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When is Galois cohomology free or trivial?

Nicole Lemire, Ján Mináč and John Swallow

Abstract. Let p be a prime, F a field containing a primitive pth root of unity,
and E/F a cyclic extension of degree p. Using the Bloch–Kato Conjecture we
determine precise conditions for the cohomology group Hn(E) := Hn(GE , Fp)
to be free or trivial as an Fp[Gal(E/F )]-module, and we examine when these

properties for Hn(E) are inherited by Hk(E), k > n. By analogy with co-
homological dimension, we introduce notions of cohomological freeness and
cohomological triviality, and we give examples of Hn(E) free or trivial for
each n ∈ N with prescribed cohomological dimension.
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Let p be a prime and F a field containing a primitive pth root of unity ξp. Let
E/F be a cyclic extension of degree p, GE the absolute Galois group of E, and
G = Gal(E/F ). In [LMS] we determined the structure of Hn(E) := Hn(GE , Fp),
n ∈ N, as an Fp[G]-module. In this paper we study more closely the question of
when Hn(E) is free or trivial as an Fp[G]-module.
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1. Free cohomology

Let a ∈ F satisfy E = F ( p
√

a). We write annn x for the annihilator of x ∈
Hm(F ), m ∈ N, under the cup-product operation on Hn(F ). Let (f) ∈ H1(F )
denote the class of f under the Kummer isomorphism of H1(F ) with the pth-power
classes of F× := F \ {0}, and let (f, g) ∈ H2(F ) denote the cup-product of (f) and
(g) ∈ H1(F ).

Theorem 1. Let n ∈ N. If p > 2, then the following are equivalent:
(1) Hn(E) is a free Fp[G]-module.
(2) Hn−1(F ) = annn−1(a).
(3) res : Hn(F ) → Hn(E) is injective.
(4) cor : Hn−1(E) → Hn−1(F ) is surjective.

If p = 2, then the following are equivalent:
(1) Hn(E) is a free F2[G]-module.
(2) annn−1(a) = annn−1(a,−1) and Hn(F ) = cor Hn(E) + (a) ∪ Hn−1(F ).
(3) annn−1(a) = annn−1(a,−1) and Hn(F ) = annn(a) + (a) ∪ Hn−1(F ).
(4) Hn(F ) = annn(a) ⊕ (a) ∪ Hn−1(F ).

We prove this theorem using the sequence of results below.
For i ≥ 0, let KiF denote the ith Milnor K-group of the field F , with standard

generators denoted by {f1, . . . , fi}, f1, . . . , fi ∈ F×. For α ∈ KiF , we denote by
α the class of α modulo p, and we abbreviate KnF/pKnF by knF . Throughout
the paper we use the Bloch–Kato Conjecture in identifying knF and Hn(F ), as
well as Hilbert 90 for Milnor K-theory. (See [V1, Lemma 6.11 and §7] and [V2,
§6 and Theorem 7.1]. For further expositions of the work of Rost and Voevodsky
on Bloch–Kato Conjecture, see [Ro] and [Su].) The image of an element α ∈ KiF

in Hi(F ) we also denote by α. We omit the bars over elements {a}, {ξp}, {a, a},
{a, ξp}, and { p

√
a}. We denote the norm map KnE → KnF by NE/F , the map

KnF → KnE induced by the inclusion map by iE , and multiplication by {a} from
Kn−1F to KnF by {a} · −. We use the same notation for the analogous maps of
K-theory modulo p.

The following theorem is a strengthening of [V1, Prop. 5.2].

Theorem 2 ([LMS, Thm. 5]). Let F be a field containing a primitive pth root of
unity. Then for any cyclic extension E/F of degree p and m ≥ 1 the sequence

km−1E
NE/F−−−−→ km−1F

{a}·−−−−−→ kmF
iE−→ kmE

is exact.

Corollary. Assume the same hypotheses. The following are equivalent for each
n ∈ N:

(1) annn−1{a} = annn−1{a,−1} and knF = NE/F knE + {a} · kn−1F .
(2) annn−1{a} = annn−1{a,−1} and knF = annn{a} + {a} · kn−1F .
(3) knF = annn{a} ⊕ {a} · kn−1F .

Proof. (1) =⇒ (2) follows from NE/F knE = annn{a}.
(2) =⇒ (3) Let α ∈ ({a} · kn−1F ) ∩ annn{a}. Then α = {a} · f for some

f ∈ Kn−1F , and 0 = {a, a} · f = {a,−1} · f . By the first hypothesis, {a} · f = 0.
Then α = 0 and the sum is direct.
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(3) =⇒ (1) The second claim follows from the fact that annn{a} = NE/F knE.
For the first, suppose {a,−1} · f = 0 for f ∈ Kn−1F . Because {a,−1} = {a, a},
we have {a} · f ∈ (annn{a}) ∩ ({a} · kn−1F ) = {0}. Hence f ∈ annn−1{a} and
annn−1{a} = annn−1{a,−1}. �

For any Fp[G]-module W we denote by WG the submodule of W consisting of
elements fixed by G. For γ ∈ KnE, let l(γ) denote the dimension of the cyclic
Fp[G]-submodule 〈γ〉 of knE generated by γ. Then we have, for l(γ) ≥ 1,

(σ − 1)l(γ)−1〈γ〉 = 〈γ〉G �= 0 and (σ − 1)l(γ)〈γ〉 = 0.

