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Derangements and asymptotics of the Laplace
transforms of large powers of a polynomial

Liviu I. Nicolaescu

Abstract. We use a probabilistic approach to produce sharp asymptotic es-
timates as n → ∞ for the Laplace transform of P n, where P is a fixed complex
polynomial. As a consequence we obtain a new elementary proof of a result
of Askey-Gillis-Ismail-Offer-Rashed, [1, 3] in the combinatorial theory of de-
rangements.
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1. Statement of the main results

The generalized derangement problem in combinatorics can be formulated as
follows. Suppose X is a finite set and ∼ is an equivalence relation on X. For
each x ∈ X we denote by x̂ the equivalence class of x. X̂∼ will denote the set of
equivalence classes. The counting function of ∼ is the function

ν = ν∼ : X̂−→Z, ν(x̂) = |x̂| = the cardinality of x̂.

A ∼-derangement of x is a permutation ϕ : X−→X such that

x �∈ x̂, ∀x ∈ X.
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We denote by N(X,∼) the number of ∼-derangements. The ratio

p(X,∼) =
N(X,∼)
|X|!

is the probability that a randomly chosen permutation of X is a derangement.
In [2] S. Even and J. Gillis have described a beautiful relationship between these

numbers and the Laguerre polynomials

Ln(x) = ex dn

dxn

(
e−xxn

)
=

n∑
k=0

(
n

k

)
(−x)k

k!
, n = 0, 1, . . . .

For example

L0(x) = 1, L1(x) = 1 − x, L2(x) =
1
2!

(x2 − 4x + 2).

We set

L∼ :=
∏
c∈X̂

(−1)ν(c)ν(c)! Lν(c)(x).

Observe that the leading coefficient of L∼ is 1. We have the following result.

Theorem 1.1 (Even-Gillis).

N(X,∼) =
∫ ∞

0

e−xL∼(x)dx.(1.1)

For several very elegant short proofs we refer to [1, 4].
Given (X,∼) as above and n a positive integer we define (Xn,∼n) to be the

disjoint union of n-copies of X

Xn =
n⋃

k=1

X × {k}

equipped with the equivalence relation

(x, j) ∼n (y, k) ⇐⇒ j = k, x ∼ y.

We deduce

p(Xn,∼n) =
1

(n|X|)!

∫ ∞

0

e−x
(
L∼(x)

)n
dx.(1.2)

For example, consider the “marriage relation”

(C, ∼), C = {±1}, −1 ∼ 1.

In this case Ĉ consists of a single element and the counting function is the number
ν = 2. Then (Cn, ∼n) can be interpreted as a group of n married couples. If we set

δn := p(Cn, ∼n)

then we can give the following amusing interpretation for δn.

Couples mixing problem. At a party attended by n couples, the guests were
asked to put their names in a hat and then to select at random one name from that
pile. Then the probability that nobody will select his/her name or his/her spouse’s
name is equal to δn.
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Using (1.2) we deduce

δn =
1

(2n)!

∫ ∞

0

e−x
(
x2 − 4x + 2

)n
dx.(1.3)

We can ask about the asymptotic behavior of the probabilities p(Xn,∼n) as n → ∞.
In [1, 3], Askey-Gillis-Ismail-Offer-Rashed describe the first terms of an asymptotic
expansion in powers of n−1. To formulate their result let us introduce the “mo-
menta”

νr =
∑
c∈X̂

ν(c)r.

Theorem 1.2 (Askey-Gillis-Ismail-Offer-Rashed).

p(Xn,∼n) = exp
(
−ν2

ν1

) (
1 − ν1(2ν3 − ν2) − ν2

2

2ν3
1

n−1 + O(n−2)
)

as n → ∞.

(1.4)

For example we deduce from the above that

δn = e−2

(
1 − 1

2
n−1 + O(n−2)

)
, n → ∞.(1.5)

The proof in [3] of the asymptotic expansion (1.4) is based on the saddle point
technique applied to the integrals in the RHS of (1.2) and special properties of the
Laguerre polynomials. The proof in [1] is elementary but yields a result less precise
than (1.4).

