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Height one Hopf algebras in low ramification

Alan Koch

Abstract. Let k be a perfect field of characteristic p > 0. We obtain a
complete classification of finite abelian local k-Hopf algebras with local dual
such that the augmentation ideal is annihilated by the Frobenius map. We
then use the theory of finite Honda systems to show that these Hopf algebras
lift to extensions R of W (k) with 2 ≤ e(R/W (k)) ≤ p − 1, and construct all
such lifts.
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1. Introduction

Let k be a perfect field of characteristic p > 0 with separable closure ks. Let
H be a finite abelian (that is, commutative and cocommutative) k-Hopf algebra.
We will denote the dual Hopf algebra to H by H∗, the set of primitive elements by
P (H), and the augmentation ideal by H+. We will say that H is of height one if
xp = 0 for all x ∈ H+. Such a Hopf algebra is necessarily local, and hence

H ∼= Hm × Hu

where H∗
m is separable and H∗

u is local [15, p. 52, 87]. The notation Hm and Hu arise
from the fact that Spec(Hm) is of multiplicative type and Spec(Hu) is unipotent.
Separable Hopf algebras are well understood: if G =Gal(ks/k) then such k-Hopf
algebras are anti-equivalent to finite groups with G acting continuously as group
automorphisms [15, p. 48]. Thus here we focus on the classification of finite abelian
height one Hopf algebras with local dual (hereafter referred to as “local-local”).
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We will obtain a complete classification of such Hopf algebras using Dieudonné
modules. In this case (local-local height one) the Dieudonné module can be viewed
as a module over a noncommutative (unless k = Fp) polynomial ring k[V ]. A
skew polynomial ring is an example of a “noncommutative principal ideal domain”
and there is an analogue to the classification given in the Fundamental Theorem
of Finitely Generated Modules over a Principal Ideal Domain. Once this gives us
all of the relevant Dieudonné modules, we will show a one-to-one correspondence
between them and the Hopf algebras of height one. These Hopf algebras, which
clearly have a nice algebra structure, also have a simple coalgebra structure which
can be described using Witt vector addition. We will see that the number of height
one local-local (that is, local with local dual) Hopf algebras of rank pn is equal to
the number of partitions of n. The simplicity of this formula is interesting, although
not surprising since the structure theorem of nilpotent matrices implies the same
result when looking at the commutative ring k[x]. However, it is interesting to note
that the number of such Hopf algebras is independent of the choice of k (or p, for
that matter) — the classification of other classes of finite abelian connected local-
local Hopf algebras such as monogenic Hopf algebras, Hopf algebras that represent
uniserial groups, and representing algebras of Witt subgroups have all depended on
k ([10], [11], and [9] respectively).

Once the characteristic p results are obtained, we will then look at lifting height
one Hopf algebras to characteristic zero. Given a k-Hopf algebra H and a discrete
valuation ring R with residue field k, to “lift” H to R is to find an R-Hopf algebra
H̃ such that H̃ ⊗R k ∼= H. This cannot always be done: the simplest example being
where H is the unique finite abelian local k-Hopf algebra with local dual of rank p
with R = W (k) [14, p. 21]. In fact, we will see that none of the height one Hopf
algebras lift to W (k).

However, if R has some ramification, i.e., e = e(R/W (k)) > 1, the Hopf algebra
H above does lift to R. In the case of height one Hopf algebras, we will see the
same thing in general: if H is a Hopf algebra on height one, and 1 < e ≤ p−1, then
H lifts to R. Any R for which e ≤ p− 1 will be said to have low ramification. The
technique we will use will be the theory of finite R-Honda systems as constructed
by Conrad in [3]. The procedure will be similar to that found in [9] where liftings
of monogenic Hopf algebras are considered. It should be pointed out that other
theories of finite R-Honda systems exist, e.g., [1] and [13]. (In the latter work it is
proved that any affine finite group scheme over k lifts to R with 1 < e ≤ p− 1 and
p ≥ 5. Our results will deviate from these in two ways. First, our results will also
hold for p = 3. Second, we will construct all lifts.) We will use Conrad’s theory
because we feel it is the easier to compute, most closely resembles the original
theory of finite Honda systems developed by Fontaine in [5], and mimics the free
Honda systems in the ramified case as in [6]. One drawback to this theory (as well
as the one in [13]) is the low ramification condition. It would be interesting to apply
the techniques of [1] to lift H to any discrete valuation ring with ramification, if
possible.