We denote by N the map (σ − 1)p−1 on knE. Because

(σ − 1)p−1 = 1 + σ + · · · + σp−1

in Fp[G], we shall use iENE/F and N interchangeably on knE.

Lemma 1. Let n ∈ N. Suppose that either
• p > 2 and NE/F : kn−1E → kn−1F is surjective, or
• p = 2 and knF = NE/F knE ⊕ {a} · kn−1F .

Then we have:
(1) For each γ ∈ KnE, there exists α ∈ KnE with 〈Nα〉 = 〈γ〉G.
(2) (knE)G = iENE/F knE = (σ − 1)p−1knE = iEknF .

Proof. (1) Assume first that p > 2. By hypothesis, NE/F : kn−1E → kn−1F
is surjective, and then using the projection formula ([FW, p. 81]) we see that
NE/F : knE → knF is also surjective. Hence if γ ∈ iEknF then there exists α ∈ knE
such that Nα = γ and we are done. Otherwise, let l = l(γ) and suppose γ �∈ iEknF
and 1 ≤ l ≤ i ≤ p.

If l ≥ 2 we show by induction on i that there exists αi ∈ KnE such that
〈(σ−1)i−1αi〉 = 〈γ〉G. Then setting α := αp, the proof will be complete in the case
when 2 ≤ l. Assume then that l ≥ 2. If i = l then αi = γ suffices. Assume now
that 2 ≤ l ≤ i < p and that our statement is true for i. Set c = NE/F αi. Since
iEc = Nαi = (σ − 1)p−1αi and i < p, iEc = 0. By our hypothesis and Theorem 2,
we have c = 0, that is, c = pf for some f ∈ KnF . Hence NE/F (αi− iE(f)) = 0. By
Hilbert 90, there exists ω ∈ KnE such that (σ − 1)ω = αi − iE(f). Since l(αi) > 1
we have (σ − 1)2ω = (σ − 1)αi �= 0. Therefore 〈(σ − 1)iω〉 = 〈γ〉G and we can
set αi+1 = ω. We have proved that if l ≥ 2 then there exists α ∈ KnE such that
Nα = (σ − 1)l(γ)−1γ.

Now assume that l(γ) = 1 but γ /∈ iEknF . Then γ = α1 and proceeding as
above we have (σ − 1)ω = α1 − iE(f) �= 0. Thus l(ω) = 2 and our argument above
shows that there exists β ∈ KnE such that Nβ = (σ − 1)ω = α1 − iE(f). As we
observed at the beginning of our proof there exists an element δ ∈ KnE such that
Nδ = iE(f). Therefore we have N(β + δ) = α1 = γ. Hence for each γ ∈ KnE,
there exists α ∈ KnE such that 〈Nα〉 = 〈γ〉G.

Now consider the case p = 2. In this case from our hypothesis knF = NE/F knE+
{a} · kn−1F we again have iENE/F knE = iEknF . Therefore if γ ∈ iEknF our
statement follows. Assume that γ ∈ knE \ iEknF . (We use this hypothesis only to
exclude the trivial case γ = 0.) Since p = 2 we see that l(γ) ≤ 2, and if l(γ) = 2
we may set α = γ and (1) follows again. Next we shall assume that l(γ) = 1 and
therefore γ ∈ (knE)G. Set c = NE/F γ. Then iEc = 0. From Theorem 2, we
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conclude that c = {a} · g + 2f for g ∈ Kn−1F and f ∈ KnF . Hence from the
projection formula, NE/F (γ − {√a} · iE(g) − iE(f)) = {−1} · g. Using Theorem 2
again, we obtain that {a,−1} · g = 0. Our hypothesis and the Corollary imply that
{a} · g = 0. Hence {a} · g = 2h for some h ∈ KnF and NE/F γ = 2(h + f). Thus
NE/F (γ − iE(h + f)) = 0. Then by Hilbert 90 there exists α ∈ KnE such that
(σ − 1)α = γ − iE(h + f). Hence γ = (σ − 1)α + iE(h + f) ∈ NknE.

(2) Suppose γ ∈ (knE)G. Then by (1) we see that 〈γ〉 = 〈Nα〉 for α ∈
KnE. Hence (knE)G ⊂ iENE/F knE. Then iENE/F knE ⊂ iEknF ⊂ (knE)G ⊂
iENE/F knE, and so all inclusions are equalities. �

Proof of Theorem 1. First we show that for all p, knE free implies

iENE/F knE = iEknF = (knE)G.