In this paper we will investigate the large n asymptotics of Laplace transforms

Fn(Q, z) =
zdn+1

(dn)!

∫ ∞

0

e−ztQ(t)ndt, Re z > 0,(1.6)

where Q(t) is a degree d complex polynomial with leading coefficient 1. If we denote
by L[f(t), z] the Laplace transform of f(t)

L[f(t), z] =
∫ ∞

0

e−ztf(t)dt

then

Fn(Q, z) =
L[Q(t)n, z]
L[tdn, z]

.

The estimate (1.4) will follow from our results by setting

z = 1, Q = L∼.

To formulate the main result we first write Q as a product

Q(t) =
d∏

i=1

(t + ri).

We set

�r = (r1, . . . , rd) ∈ C
d, µs = µs(�r) =

1
d

d∑
i=1

rs
i .
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Theorem 1.3 (Existence theorem). For every Re z > 0 we have an asymptotic
expansion as n → ∞

Fn(Q, z) =
∞∑

k=0

Ak(z)n−k.(1.7)

Above, the term Ak(z) is a holomorphic function on C whose coefficients are uni-
versal elements in the ring of polynomials C(d)[µ1, µ2, . . . , µk], where C(d) denotes
the field of rational functions in the variable d = deg Q.

The proof of this theorem is given in the second section of this paper and it is
probabilistic in flavor. In the third section we compute the terms Ak in some cases.
For example we have

A0(z) = eµ1z, A1(z) =
1
2d

eµ1z(µ2
1 − µ2)z2,(1.8)

and we can refine (1.5) to

δn = e−2

(
1 − 1

2
n−1 − 23

96
n−2 + O(n−3)

)
, n → ∞.(1.9)

These computations will lead to a proof of the following result.

Theorem 1.4 (Structure theorem). For any k and any degree d we have

Ak(z) = eµ1zBk(z),

where Bk ∈ C(d)[µ1, . . . , µk][z] is a universal polynomial in z with coefficients in
C(d)[µ1, . . . , µk].

The formulæ (1.8) have an immediate curious consequence which was mentioned
as an open question in [3].

Corollary 1.5. Suppose P (t) = td + atd−1 + · · · is a degree d polynomial with real
coefficients. Then ∫ ∞

0

e−tP (t)ndt > 0, ∀n 	 0.

Notations. A d-dimensional (multi)index will be a vector �α ∈ Z
d
≥0. For every

vector �x ∈ C
d and any d-dimensional index �α we define

�x �α = xα1
1 . . . xαd

d , |�α| = α1 + · · · + αd, S(�x) = x1 + · · · + xd.

If n = |�α| then we define the multinomial coefficient(
n

�α

)
:=

n!∏d
i=1 αi!

.

These numbers appear in the multinomial formula

S(�x)n =
∑
|�α|=n

(
n

�α

)
�x �α.

Acknowledgments I want to thank Adam Boocher, a high school student at-
tending the Math Club I was organizing, for asking me if I know how to solve the
Couples Mixing Problem. The present paper grew out of my attempts to answer
his question. I also want to thank the referee for making available to me the hard
to get reference [1].
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2. Proof of the existence theorem

The key to our approach is the following elementary result.

Lemma 2.1. If P (x) = pmtm+· · ·+p1t+p0 is a degree m with complex coefficients
then for every Re z > 1 we have

L[P (t), z]
L[tm, z]

=
zm+1

m!

∫ ∞

0

e−ztP (t)dt =
∑

a+b=m

pa(
m
a

) zb

b!
.(2.1)

Proof.

zm+1

m!

∫ ∞

0

e−ztP (t)dt =
zm+1

m!

m∑
a=0

pa

∫ ∞

0

e−zttadt

=
zm+1

m!

m∑
a=0

pa
a!

za+1
=

∑
a+b=m

pa(
m
a

) zb

b!
.