We start by recalling the connection between Dieudonné modules and Hopf al-
gebras. Then, we will show that the Dieudonné modules corresponding to height
one Hopf algebras may be viewed as certain modules over the skew polynomial ring
k[V ]. We will invoke the structure theorem for modules over such rings to give a
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complete classification of height one local-local Hopf algebras. Then, we introduce
the notion of finite R-Honda systems, and compute the lifts for any height one Hopf
algebra.

Throughout this paper, all Hopf algebras (unless otherwise specified) are finite,
abelian, and local-local. Also, all group schemes will be affine, finite, commutative,
connected, and unipotent.

2. The Dieudonné module of a Hopf algebra

In this section we will describe the correspondence between Hopf algebras and
Dieudonné modules. It is common to describe Dieudonné modules in terms of
their anti-equivalence with group schemes, however we will focus on the relation-
ship between the Dieudonné module and the Hopf algebra which represents the
corresponding group scheme.

Let W = W (k) be the ring of Witt vectors with coefficients in k. Recall that W is
the collection of infinite-length vectors with addition and multiplication determined
by collections of polynomials S1, S2, . . . and P1, P2, . . . respectively. A recursive
description of the Sn’s and Pn’s can be found in [8, p. 128], the first term of each
being S0(x; y) = x + y and P0(x; y) = xy.

Let E be the noncommutative ring of polynomials E = W [F, V ] with the rela-
tions FV = V F = p, Fw = wσF, wV = V wσ, where w ∈ W and

wσ = (w0, w1, . . . )
σ = (wp

0 , wp
1 , . . . ) .

We will call a finite-length E-module killed by a power of F and V a Dieudonné
module. It should be pointed out that this is not the most general definition of this
term — for example generalizations to formal groups and arbitrary group schemes
appear in [4].

Given a Dieudonné module M we shall define H(M) to be the k-Hopf algebra
k[Tx | x ∈ M ] with the following relations:

TFx
= (Tx)p

Tx+y = SN ((TV N x, TV N−1x, . . . , Tx); (TV N y, TV N−1y, . . . , Ty))

Twx = PN

((
wp−N

0 , wp−N

1 , . . . , wp−N

N

)
; (TV N x, TV N−1x, . . . , Tx)

)
where x, y ∈ M, w = (w0, w1, . . . ) ∈ W (k), and N is any nonnegative integer so
that V N+1M = 0. The comultiplication is given by

∆(Tx)

= SN ((TV N x ⊗ 1, TV N−1x ⊗ 1, . . . , Tx ⊗ 1); (1 ⊗ TV N x, 1 ⊗ TV N−1x, . . . , 1 ⊗ Tx)).

Notice that when N = 1 we get ∆(Tx) = Tx ⊗ Tx, i.e., Tx is a primitive element
of H(M). It turns out that H(M) is a finite abelian local Hopf algebra with local
dual, and this gives an equivalence between Dieudonné modules and our class of
Hopf algebras [7, II, Sec. 5].

A simple but important result concerning this correspondence is given below.

Lemma 2.1 (Zero Lemma). Let M be a Dieudonné module, and let

H = H(M) = k[Tm |m ∈ M ].

For any m ∈ M , Tm = 0 if and only if m = 0.
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Proof. Let N be any integer such that V NM = 0. Then

T0 = T0·0 = PN ((0, 0, . . . , 0); (T0, T0, . . . , T0))

from which it follows that T0 = 0.
Conversely, suppose Tm = 0. Let M ′ = Em ⊂ M . Clearly Tm′ = 0 for all

m′ ∈ M ′. Thus H(M) = H(M/M ′) which implies that M = M/M ′, i.e., m = 0. �

3. Height one Hopf algebras in characteristic p

We now focus on height one Hopf algebras. The first result shows that the
Dieudonné module of such a Hopf algebra is killed by F .

Proposition 3.1. Let H be a k-Hopf algebra and M its associated Dieudonné mod-
ule. Then H is height one if and only if FM = 0.

Proof. Suppose FM = 0. Let t ∈ H+. As t ∈ H, we can write

t = f(Tm1 , Tm2 , . . . , Tms
)

for some polynomial f in the variables Tm1 , Tm2 , . . . , Tms for some s and mi ∈ M
such that f has no constant term. Since (Tmi

)p = TFmi
= T0 = 0, we have

(f(Tm1 , Tm2 , . . . , Tms
))p = 0, hence tp = 0 and one direction is proved.