If knE is free, then we have (σ − 1)p−1knE = (knE)G. Hence iENE/F knE =
(σ − 1)p−1knE = (knE)G. Then iENE/F knE ⊂ iEknF ⊂ (knE)G and we have
established our claim.

Assume first that p > 2. First we show (1) =⇒ (2). Let f ∈ Kn−1F be
arbitrary, and set α = { p

√
a} · iE(f). Now because (knE)G = iENE/F knE, there

exists β ∈ KnE such that iENE/F β = iE({ξp} · f) ∈ (knE)G. Set γ = (σ− 1)p−2β.
Since γ is in the image of σ − 1 we have NE/F γ = 0. Then NE/F (α− γ) = {a} · f .
Also, (σ − 1)(α − γ) = 0 and therefore α − γ ∈ (knE)G = iEknF . But on iEknF
the norm map NE/F is trivial. Therefore {a} · f = 0 and annn−1{a} = kn−1F . By
Theorem 2, items (2), (3) and (4) are all equivalent. Now we show (4) =⇒ (1).
Assume that NE/F : kn−1E → kn−1F is surjective. By Lemma 1 we have

(knE)G = (σ − 1)p−1knE.

Hence H2(G, knE) = {0} and so knE is free. (See [La, p. 63].)
Now suppose that p = 2. By the Corollary, we need only show that (1) and (2)

are equivalent. We show first that (1) =⇒ (2). We established that (1) implies
iENE/F knE = iEknF . Since ker iE = {a} · kn−1F , this equality is equivalent to
knF = NE/F knE + {a} · kn−1F , so we have the second part of (2). We now show
that annn−1{a,−1} ⊂ annn−1{a}. Let f ∈ annn−1{a,−1}. Set α = {√a} · iE(f).
Since {a} · {−1} · f = 0, Theorem 2 tells us that there exists β ∈ KnE such that
NE/F β = {−1} · f . Now we calculate by the projection formula NE/F (α − β) =
{−a}·f−{−1}·f = {a}·f . On the other hand, (σ−1)(α−β) = {−1}·iE(f)−{−1}·
iE(f) = 0. Hence α−β ∈ (knE)G. Since knE is free, (knE)G = (σ−1)knE. But on
(σ − 1)knE the norm map NE/F is trivial. Hence {a} · f = 0, and f ∈ annn−1{a},
so annn−1{a,−1} ⊂ annn−1{a}. Now we show that (2) =⇒ (1). Assume that
annn−1{a,−1} = annn−1{a} and that knF = NE/F knE+{a}·kn−1F . By Lemma 1
and the Corollary, (knE)G = (σ − 1)knE and so knE is free. �

If p > 2 then NE/F k0E = {0} �= k0F ∼= Fp. Therefore:

Corollary 1. For p > 2, k1E is never free.

If p = 2 and −1 ∈ F×2, then ann0{a,−1} = k0F ∼= F2 �= ann0{a} = {0} and
hence:

Corollary 2. For p = 2 and
√−1 ∈ F , k1E is never free.
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2. Hereditary freeness

We say that a property of Milnor k-groups knE and knF is hereditary if the
validity of the property for a given n implies the validity of the property for all
integers greater than n. We consider the zero Fp[G]-module {0} to be a free Fp[G]-
module.

Theorem 3. Suppose that either p > 2 or p = 2 and a ∈ (F 2 + F 2) \ F 2. Then
free cohomology is hereditary: if n ∈ N, then for all m ≥ n, Hn(E) is a free Fp[G]-
module =⇒ Hm(E) is a free Fp[G]-module. Moreover, if Hm(E), m ∈ N, is a
free Fp[G]-module, then the sequence

0 → Hm(F ) res−−→ Hm(E) cor−−→ Hm(F ) → 0.

is exact at the first and third terms. When p = 2 this sequence is exact.

Lemma 2. Let n ∈ N. The following are hereditary properties:
(1) kn−1F = annn−1{a} = annn−1{a, ξp}.
(2) iE : knF → knE is injective.
(3) NE/F : kn−1E → kn−1F is surjective.
(4) for some fixed α1, α2 ∈ K1F , α1 · kn−1F ⊂ α2 · kn−1F .
(5) for some fixed α ∈ K1E, knE = iEknF + α · iEkn−1F .

Proof. (1) knF = kn−1F ·k1F , and since annn−1{a} = kn−1F , we have annn{a} =
knF as well. The other equality follows from annn{a} ⊂ annn{a, ξp}. The result
follows by induction.

(2)–(3) By Theorem 2 the first three properties are equivalent, hence (2) and (3)
are hereditary.

(4) KnF is generated by elements of the form {f1, f2, . . . , fn} = {f1, . . . , fn−1} ·
{fn}, fi ∈ F×. For each such generator, we calculate α1 · {f1, . . . , fn} = α2 ·g · {fn}
for some g ∈ Kn−1F , whence α1 · knF ⊂ α2 · knF . The result follows by induction.