�

Denote by Q(n, a) the coefficient of ta in Q(t)n. From (2.1) we deduce

Fn(Q, z) =
∑

a+b=dn

Q(n, a)(
dn
a

) zb

b!
.(2.2)

Using the equality

Qn =
d∏

i=1

(
n∑

j+k=n

(
n

i

)
tjrk

i

)
︸ ︷︷ ︸

(t+ri)n

we deduce that if a + b = dn then

Q(n, a) =
∑
|�α|=b

(
d∏

i=1

(
n

αj

))
�r α.(2.3)

For |�α| = b we set

B(n, �α) :=
d∏

i=1

(
n

αj

)
, Pn,b(�α) :=

B(n, �α)(
dn
b

) , ρb(�α) = �r �α,

so that

Fn(Q, z) =
∑

a+b=dn

( ∑
|�α|=b

Pn,b(�α)ρb(�α)

)
· zb

b!
.(2.4)

Observe that we have

Pn,b(�α) =
∏d

i=1(1 − 1
n ) · · · (1 − αi−1

n )∏b−1
k=1(1 − k

dn )
· 1

db

(
b

�α

)
︸ ︷︷ ︸
:=Pb(�α)

.(2.5)
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The coefficients Pb(�α) define the multinomial probability distribution Pb on the set
of multiindices

Λb =
{

�α ∈ Z
b
≥0; |�α| = b

}
.

For every random variable ζ on Λb we denote by Eb(ζ) its expectation with respect
to the probability distribution Pb. For each n we have a random variable ζn,b on
Λb defined by

ζn,b(�α) =
∏d

i=1(1 − 1
n ) · · · (1 − αi−1

n )∏b−1
k=1(1 − k

dn )
ρb(�α).

Form (2.4) and (2.5) we deduce

Fn(Q, z) =
∑

a+b=dn

Eb(ζn,b)
zb

b!
.(2.6)

To find the asymptotic expansion for Fn we will find asymptotic expansions in
powers of n−1 for the expectations Eb(ζn,b) and them add them up using (2.6).

For every nonnegative integer α we define a polynomial

Wα(x) =

{
1 if α = 0, 1∏α−1

j=1 (1 − jx) if α > 1.

For a d-dimensional multiindex �α we set

W�α(x) =
d∏

i=1

Wαi
(x).

We can now rewrite (2.5) as

Pn,b(�α) = Pb(�α)
W�α( 1

n )
Wb( 1

dn )
.

We set

Rb(�α, x) = W�α(x), Kb(�α, x) =
1

Wb(x
d )

Rb(�α, x)ρb(α).

We regard the correspondences

�α 
→ Rb(�α, x), Kb(�α, x)

as random variables Rb(x) and Kb(x) on Λb valued in the field of rational functions.
We deduce

ζn,b = Kb(n−1).

Observe

Eb(x) = Eb(Kb(x)) =
1

Wb(x)
Eb(Rb(x)).

From the fundamental theorem of symmetric polynomials we deduce that the ex-
pectations Eb(Rb(x)) are universal polynomials

Eb(Rb(x)) ∈ C[µ1, . . . , µb][x], degx Eb(Rb(x)) ≤ b − d,
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whose coefficients have degree b in the variables µi, deg µi = i. We deduce that
Eb(x) has a Taylor series expansion

Eb(x) =
∑
m≥0

Eb(m)xm

such that Eb(m) ∈ C(d)[µ1, . . . , µb]. The rational function x → Kb(�α, x) has a
Taylor expansion at x = 0 convergent for |x| < d

b−1 so the above series converges
for |x| < d

b−1 . We would like to estimate the size of the coefficients Eb(m). The
tricky part is that the radius of convergence of Eb(x) goes to zero as b → ∞.

Lemma 2.2. Set

R = max
1≤i≤d

|ri|.

There exists a constant C which depends only on R and d such that for every b ≥ 0
and every 1 ≤ λb < b

b−1 we have the inequality

|Eb(m)| ≤
(

b

λbd

)m

Cb bb−1

(b − 2)!
(
1 − λb

b−1
b

) .(2.7)

Proof. Note first that

|ρb(�α)| ≤ Rb, ∀|�α| = b.

For b = 0, 1 we deduce form the definition of the polynomials Wα that Eb(x) = 1.
Fix m and b > 1. Using the Cauchy residue formula we deduce

Eb(m) =
1

2π
√
−1

∫
|x|=�

1
xm+1

Eb(x)dx, � = λb · d

b
.