For the other, suppose H is height one and write

H = k[t1,t2, . . . , tn]/(tp1, t
p
2, . . . t

p
n).

Let m ∈ M . We will show Fm = 0. Now Tm ∈ H = k ⊕ H+, so there exists an
a ∈ k and a b ∈ H+ such that Tm = a + b. We get

TFm = T p
m = (a + b)p = ap + bp = ap.

Choose an integer s with F sM = 0. This gives

aps

= T ps

m = TF sm = T0 = 0.

Of course, this implies that a = 0, hence ap = 0. Thus TFm = 0, and by the Zero
Lemma we get Fm = 0. �

Notice that the above proposition provides an equivalence of height one Hopf
algebras and Dieudonné modules killed by F . If H is height one and H = H(M)
then the E-module M can be viewed as a module over E/E(F ) = k[V ], the non-
commutative ring of polynomials with aV = V aσ. Thus we are interested in the
classification of k[V ]-modules. The problem of classifying k[V ]-modules is very
easy in the case that k = Fp as k[V ] is a PID. For general k this is a skew poly-
nomial ring, but there is a structure theorem for such rings which behaves like the
well-known theorem in the commutative case. This will enable us to prove:

Proposition 3.2. Let M be a Dieudonné module such that FM = 0. Then

M ∼= E/E(F, V n1) ⊕ E/E(F, V n2) ⊕ · · · ⊕ E/E(F, V nj )

for some choice of n1 ≥ n2 ≥ · · · ≥ nj.

Proof. By [2, 8.2.4], for any finitely generated k[V ]-module M we get

M ∼= k[V ]/((f1(V ))) ⊕ k[V ]/((f2(V ))) ⊕ · · · ⊕ k[V ]/((fj(V ))) ⊕ (k[V ])�

for some choice of polynomials f1(V ), f2(V ), . . . , fj(V ) with fi dividing fi−1 for all
1 < i ≤ j. Since V nM = 0 for some n it is clear that � = 0. Thus to prove the
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proposition we need to show that we may take each fi to be some power of V . It
suffices to consider the case where j=1.

Suppose M ∼= k[V ]/(f(V )). As V nM = 0 we have

(V n) ⊂ (f(V ))

and hence V n = gf for some g = g(V ) ∈ k[V ]. But any divisor of V n is equal to
aV r for some a ∈ k. Thus f = aV r for some a ∈ k. Thus ((aV )n) = (V n) ⊂ (V r),
so r ≤ n. But V rM = 0, and since n is the smallest positive integer with this
property we must have r = n. Thus

M ∼= k[V ]/(V n) = E/E(F, V n). �
Define M(r) = E/E(F, V r) and H(r) to be H(M(r)). To be explicit we have

H(r) = k[t1, t2, . . . , tr]/(tp1, t
p
2, . . . t

p
r) with

∆(ti) = Sr−i((tn ⊗ 1, tn−1 ⊗ 1, . . . ti ⊗ 1); (1 ⊗ tn, 1 ⊗ tn−1, . . . 1 ⊗ ti)).

Note that tn is primitive. We are now able to state the above result in terms of
Hopf algebras.

Theorem 3.3. Let H be a height one Hopf algebra of rank pn. Then

H =
k⊗

i=1

H(ri)

for some sequence of positive integers r1 ≥ r2 ≥ · · · ≥ rk whose sum is n.

We now define for such a sequence r1 ≥ r2 ≥ · · · ≥ rk the Hopf algebra
H(r1, r2, . . . rk) = H(r1) ⊗ H(r2) ⊗ · · · ⊗ H(rk). This sequence is of course a
partition of n so we get:

Corollary 3.4. There is a one-to-one correspondence between isomorphism classes
of height one Hopf algebras of rank pn and partitions of n.

For a group scheme description of the results above, let G(r) = Spec(H(r)).
Clearly we have M = coker{F : E/E(V r) → E/E(V r)}, and therefore we also
have G(r) = ker{F : Wr → Wr}. Thus:

Corollary 3.5. A k-group scheme is of height one if and only if it is isomorphic
to the product of Frobenius kernels of truncated rings of Witt vectors.

4. Finite Honda systems

In [3] the notion of finite Honda systems are generalized to low ramification. We
describe this generalization. Let R be an extension of W (k) with maximal ideal
m, fixed uniformizing parameter π, and e = e (R/W (k)) < p − 1. Let M be any
Dieudonné module, and write W in place of W (k). Let M (1) = W ⊗W M , where W
is viewed as a W -module via σ, i.e., w ⊗ m = 1 ⊗ wσm. Let MR be the R-module
given by

(
R ⊗ M ⊕ p−1m ⊗ M (1)

)
/I, where

I =
{(

y − (1 ⊗ F ) z, z − (p−1 ⊗ V
)
y
) ∣∣ y ∈ m ⊗ M, z ∈ R ⊗ M

}
.