(5) The condition on knE gives us that kn+1E is generated by elements of
the form γ1 = {δ} · iE({f1, . . . , fn}), δ ∈ E×, fi ∈ F× and γ2 = {δ} · α ·
iE({f1, . . . , fn−1}), δ ∈ E×, fi ∈ F×. If n−1 ≥ 1 then we see that kn+1E is gener-
ated by the elements in knE ·iEk1F . By hypothesis knE = iEknF +α·iEkn−1F and
therefore kn+1E is generated by elements in iEkn+1F +α · iEknF . If instead n = 1,
then using our hypothesis k1E = iEk1F + α · iEk0F we may write the second type
of generators γ2 of k2E as γ2 = (iE({f}) + cα) · α = −α · iE({f})− α · iE(c{−1}),
f ∈ F×, c ∈ Z. Thus in this case both types of generators of k2E have the required
form of elements in iEk2F + α · iEk1F . The result now follows by induction as
above. �

Lemma 3. Suppose that p = 2 and for some n ∈ N, annn−1{a} = kn−1F . Then
kmE is a free F2[G]-module for all m ≥ n.

Proof. We show that the two conditions of part (2) of the p = 2 portion of Theo-
rem 1 hold for K-theory degree at least n. From Lemma 2, part (1), we deduce that
kmF = annm{a} = annm{a,−1} for all m ≥ n − 1. By Theorem 2 and Lemma 2,
we have kmF = NE/F kmE for all m ≥ n−1 and therefore we see in particular that
kmF = NE/F kmE + {a} · km−1F for all m ≥ n − 1. We conclude that kmE is a
free F2[G]-module for all m ≥ n. �
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Proof of Theorem 3. For p > 2, the fact that free cohomology is hereditary
follows from Lemma 2 and condition (2) in Theorem 1. The exactness of the first
term of the sequence follows from Theorem 1, part (3) and Lemma 2, part (2), while
the exactness at the third term follows from Theorem 1, part (4) and Lemma 2,
part (3).

Assume then that p = 2 and a = x2 + y2 for some x, y ∈ F×. It is well-
known that then {a,−1} = 0 ∈ k2F and hence annn−1{a,−1} = kn−1F . Now
observe that since knE is a free F2[G]-module, by Theorem 1 we have annn−1{a} =
annn−1{a,−1}, and so annn−1{a} = kn−1F . We deduce from Lemma 3 that kmE
is a free F2[G]-module for all m ≥ n.

For the exact sequence for p = 2, we have shown that kn−1F = annn−1{a}, and
so by Theorem 2 and Lemma 2, we have kmF = NE/F kmE for all m ≥ n − 1.
Furthermore, we conclude from Theorem 2 that iE is injective from kmF to kmE
for all m ≥ n. The exactness of our sequence in the middle term follows from [Ar,
Satz 4.5]. �

Freeness is not generally hereditary when p = 2. For example, let p = 2, F = Q2,
and a = −1, so E = Q2(

√−1). Then k1F ∼= F×/F×2 = 〈[−1], [2], [5]〉. NE/F k1E ∼=
NE/F (E×)F×2/F×2 = 〈[2], [5]〉. Therefore k1F = NE/F k1E + {−1} · k0F . Since
[−1] /∈ NE/F (E×) F×2/F×2, we have {−1,−1} �= 0 ∈ k2F and ann0{−1,−1} =
{0} = ann0{−1}. Hence the conditions of part (2) of the p = 2 portion of Theorem 1
are satisfied, whence k1E is a free F2-module. It is well-known, however, that
k2E ∼= F2.

3. Examples of free cohomology

Define cf(E/F ) ∈ {0} ∪ N ∪ {∞} by

cf(E/F ) = sup {n ∈ N ∪ {0} | Hn(E) is not a free Fp[G]-module} .

Further for any pro-p-group T we denote by cd(T ) the cohomological dimension of
T .

Theorem 4. Given 1 ≤ n ≤ m ∈ N ∪ {∞} and a prime p, there exists a cyclic
extension E/F of degree p with ξp ∈ F such that:

(1) GF is a pro-p-group;
(2) cf(E/F ) = n; and
(3) cd(GE) = m.

Let Z(p) :=
{

c
d ∈ Q

∣∣ c, d ∈ Z, d �= 0; if c �= 0 then (c, d) = 1, p � d
}
, I be a well-

ordered set of cardinality m, and Γ be a direct sum of m copies of Z(p), indexed by
I. We order Γ lexicographically. Then m = dimFp

Γ/pΓ. It is well-known that the
field

Fm := C((Γ)) := {f : Γ → C | supp(f) is well-ordered}
is a henselian valued field with value group Γ and residue field C. The absolute
Galois group of Fm is known to be Zm

p , the topological product of m copies of Zp

[K, pp. 3–4].