Hence

|Eb(m)| ≤ 1
�m

sup
|x|=�

|Eb(x)| ≤ bmRb

(λbd)m min|x|=� |Wb(x/d)| · max
|x|=�

Eb(Rb(x)).

Next observe that

Wb(x/d) = (b − 1)!
b−1∏
k=1

(
1
k
− x/d

)
, �/d < 1/k,∀k ≤ b − 1,

from which we conclude

min
|x|=�

|Wb(x)| = Wb(�) =
b−1∏
k=1

(
1 − kλb

b

)
=

1
bb−1

b−1∏
k=1

(b − kλb)

≥
(b − 2)!(1 − λb

b−1
b )

bb−1
.

To estimate Eb(Rb(x)) from above observe that for every 1 ≤ k ≤ (b − 1) and
|x| = � we have

|1 − kx| ≤ 1 + k|x| = 1 +
kλbd

b
< 1 + d.

This shows that for every |�α| = b and |x| = � we have

|Rb(�α, x)| < (1 + d)b.

The lemma follows by assembling all the facts established above. �
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Define the formal power series

Am(z) :=
∑
b≥0

Eb(m)
zb

b!
∈ C[[z]].

The estimate (2.7) shows that this series converges for all z.
For every formal power series f =

∑
k≥0 akT k and every nonnegative integer 


we denote by J�
T (f) its 
-th jet

J�
T (f) =

�∑
k=0

akT k.

For x = n−1 we have

Fx(z) = Fn(Q, z) =
∑

b≤d/x

Eb(x)
zb

b!
=

∑
b≤d/x


∑

m≥0

Eb(m)xm


 zb

b!

=
∑
m≥0


 ∑

b≤d/x

Eb(m)
zb

b!


 xm =

∑
m≥0

Jd/x
z (Am(z))xm.

Consider the formal power series in x with coefficients in the ring C{z} of convergent
power series in z

F∞(z) =
∑
m≥0

Am(z)xm ∈ C{z}[[x]].

We will prove that for every 
 ≥ 0 and every z ∈ C we have

|Fn(z) − J�
xF∞(z)| = O(n−�−1), as n → ∞.(2.8)

To prove this it is convenient to introduce the “rectangles”

Du,v =
{

(b, m) ∈ (Z≥0)2; b ≤ u, m ≤ v
}

.

In this notation we have (x = n−1)

Fn(z) =
∑

(b,m)∈Dn,∞

Eb(m)xm zb

b!
, J�

xF∞(z) =
∑

(b,m)∈D∞,�

Eb(m)xm zb

b!
.

Then

Fn(z) − J�
xF∞(z) =

∑
b≤dn

(∑
m>�

Eb(m)xm

)
zb

b!︸ ︷︷ ︸
S1(n)

+
∑
m≤�

( ∑
b>dn

Eb(m)
zb

b!

)
xm

︸ ︷︷ ︸
S2(n)

.

We estimate each sum separately. Using (2.7) with a λb > 1 to be specified later
we deduce ∑

m>�

|Eb(m)xm| ≤ Cbbb−1

(b − 2)!(1 − λb
b−1

b )

∑
m>�

(
bx

λbd

)m

.
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The inequality b ≤ dn can be translated into bx
d ≤ 1 so that the above series is

convergent for b ≤ dn whenever λb > 1 so that

∑
m>�

|Eb(m)xm| ≤ Cbbb−1

(b − 2)!(1 − λb
b−1

b )

(
bx

λbd

)�+1 1
1 − bx

λbd

.

When b ≤ dn we have

1 − bx

λbd
> 1 − 1

λb
.

If we choose

λb =
( b

b − 1

)1/2

we deduce

1 − λb
b − 1

b
= 1 −

(b − 1
b

)1/2

=⇒ 1
1 − λb

b−1
b

< b

and, since bx
λbd ≤ b

dx,

1
1 − bx

λbd

<
1

1 − 1
λb

< 2b.

Using the inequalities

k! >
(k

e

)k

, ∀k > 0

we conclude that for b ≤ dn we have∑
m>�

|Eb(m)xm| ≤ Cb
1b

�+2x�+1.