We will write expressions of the form (r ⊗ m, s ⊗ m1) to denote elements of MR

despite the fact that elements of MR are equivalence classes. There will be a few
times when we wish to consider elements of (R ⊗ M)⊕(R ⊗ M (1)

)
directly, however

no confusion should arise.
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There are R-linear maps F : p−1m ⊗ M (1) → MR and V : MR → R ⊗ M given
by

F(s ⊗ m1) = (0, s ⊗ m1)

V(r ⊗ m, s ⊗ m1) = r ⊗ vm + ps ⊗ m1

for r, s ∈ R, m ∈ M, m1 ∈ M (1).
A finite R-Honda system (or a finite Honda system over R) is a pair (L, M)

where M is a finite Dieudonné module and L is an R-submodule of MR such that:
(1) L ∩ kerV = 0.
(2) The canonical map L/mL → cokerF is an isomorphism.
In the case where R = W it can be shown that MR ∼= M in an obvious way,

and the isomorphism carries F and V to F and V respectively, so clearly a finite
W -Honda system is simply a finite Honda system in the sense of [5].

There is a one-to-one correspondence between finite R-Honda systems and R-
Hopf algebras which we will now describe. For any k-algebra S we shall let the
map w′

S : CWk,R(S) → (S ⊗ K)/mR be as defined in [6, p. 197], where CWk,R(S)
is defined to be (CWk(S))R. (Throughout this explanation, an overbar denotes
reduction mod m.) Given an R-Hopf algebra H, the associated R-Honda system
is (L, M), where M = D∗(H) and L = ker w′

H |M , MR viewed as a submodule of
CWk,R(H) (since M can be viewed as a submodule of CWk(H). Conversely, given
a finite Honda system (L, M) we can describe the associated Hopf algebra H in
terms of its group scheme G = Spec H: for any finite flat R-algebra S we have

G(S) = {s ∈ G(S) |CWk,R(s)(L) ⊂ ker w′
s}.

A morphism of R-Honda systems (L, M) → (L′, M ′) is an E-module map φ : M →
M ′ such that φR(L) ⊂ L′, where φR : MR → MR is the map induced by φ.

5. Lifting in low ramification

Finally, we will construct finite R-Honda systems for our height one Hopf alge-
bras. This will be accomplished by finding all of the systems for H(n) = H(M(n)) =
H(E/E(F, V n)) for every n. First, we need a lemma to that enables us to better
perform calculations in MR. The following lemma provides a k-basis for MR:

Lemma 5.1. Let M = E/E(F, V n). Let X, Y, Z be the k-subspaces of MR gener-
ated by

SX = {(πi ⊗ V jx, 0) | 0 ≤ i ≤ e − 1, 0 ≤ j ≤ n − 2},
SY = {(0, p−1πi ⊗ x) | 1 ≤ i ≤ e − 1},

SZ = {(1 ⊗ V n−1x, 0)},
respectively. Then MR is the internal direct sum of X, Y , and Z, and

S := SX ∪ SY ∪ SZ

is a k-basis for MR.

Proof. Clearly X ∪ Y ∪ Z ⊂ MR, so we need to show that this union is all
of MR, that SX , SY , and SZ are bases for X, Y , and Z respectively (which is
clear in the case of Z), and that these three spaces are pairwise disjoint. Since
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{x, V x, . . . , V n−1x} is a k-basis for M we clearly have that S1 ∪ S2 is a generating
set for M(R) over k, where

S1 = {(πi ⊗ V jx, 0) | 0 ≤ i ≤ e − 1, 0 ≤ j ≤ n − 1}
S2 = {(0, p−1πi ⊗ V jx) | 1 ≤ i ≤ e, 0 ≤ j ≤ n − 1}.

We will show that the elements in the above set that are not in S are multiples
of elements of S or are zero. Each element in the above set not in S is one of the
following:

(πi ⊗ V n−1x, 0) 1 ≤ i ≤ e − 1
(0, u ⊗ x) (the case i = e in SY )
(0, p−1πi ⊗ V jx) 1 ≤ i ≤ e − 1, 1 ≤ j ≤ n − 1.