Lemma 4 ([Wad, Thm. 3.6]). For m, n ∈ N ∪ {ℵ0}, Hn(Fm) ∼= ∧n
H1(Zm

p ) ∼=∧n ⊕mFp, where the cup-product is sent to the wedge product.
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Lemma 5. Suppose that m1, m2 are nonzero cardinal numbers, and let Fm1 and
Fm2 be as above. There exists a field Fm1,m2 of characteristic 0, containing a
primitive p2th root of unity ξp2 , such that the absolute Galois group GFm1,m2

∼=
GFm1

�pro-pGFm2
∼= Zm1

p �pro-pZm2
p , where the free products are taken in the category

of pro-p-groups, and the natural restriction maps res� : Hn(Fm1,m2) → Hn(Fm1)⊕
Hn(Fm2) are isomorphisms.

Proof. The existence of a field Fm1,m2 with

char(Fm1,m2) = char(Fm1) = char(Fm2) = 0

and the given absolute Galois group follows from [EH, Prop. 1.3]. Additionally
using the construction of Fm1,m2 following [EH, proof of Prop. 1.3] we assume
that Fm1,m2 is the intersection of two henselian valued fields (Li, Vi), i = 1, 2, with
residue fields isomorphic to some fields F̃m1 and F̃m2 closely related to Fm1 and Fm2 ,
respectively. Here Vi is a henselian valuation on Li. Then by Hensel’s Lemma (see
[Ri, pp. 12-13, condition (3)]) and by the fact that F̃m1 and F̃m2 have characteristic
0 and both contain a primitive p2th root of unity, we see that Fm1,m2 also contains
a primitive p2th root of unity. The fact that the restriction maps are isomorphisms
follows from [N, Sätze (4.1),(4.2)]. �

Proof of Theorem 4. The case m ∈ N:
(1) Let F := Fn,m be a field of characteristic 0 with GF

∼= Zn
p �pro-p Zm

p and
ξp2 ∈ F , given by Lemma 5. Let E = F ( p

√
a) for any a ∈ F× such that under the

restriction map on H1, res�(a) = (a)1 ⊕ (a)2, (a)1 �= 0, (a)2 = 0. We use here the
fact that res� is an isomorphism, by Lemma 5. Observe that there exists an a with
the required conditions because by Lemma 4, H1(Fn) �= {0}.

(2) We first show Hn(E) is not free. We claim that annn−1(a) �= Hn−1(F ). If
n = 1 this statement is true since (a) �= 0 ∈ H1(F ). Assume now that n > 1.
Let a1 ∈ F×

n satisfy (a1) = (a)1, and extend {(a1)} to a basis {(a1), (a2), · · · ,
(an)} of H1(Fn). By Lemma 4, the element (a1) ∪ (a2) ∪ · · · ∪ (an) ∈ Hn(Fn)
is nontrivial, so that 0 �= (a2) ∪ · · · ∪ (an) ∈ Hn−1(Fn). Let b ∈ Hn−1(F ) satisfy
b1 = (a2)∪· · ·∪(an) ∈ Hn−1(Fn), b2 = 0 ∈ Hn−1(Fm). Then since the cup-product
commutes with res�, ((a)∪b)1 = (a1)∪b1 �= 0 ∈ Hn(Fn), so that (a)∪b �= 0 ∈ Hn(F )
and hence annn−1(a) �= Hn−1(F ). If p > 2, we conclude by Theorem 1 that Hn(F )
is not free. If p = 2, observe that since

√−1 ∈ F , we have annn−1(a,−1) =
Hn−1(F ), so that annn−1(a,−1) �= annn−1(a). We deduce from Theorem 1 that
Hn(F ) is not free.

We now show Hk(E) is free for all k ≥ n + 1. We claim that annn(a) = Hn(F ).
Let c ∈ Hn(F ). Then since Hn+1(Fn) = 0 by Lemma 4,

res�(a) ∪ c =
(
(a1) ∪ c1

) ⊕ (
0 ∪ c2

)
= res� 0.

Hence (a) ∪ c = 0 and annn(a) = Hn(F ). If p > 2 then we conclude by Theorem 1
that Hn+1(E) is free, and by Theorem 3, Hk(E) is free for all k ≥ n + 1. If
p = 2, observe that annn(a,−1) = Hn(F ). By Theorem 2, cor : Hn(E) → Hn(F )
is surjective. Then by Lemma 3 and Theorem 1, we have that Hk(E) is free for all
k ≥ n + 1.

(3) First we claim that GF does not contain an element of order p. By the Artin–
Schreier theorem, finite subgroups of absolute Galois groups are either trivial or of
order 2, and since

√−1 ∈ F no element of order 2 exists in GF . Then, by Serre’s
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theorem [S], we obtain cd(GE) = cd(GF ). From Lemmas 4 and 5 we find that
cd(GF ) = max{cd(Fn), cd(Fm)} = m. Thus cd(GE) = m. (One can also conclude
that GF contains no element of order p from the fact that cd(GF ) = m < ∞.)