Since the series
∑

b≥0 Cb
1b

�+2 zb

b! converges we conclude that

S1(n) = O(x�+1).

To estimate the second sum we choose λb = 1 in (2.7) and we deduce

Eb(m) ≤ Cb
3.

Hence ∣∣∣∣∣ ∑
b>dn

Eb(m)
zb

b!

∣∣∣∣∣ ≤ (C3|z|)bb2

b!
< (2C3|z|)2

∑
b>dn

(|C3|z|)b−2

(b − 2)!
.

Using Stirling’s formula we deduce that for fixed z we have∑
b>dn

(|C3|z|)b−2

(b − 2)!
< C4(z)n−�−1.

Hence

|S2(n)| ≤ C4(z)(
 + 1)n−�−1.

This completes the proof of (2.8) and of Theorem 1.3. �
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3. Additional structural results

3.1. The case d = 1. Hence Q(t) = (t + µ1) so that∫ ∞

0

e−zt(t + µ1)ndt = eµ1z

∫ ∞

0

e−zttndt = eµ1z n!
zn+1

.

Hence in this case

Fn(z) = eµ1z

and we deduce

A0(z) = eµ1z, Ak(z) = 0, ∀k ≥ 1.

3.2. The case d = 2. This is a bit more complicated. We assume first that
µ1 = 0 so that

Q(t) = t2 − σ2.

Then

Q(n, a) =

{
(−1)kσ2(n−k)

(
n
k

)
if a = 2k

0 if a is odd,

and we deduce

Fn(z) =
n∑

b=0

(−1)b
(

n
n−b

)(
2n

2n−2b

) (σz)2b

(2b)!
=

n∑
b=0

n!(2n − 2b)!
(n − b)!(2n)!

(−1)b(σz)2b

b!

=
n∑

b=0

n(n − 1) · · · (n − b + 1)
2n(2n − 1) · · · (2n − 2b + 1)

(−1)b(σz)2b

b!

=
n∑

b=0

1
22b

n−b (1 − 1/n) · · · (1 − (b − 1)/n)
(1 − 1/(2n) · · · (1 − (2b − 1)/(2n)

(−1)b(σz)2b

b!

= 1 − 1
2
n−1 1

1 − 1/(2n)
(σz)2

2!

+
1
24

n−2 (1 − 1/n)
(1 − 1/(2n))(1 − 2/(2n))(1 − 3/(2n))

(σz)4

4!
+ · · · .

To obtain Ak(z) we need to collect the powers n−k. The above description shows
that the coefficients of the monomials z2b contain only powers n−k, k ≥ b. We
conclude that Ak(z) is a polynomial and

degz Ak(z) ≤ 2k.

Let us compute the first few of these polynomials. We have

Fn(z) = 1 − 1
2
n−1

(
1 +

1
2
n−1 + · · ·

)
(σz)2

2!
+

1
24

n−2
(
1 + · · ·

) (σz)4

4!
+ · · · .

We deduce

A0(z) = 1, A1(z) = −1
4
(σz)2, A2(z) = −1

8
(σz)2 +

1
244!

(σz)4.

If µ1 �= 0 so that

Q(t) = (t + r1)(t + r2), r1 + r2 = 2µ1,
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then we make the change in variables t = s − µ1 so that

Q(t) = P (s) = s2 − r2, σ2 = (r1 − µ1)2 =
(r1 − r2)2

4
.

Now observe that

4µ2
1 + (r1 − r2)2 = (r1 + r2)2 + (r1 − r2)2 = 2(r2

1 + r2
2) = 4µ2

so that

σ2 = µ2 − µ2
1.

Then

Fn(Q, z) =
z2n+1

(2n)!

∫ ∞

0

e−ztQ(t)n =
z2n+1

(2n)!

∫ ∞

0

e−z(s−µ1)P (s)nds = eµ1zFn(P, z).

We deduce

A0(z) = eµ1z, A1(z) = −eµ1z

4
(σz)2, A2(z) = eµ1z

(
−1

8
(σz)2 +

1
244!

(σz)4
)
.