Here MR = ((R ⊗ M) ⊕ (p−1m ⊗ M (1)))/I, where

I = {(y, z − (p−1 ⊗ V )y) | y ∈ m ⊗ M, z ∈ R ⊗ M}
since here F acts trivially on M . If we set y = πi ⊗ V n−1x for i > 0 and z = 0 we
get (πi ⊗ V n−1x, 0) = (0, p−1πi ⊗ V nx) = (0, 0). If we let z = u ⊗ x and y = 0 we
have (0, u⊗x) = (0, 0). Finally, setting y = πi⊗V jx for 1 ≤ i ≤ e−1, 0 ≤ j ≤ n−2,
and z = 0 we obtain (0, p−1πi⊗V jx) = (πi⊗V jx, 0) ∈ SX . Thus MR = X+Y +Z.

We now show that SX is a basis for X. To show that SX is linearly independent,
if

e−1∑
i=0

n−2∑
j=0

λi,j(πi ⊗ V jx, 0) = (0, 0)

then ∑
i,j

λi,j(πi ⊗ V jx, 0) =
(∑

i,j

λi,j(πi ⊗ V jx), 0
)

which is an element of I ⊂ ((R ⊗ M) ⊕ (R ⊗ M (1))), so it follows that there exists
a y ∈ m ⊗ M, z ∈ R ⊗ M such that(∑

i,j

λi,j(πi ⊗ V jx), 0
)

= (y, z − (p−1 ⊗ V )y).

Clearly y =
∑

i,j λi,j(πi ⊗ V jx) and

z = (p−1 ⊗ V )y =
∑
i,j

λi,j(p−1πi ⊗ V j+1x, 0).

In order for z ∈ R ⊗ M we need λi,j = 0 whenever i < e, which here is all i. Thus
λi,j = 0 for all i and j, hence SX is linearly independent in X. That SX spans is
obvious from the definition of X, of course.

For SY , suppose
e−1∑
i=1

λi(0, p−1πi ⊗ x) = (0, 0).

Then∑
λi(0, p−1πi ⊗ x) =

(
0,
∑

λi(p−1πi ⊗ x)
)
∈ I ⊂ ((R ⊗ M) ⊕ (R ⊗ M (1)))
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so, as above, there exist a y ∈ m ⊗ M, z ∈ R ⊗ M such that(
0,
∑

λi(p−1πi ⊗ x)
)

= (y, z − (p−1 ⊗ V )y).

Clearly y = 0. In order to have equality we must have z =
∑

λi(p−1πi ⊗ x). But
this sum is in R ⊗ M if and only if λi = 0 for all i.

It remains to show that X, Y , and Z are pairwise disjoint. It is easy to see that
Z is disjoint from the other two: if not then Z ⊂ X or Z ⊂ Y , i.e., (1⊗V n−1x, 0) ∈
X ∪ Y . If (1 ⊗ V n−1x, 0) ∈ Y then (1 ⊗ V n−1x, 0) has an additive inverse in Y , so
(1 ⊗ V n−1x, y) ∈ I ⊂ ((R ⊗ M) ⊕ (p−1m ⊗ M (1))) for some y ∈ Y , which implies
1⊗V n−1x ∈ m⊗M, which is a not true. Similarly, if (1⊗V n−1x, 0) ∈ X then there
is a y′ ∈ X such that (y′+1⊗V n−1x, 0) ∈ I, which says that y′+1⊗V n−1x ∈ m⊗M ,
which is impossible since y′ is a linear combination of elements of the form πi⊗V jx
with j < n− 1. Thus X ∩Z = Y ∩Z = 0. Finally, any element y′ ∈ X ∩ Y can be
written two different ways:

y′ =

e−1∑
i=0

n−2∑
j=0

λi,j(πi ⊗ V jx), 0


=

(
0,

e−1∑
i=1

λ′
i(p

−1πi ⊗ x)

)
for some λij , λ

′
i ∈ k. Thuse−1∑

i=0

n−2∑
j=0

λi,j(πi ⊗ V jx),
e−1∑
i=1

−λ′
i(p

−1πi ⊗ x)

 ∈ I

and thus there exists a z ∈ R ⊗ M such that

z −
e−1∑
i=0

n−2∑
j=0

λi,j(p−1πi ⊗ V j+1x) =
e−1∑
i=1

−λ′
i(p

−1πi ⊗ x)

which can only happen if λ′
i = 0 for all i. But then

z =
e−1∑
i=0

n−2∑
j=0

λi,j(p−1πi ⊗ V j+1x),

which cannot happen unless λi,j = 0 for all i, j since otherwise
e−1∑
i=0

n−2∑
j=0

λi,j(p−1πi ⊗ V j+1x) /∈ R ⊗ M.

