Abstract. Ailon and Rudnick have shown that if $a, b \in \mathbb{C}[T]$ are multiplicatively independent polynomials, then

$$
\operatorname{deg}\left(\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)\right)
$$

is bounded for all $n \geq 1$. We show that if instead $a, b \in \mathbb{F}[T]$ for a finite field \mathbb{F} of characteristic p, then $\operatorname{deg}\left(\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)\right)$ is larger than $C n$ for a constant $C=C(a, b)>0$ and for infinitely many n, even if n is restricted in various reasonable ways (e.g., $p \nmid n)$.