(3.1)

For the couples mixing problem we have

Q(t) = t2 − 4t + 2

so that

µ1 = −4
2

= −2, σ2 =
1
4
(r1 − r2)2 =

1
4

(
(r1 + r2)2 − 4r1r2

)
=

1
4
(16 − 8) = 2,

and we deduce

δn = Fn(Q, z = 1) = e−2
(
1 − 1

2
n−1 − 23

96
n−2 + O(n−3)

)
.(3.2)

3.3. The general case. Let us determine the coefficients A0(z) and A1(z) for
general degree d. We use the definition

Ak(z) =
∑
b≥0

Eb(k)
zb

b!
.

For |�α| = b

W�α(x) = Wb,α(x) =
d∏

i=1


αi−1∏

j=1

(1 − jx)


 =

d∏
i=1


1 −


αi−1∑

j=1

j


 x + · · ·




= 1 − 1
2

(
d∑

i=1

αi(αi − 1)

)
x + · · · .

Wb(x/d) =
b−1∏
k=1

(1 + jx/d + · · · ) = 1 +
b(b − 1)

2d
x + · · · .

Next, compute the expectation of Rb(x)

Eb(Rb(x)) = Eb(ρb) −
1
2
Eb

(
d∑

i=1

αi(αi − 1)�r �α

)
x + · · · .

The multinomial formula implies

Eb(ρb) = µb
1.



128 Liviu I. Nicolaescu

Next

Eb

(
d∑

i=1

αi(αi − 1)�r �α

)
=

1
db

∑
|�α|=b

(
b

�α

) (
d∑

i=1

αi(αi − 1)

)
�r �α.

Now consider the partial differential operator

P =
d∑

i=1

r2
i

∂2

∂r2
i

.

Observe that the monomials �r �α are eigenvectors of P

P�r �α =

(
d∑

i=1

αi(αi − 1)

)
�r �α.

We deduce

Eb

(
d∑

i=1

αi(αi − 1)�r �α

)
=

1
2db

PS(�r)b =
1
2
Pµb

1.

Hence

Eb(Rb(x) = µb
1 −

1
2
(Pµb

1)x + · · ·

and we deduce

Eb(x) =
(

µb
1 −

1
2
(Pµb

1)x + · · ·
) (

1 +
b(b − 1)

2d
x + · · ·

)

= µb
1 +

1
2

(
b(b − 1)

d
µb

1 − Pµb
1

)
x + · · · .

We deduce A0(z) = eµ1z

A1(z) =
µ2

1

2d

∞∑
b=2

zb

(b − 2)!
− 1

2
Peµ1z =

µ2
1z

2

2d
eµ1z − 1

2
Peµ1z.

We can simplify the answer some more.

Pµb
1 =

1
db

PS(x)b =
b(b − 1)

db

(
d∑

i=1

r2
i

)
S(x)b−2 =

b(b − 1)
d

µ2µ
b−2
1 .

We conclude that

Peµ1z =
µ2z

2

d

∑
b≥2

(µ1z)b−2

(b − 2)!
=

µ2z
2

d
eµ1z.

Hence

A0(z) = eµ1z, A1(z) =
eµ1z

2d
(µ2

1 − µ2)z2.(3.3)

For d = 2 we recover part of the formulæ (3.1).
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3.4. Proof of the structure theorem. Clearly we can assume d > 1. We imitate
the strategy used in the case d = 2. Thus, after the change in variables t → t − µ1

we can assume that µ1 = 0 so that Q(t) has the special form1

Q(t) = td + ad−2t
d−2 + · · · + a0.

Set

T (n, b) :=
Q(n, dn − b)(

dn
dn−b

) .

This is a power series in x = n−1,

T (n, b) = Tb(x) |x=n−1 , Tb(x) =
∑
k≥0

Tb(k)xk.

We have

Ak(z) =
∑
b≥0

Tb(k)
zb

b!
,

and we need to prove that Ak is a polynomial for every k. We denote by 
(b) the
order of the first nonzero coefficient of Tb(x),


(b) = min{k ≥ 0; Tb(k) �= 0}.
To prove the desired conclusion it suffices to show that

lim
b→∞


(b) = ∞.(3.4)

For every multiindex �β = (βd, βd−2, . . . , β1, β0) we set

L(�β) = dβd + (d − 2)βd−2 + · · · + β1.

