any n ≥ 2, x0 + x1 − xn = yk+n−1 − y0.

To see that A is not nontrivially SIPR/Q, color Q+ as in the proof of (D) of
Theorem 2.6. That is, given a positive rational x, write x as

x =
∑n(x)

t=1 b(x, t)/t!

where for each t, b(x, t) ∈ ω, b(x, t) < t if t > 1 and b
(
x, n(x)

) �= 0. Color Q+

according to the parity of b
(
x, n(x)

)
and the parity of b(x, n(x) − 2). Suppose one

has an injective sequence 〈xi〉i<ω such that the entries of
(

I
A

)
�x are monochrome.

We have for each i ≥ 2 that x0 + x1 − xi > 0 so {xi : 2 ≤ i < ω} is a bounded set
of positive numbers, so we may pick i ≥ 2 such that n = n(xi) > n(x0 + x1) + 2.
Let y = x0 + x1 − xi. Then y and xi are the same color and n(y) = n(xi). Also

b(xi, n) + b(y, n) = n
1 + b(xi, n− 1) + b(y, n− 1) = n− 1, and
1 + b(xi, n− 2) + b(y, n− 2) = n− 2 .

The first of these equations implies that that n is even and the third implies that
n is odd, a contradiction. �

We conclude by showing that there is a class of admissible matrices for which
being KPR/[1,∞) is equivalent to being KPR/N.

Theorem 3.17. Let A be an ω × ω admissible matrix with entries in Z and the
property that {∑j<ω |aij | : i < ω} is bounded. If A is KPR/[1,∞), then A is
KPR/N.

Proof. Assume that A is KPR/[1,∞). Let C = {p ∈ β([1,∞)d) : (∀B ∈ p)(∃�x ∈
Bω)(A�x = �0)}. Then C is closed and nonempty. Furthermore, for every n ∈ N,
n · C ⊆ C so q · C ⊆ C for every q ∈ βN.

Let p ∈ C and let h : R → T = R/Z be the natural homomorphism. Let
h̃ : βR → T denote its continuous extension. For each m ∈ N, there exists nm ∈ N

such that the distance in T from nmh̃(p) to Z + 0 is less than 1
m . If q is a limit

point of 〈nm〉∞m=1 in βN, then h̃(q · p) = 0, so we can replace p by q · p and assume
that h̃(p) = 0.

We define g : R → Z by g(x) = �x+ 1
2� and let g̃ : βRd → βZ be its continuous

extension. Notice that g̃(p) ∈ βN. We define k : Rω → Zω by

k(�x) =

⎛
⎜⎜⎜⎝

g(x0)
g(x1)
g(x2)

...

⎞
⎟⎟⎟⎠ .

We observe that because of the boundedness assumption on the rows of A, there
exists ε > 0 such that the entries of A�x are contained in (− 1

2 ,
1
2 ) if the entries of �x
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are contained in (−ε, ε). If P = {x ∈ [1,∞): the distance from x to a member of Z

is less than ε}, then P ∈ p.
Now let N be finitely colored and pick a color class D such that D ∈ g̃(p). Pick

�x ∈ (P ∩g−1[D])ω such that A�x = �0. Then k(�x) ∈ Dω and Ak(�x) = k(A�x) = �0. �
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