The case n < m = ∞: set F∞ := C((Γ)), where m = ℵ0 and Γ is the direct
sum of m copies of Z(p). By Lemma 5, there exists a field F := Fn,∞ such that
GF

∼= GFn �pro-p GF∞ and ξp2 ∈ F . Then set E = F ( p
√

a) for any a ∈ F×

such that under the restriction map res� : H1(F ) → H1 (Fn) ⊕ H1 (F∞), we have
res�(a) = (a)1 ⊕ 0, (a)1 �= 0. Then cd(GF ) = cd(GE) = ∞, and as above we see
that cf(E/F ) = n.

The case n = ∞ = m: let Γ be a direct sum of ℵ0 copies of Z(p). Then set F :=
F∞ = C((Γ)). Let a ∈ F× such that v(a) ∈ Γ\pΓ, where v is a natural valuation on
F . Then from the description of Galois cohomology of p-henselian fields (see [Wad,
Thm. 3.6]), we obtain annn(a) = (a) ∪ Hn−1(F ) and (a) ∪ Hn−1(F ) �= Hn(F ) for
all n ∈ N. Setting E = F ( p

√
a), we obtain cf(E/F ) = ∞. �

4. Trivial cohomology

By a trivial Fp[G]-module we mean an Fp[G]-module W such that W = WG.

Theorem 5. Let n ∈ N. If p > 2, then the following are equivalent:
(1) Hn(E) is a trivial Fp[G]-module.
(2) (ξp) ∪ Hn−1(F ) ⊂ (a) ∪ Hn−1(F ) and annn(a) = (a) ∪ Hn−1(F ).
(3) (ξp) ∪ Hn−1(F ) ⊂ (a) ∪ Hn−1(F ) and

Hn(E) = res Hn(F ) + ( p
√

a) ∪ res Hn−1(F ).

If p = 2, then the following are equivalent:
(1) Hn(E) is a trivial F2[G]-module.
(2) annn(a) ⊂ (a) ∪ annn−1(a,−1).

In the p = 2 case, suppose additionally that a ∈ (F 2+F 2)\F 2. Then the conditions
above are also equivalent to:

(3) Hn(E) = res Hn(F ) + (δ) ∪ res Hn−1(F ), where (δ) ∈ H1(E)G satisfies
cor(δ) = (a).

Remark. For p > 2 and n = 1 the second condition in (3) was observed in [War,
Lemma 3].

Lemma 6. Let n ∈ N. Suppose that iE({ξp} · kn−1F ) = iENE/F knE = {0}. Then
(knE)G = knE.

Proof. Let γ ∈ KnE. We show that l(γ) > 1 leads to a contradiction, whence we
will have the result. Suppose that l = l(γ) ≥ 2 and 2 ≤ l ≤ i ≤ p. We show by
induction on i that there exists αi ∈ KnE such that 〈(σ−1)i−1αi〉 = 〈(σ−1)l−1γ〉.
If i = l then αi = γ suffices. Assume now that l ≤ i < p and that our statement is
true for i. Set c = NE/F αi. By our hypothesis, iEc = 0. By Theorem 2, c = {a} · b
for some b ∈ KnF . Hence c = {a} · b + pf for f ∈ KnF . Since 2 ≤ i < p,
NE/F (αi − { p

√
a} · iE(b) − iE(f)) = 0. By Hilbert 90, there exists ω ∈ KnE such

that

(σ − 1)ω = αi − { p
√

a} · iE(b) − iE(f).
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Then

(σ − 1)2ω = (σ − 1)αi − iE({ξp} · iE(b)) = (σ − 1)αi �= 0,

and we can set αi+1 = ω. Observe that here we use our hypothesis

iE({ξp} · kn−1F ) = {0}.
Hence by induction there exists αp ∈ KnE such that 〈Nαp〉 = 〈(σ − 1)l−1γ〉. But
iENE/F αp = 0, whence (σ − 1)l−1γ = 0, a contradiction. �

Lemma 7. Suppose that p = 2. Then {a} · annn−1{a,−1} ⊂ NE/F knE.

Proof. Let β ∈ annn−1{a,−1}. Then {−1} · β ∈ annn{a} = NE/F knE by The-
orem 2. Let γ ∈ KnE such that {−1} · β = NE/F (γ). Then we have {a} · β =
NE/F ({√a} · iE(β) + γ). Thus {a} · annn−1{a,−1} ⊂ NE/F knE. �

Proof of Theorem 5. We consider first the case p > 2.
(1) =⇒ (3) Assume that knE is a trivial Fp[G]-module. Suppose f ∈ Kn−1F ,

and set β = { p
√

a} · iE(f). Then (σ − 1)β = 0 =⇒ iE({ξp} · f) = 0. But
then by Theorem 2, {ξp} · f ∈ {a} · kn−1F . Now let γ ∈ KnE be arbitrary.
Then iENE/F γ = (σ − 1)p−1γ = 0 and so by Theorem 2, NE/F γ = {a} · f for
f ∈ Kn−1F . By the projection formula, NE/F ({ p

√
a} · iE(f)) = {a} · f . Then

NE/F (γ − { p
√

a} · iE(f)) = 0, and hence NE/F (γ − { p
√

a} · iE(f)) = pg, for some
g ∈ Kn−1F . Set δ = γ − { p

√
a} · iE(f) − iE(g). Then NE/F (δ) = 0. By Hilbert 90,

there exists α ∈ KnE such that (σ − 1)α = δ. But since knE is fixed by G, δ = 0.
Hence knE = iE(knF ) + { p

√
a} · iE(kn−1F ).