Let �a := (1, ad−2, . . . , a1, a0) ∈ C
d and

Bn :=
{
�β ∈ Z

d
≥0; |�β| = n, L(�β) = dn − b

}
.

We have

T (n, b) =
1(
dn

dn−b

) ·
∑

�β∈Bn

(
n
�β

)
�a

�β .(3.5)

Now observe that for every multiindex �β ∈ Bn we have

2βd−2 + 3βd−3 + · · · + (d − 1)β1 + dβ0 = d|�β| − L(�β) = b.

In particular we deduce

βj ≤ b

d − j
≤ b

2
, ∀0 ≤ j ≤ d − 2(3.6)

and

2βd + b = 2βd = 2βd−2 + 3βd−3 + · · · + (d − 1)β1 + dβ0

≥ 2βd + 2βd−2 + · · · + 2β1 + 2β0 = 2n

1A similar reduction trick was used in the proof of [1, Thm. 3], but there the authors follow a
different approach which yields less information on the asymptotic expansion.
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so that

n − βd ≤ b

2
.(3.7)

These simple observations have several important consequences.
First, observe that they imply that there exists an integer N(b) which depends

only b and d, such that

|Bn| ≤ N(b), ∀n > 0.

Thus the sum (3.5) has fewer than N(b) terms.
Next, if we set |a| := max0≤j≤d−2 |aj | then, we deduce

|�a �β | ≤ |a|β0+···+βd−2 ≤ |a|
b(d−1)

2 = C5(b).

Finally, using the identity(
n
�β

)
=

(
n

βd

)
·
(

n − βd

βd−2

)(
n − βd − βd−2

βd−3

)
· · ·

the inequalities (3.7) and
(
m
k

)
≤ 2m, ∀m ≥ k we deduce(

n
�β

)
≤

(
n

βd

)
· 2

b(d−1)
2 ≤ 2

b(d−1)
2

(
n

�b/2� + 1

)
≤ C6(b)n�b/2�+1, ∀n 	 b.

Hence ∑
|�β|=n,L(�β)=dn−b

∣∣∣∣
(

n
�β

)
�a

�β

∣∣∣∣ ≤ N(b)C5(b)C6(b)n�b/2�+1 = C7(b)n�b/2�+1.

On the other hand
1(
dn

dn−b

) ≤ C8(b)n−b

so that

|T (n, b)| = |Tb(n−1)| ≤ C9(b)n�b/2�+1−b ≤ C9(b)n1−b/2.

This shows

Tb(k) = 0, ∀k ≤ b/2 − 1

so that


(b) ≥ b/2 − 1 → ∞ as b → ∞.

�

Remark 3.1. We can say a bit more about the structure of the polynomials

Bk(µ1, . . . , µd, z) ∈ Rd = C[µ1, . . . , µd, z], k > 0.

If we regard B as a polynomial in r1, . . . , rd we see that it vanishes precisely when
r1 = · · · = rd. Note that

r1 = · · · = rd = r ⇐⇒ Q(t) = (t + r)d.

On the other hand∑
k

tkµk =
1
d

d∑
i=1

∑
k≥0

(rit)k =
1
d

d∑
i=1

1
1 − rit

(s:=1/t)
=

s

d

d∑
i=1

1
s + µi

=
s

d

Q′(s)
Q(s)

.
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If Q(s) = (s + r)d we deduce
s

d

Q′(s)
Q(s)

=
s

s + r
=

1
1 − rt

=
∑
k≥0

(rt)k.

This implies that

r1 = · · · = rd ⇐⇒ µj
i = µi

j , ∀1 ≤ i, j ≤ k ⇐⇒ µj = µj
1, ∀1 ≤ j ≤ d.

The ideal I in Rd generated by the binomials µj
1−µj is prime since Rd/I ∼= C[µ1, z].

Using the Hilbert Nullstelensatz we deduce that Bk must belong to this ideal so
that we can write

Bk(µ1, . . . , µd, z) = A2k(µ, z)(µ2
1 − µ2) + · · · + Adk(µ, z)(µd

1 − µd).

�
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