(3) =⇒ (2) Since p > 2, NE/F ({ p
√

a} · iE(f)) = {a} · f for f ∈ Kn−1F , and
NE/F (iE(g)) = 0 for g ∈ KnF . Hence NE/F knE = {a} · kn−1F . Thus annn{a} =
{a} · kn−1F .

(2) =⇒ (1) Assume that {ξp} ·kn−1F ⊂ {a} ·kn−1F and annn{a} = {a} ·kn−1F .
Hence {ξp} ·kn−1F ⊂ NE/F knE = {a} ·kn−1F . We then apply Lemma 6 to deduce
that knE = (knE)G.

Now we consider the case p = 2:
(1) =⇒ (2) Assume that knE is a trivial F2[G]-module. Let α ∈ KnE. Then

iENE/F α = (σ − 1)α = 0 implies that NE/F α = {a} · b for some b ∈ Kn−1F .
Now {a,−1} = {a, a} in k2F , and then {a,−1} · b = {a} · NE/F α = 0. Hence
annn{a} ⊂ {a} · annn−1{a,−1}.

(2) =⇒ (1) Assume that annn{a} ⊂ {a} · annn−1{a,−1}. Then NE/F knE ⊂
{a} · annn−1{a,−1}. By Lemma 7, {a} · annn−1{a,−1} ⊂ NE/F knE and hence
NE/F knE = {a}·annn−1{a,−1}. Let γ ∈ KnE be arbitrary. Then NE/F γ = {a}·b
for some b ∈ annn−1{a,−1}. Hence (σ − 1)γ = iENE/F γ = iE({a} · b) = 0. Hence
(σ − 1)γ = 0, and (knE)G = knE.

Now assume p = 2 and a ∈ (F 2 +F 2)\F 2. Then −1 = NE/F γ for some γ ∈ E×.
Thus for δ = γ

√
a we have NE/F δ = a. Then {δ} ∈ (k1E)G and NE/F {δ} = {a}.

(1) =⇒ (3) Let γ ∈ KnE be arbitrary. Then, replacing p
√

a by δ and using
NE/F {δ} = {a} in the proof of the (1) =⇒ (3) portion of the p > 2 case, we obtain
γ ∈ iE(knF ) + {δ} · iE(kn−1F ).
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(3) =⇒ (1). If β ∈ KnE, then β = iE(g) + {δ} · iE(f) for g ∈ KnF and
f ∈ Kn−1F . Then (σ − 1)β = 0, which implies that (knE)G = knE. �
Corollary 3. Suppose n ∈ N and (knE)G = knE. Then we have the following
exact sequence:

0 → annn−1{a} → kn−1F
{a}·−−−−−−→ knF

iE−−→ knE
NE/F−−−−→ {a} · annn−1{a, ξp} → 0.

Proof. We first consider exactness at the fifth term. In the p = 2 case, Theorem 5
tells us that NE/F knE = annn{a} ⊂ {a} · annn−1{a,−1}. By Lemma 7 we have
the reverse inclusion, so that NE/F knE = {a} · annn−1{a,−1}. In the p > 2 case,
observe that {ξp} ·kn−1F ⊂ {a} ·kn−1F implies that kn−1F = annn−1{a, ξp}, since
{a, a} = 0. Therefore, by part (2) of Theorem 5, we know NE/F knE = annn{a} =
{a} · annn−1{a, ξp}. Hence the sequence is exact at the fifth term in the p > 2 case
as well.

For exactness at the fourth term, suppose γ ∈ KnE and NE/F γ = 0. Then there
exists f ∈ KnF such that NE/F γ = pf , and then NE/F (γ− iE(f)) = 0. By Hilbert
90, there exists α ∈ KnE such that (σ−1)α = γ− iE(f). But (σ−1)α = 0 because
(knE)G = knE. Hence γ = iE(f). Since exactness in the first two terms is obvious
and exactness at the third term follows from Theorem 2, our proof is complete. �

5. Hereditary triviality

Theorem 6. Trivial Fp[G]-module cohomology is hereditary: if n ∈ N, then for all
m ≥ n, Hn(E)G = Hn(E) =⇒ Hm(E)G = Hm(E).

Proof. In the p > 2 case, the result on heredity follows from Theorem 5, part (3),
together with two hereditary properties from Lemma 2: item (4), with α1 = {ξp}
and α2 = {a}, and item (5).

In the p = 2 case, since m > n ≥ 1, by [BT, Cor. 5.3] KmE is generated by
symbols {u, f1, . . . , fm−1} where u ∈ E× and fi ∈ F× for all i = 1, . . . , m − 1.
Using the projection formula and a straightforward induction on m, we prove that
if Hn(E)G = Hn(E) then annm{a} ⊂ {a} · annm−1{a,−1}. Hence by Theorem 5
we conclude that Hm(E)G = Hm(E) as well. �

6. Examples of trivial cohomology

Define ct(E/F ) ∈ {0} ∪ N ∪ {∞} by

ct(E/F ) = sup {n ∈ N ∪ {0} | Hn(E) is not a trivial Fp[G]-module} ,

where we set sup ∅ = 0.

Theorem 7. Given 1 ≤ n ≤ m ∈ N∪{∞}, or 0 = n < m ∈ N∪{∞}, and a prime
p, there exists a cyclic extension E/F of degree p with ξp ∈ F such that:

(1) GF is a pro-p-group;
(2) ct(E/F ) = n; and
(3) cd(GE) = m.

Proof. The case m ∈ N:
(1) Let F := Fn,m be a field of characteristic 0 with GF

∼= Zn
p �pro-p Zm

p and
ξp2 ∈ F , given by Lemma 5. (Observe that if n = 0 then the first factor is
{1}.) Let E = F ( p

√
a) where a ∈ F× such that under the restriction map on H1,
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res�(a) = (a)1 ⊕ (a)2, (a)1 = 0, (a)2 �= 0. Observe that there exists an a with the
required conditions because by Lemma 4, H1(Fm) �= {0}.

(2) We first show that if n > 0 then Hn(E) is not trivial. We claim that
annn(a) �⊂ (a) ∪ Hn−1(F ). By Lemma 4, Hn(Fn) contains a nonzero element c.
Let b ∈ Hn(F ) be such that its components b1 ∈ Hn(Fn) and b2 ∈ Hn(Fm) are
b1 = c and b2 = 0. Then b �= 0 and since the cup-product commutes with res�,
res�(a) ∪ b = (0 ∪ b1) ⊕ ((a)2 ∪ 0) = 0 ∈ Hn+1(F ). Therefore b ∈ annn(a). Now let
f ∈ Hn−1(F ) be arbitrary. Then ((a) ∪ f)1 = 0 and therefore b /∈ (a) ∪ Hn−1(F ).
Thus annn(a) �⊂ (a)∪Hn−1(F ). For the case p > 2, Theorem 5, part (2) implies that
Hn(E) is not trivial. In the case p = 2 we have (−1) = 0 since

√−1 ∈ F×. Thus
annn−1(a,−1) = Hn−1(F ) and (a) ∪ annn−1(a,−1) = (a) ∪ Hn−1(F ). Hence by
our claim above annn(a) �⊂ (a)∪annn−1(a,−1), and we can again apply Theorem 5
to conclude that Hn(E) is not a trivial Fp[G]-module.

We now show Hk(E)G = Hk(E) for all k ≥ n + 1. Let a1 ∈ F×
m satisfy (a1) =

(a)2 and extend {(a1)} to a basis {(a1), . . . , (am)} of H1(Fm). Recall that by
Lemma 4, Hk(Fm) is just the kth homogenous summand of the exterior algebra
over Fp generated by H1(Fm). Using this fact and writing each element in Hk(Fm)
as a linear combination of elements of the form (ai1) ∪ · · · ∪ (aik

), 1 ≤ i1 < i2 <
· · · < ik ≤ m, and also the fact that Hk(Fn) = {0}, we see that annk(a) =
(a) ∪ Hk−1(F ). Now again using Theorem 5 as in the preceding paragraph, we
conclude that Hk(E)G = Hk(E).

(3) By Lemmas 4 and 5, cd(GF ) = max{cd(GFn), cd(GFm)} = m. By Serre’s
theorem [S, p. 413] we have cd(GE) = cd(GF ).

The case m = ∞: We first consider the subcase of this case when n < ∞. Set
F∞ := C((Γ)), where m = ℵ0 and Γ is the direct sum of m copies of Z(p). By
Lemma 5 we see that there exists a field F := Fn,∞ such that GF

∼= GFn �pro-p GF∞
and ξp2 ∈ F . Let a ∈ F× such that under the restriction map res� : H1(F ) →
H1(Fn) ⊕ H1(F∞) we have res�(a) = 0 ⊕ (a)2, (a)2 �= 0. Then cd(F ) = ∞ and
as above we see that ct(E/F ) = n. Finally we consider the case n = ∞ = m.
Define F∞ as above and F = F∞,∞. Also let a ∈ F× such that res�(a) = 0 ⊕ (a)2,
(a)2 �= 0. Then as in (2) we see that ct(F ) = ∞. �
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