Thus X ∩ Y = 0 and we are done. �

Corollary 5.2. With M as above we have dimk MR = en and the set

{(1 ⊗ V jx, 0) | 0 ≤ j ≤ n − 1} ∪ {(0, p−1π ⊗ x)}
generates MR as an R-module.

Now to have finite R-Honda system (L, M) we must have that the canonical map
L/mL → cokerF is an isomorphism. The next result helps to make that cokernel
explicit.
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Lemma 5.3. With M as above ImF has k-basis

{(πi ⊗ V jx, 0) | 1 ≤ i ≤ e − 1, 0 ≤ j ≤ n − 1} ∪ {(0, p−1πi ⊗ x) | 1 ≤ i ≤ e − 1}.
Proof. Let M ′ be the k-submodule of M spanned by the set above. Clearly
(0, p−1πi ⊗ x) = F(p−1πi ⊗ x) ∈ ImF . Furthermore, we have that (πi ⊗ V jx, 0) =
(0, p−1πi ⊗ V jx) = F(0, p−1πi ⊗ V jx) ∈ ImF , so M ′ ⊂ ImF . That we have
equality is a length argument that follows from [3, 2.4]. �

Corollary 5.4. The cokernel of F has k-basis {(1 ⊗ V jx, 0) | 0 ≤ j ≤ n − 1}.
We are now ready to describe all of the lifts of a height one Hopf algebra. The

main theorem below will show all of the lifts for one summand of a height one Hopf
algebra — finding all of the lifts for the height one Hopf algebra in question will
follow by lifting each summand.

Theorem 5.5. Let M = E/E(F, V n). For 0 ≤ r ≤ n − 1, let

yr =

n−1∑
j=0

aj,r ⊗ V jx, p−1πan,r ⊗ x


with aj,r ∈ R. Define zr = (1 ⊗ V rx, 0) + πyr. Let L be the R-submodule of MR

generated by {z0, z1, . . . , zn−1}. Then (L, MR) is a finite R-Honda system if and
only if v(an,n−1) < e − 2 or there exists a j ≤ n − 2 such that v(aj,n−1) < e − 1.

Proof. Since zr ≡ (1 ⊗ V rx, 0) mod m it is clear by (5.4) that the canonical map
L/mL → cokerF is an isomorphism regardless of any conditions on the aj,r’s. Thus
(L, M) is a finite R-Honda system if and only if L ∩ kerV = 0.

For any r ≤ n − 1 let Lr be the R-submodule of L generated by zr. (For the
moment there remain no conditions on the aj,r’s.) We claim that, for r �= s we
have V(Lr) ∩ V(Ls) �= 0. Suppose first that neither r nor s is n − 1. For b, c ∈ R×

and e1 ≤ e2 ≤ e − 1 we have

V(πe1bzr) ≡ bπe1 ⊗ V r+1x mod me1+1

V(πe2czs) ≡ cπe2 ⊗ V s+1x mod me1+1

and these cannot be equal since the top congruence is nonzero. Suppose r = n− 1.
For b, c ∈ R×, and e1, e2 ≤ e − 1 we have

V(πe1bzn−1) ≡ bπe1 ⊗ V nx ≡ 0 mod me2+1

V(πe2czs) ≡ cπe2 ⊗ V s+1x mod me2+1

and here the bottom congruence is nonzero and the claim is proved.
Thus L ∩ kerV = 0 if and only if Lr ∩ kerV = 0 for all r. Notice that for any

r < n − 1 we have

πe−1zr = (πe−1 ⊗ V rx, 0) + πeyr = (πe−1 ⊗ V rx, 0)

and V(πe−1zr) = πe−1 ⊗ V r+1x �= 0. Since πezr is clearly (0, 0) it follows that
V|Lr has trivial kernel. Thus (L, M) is a finite R-Honda system if and only if
Ln−1 ∩ kerV = 0.

For ease of notation, we will write aj for aj,n−1. This should not create any
difficulty since for the remainder of the proof we only look at zn−1. Let e′ =
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minj≤n−2{v(aj)} and let t be chosen so that v(at) = e′. Suppose e′ < e − 1. Then
we claim πe−e′−1zn−1 = 0. We have

πe−e′−1zn−1 = (πe−e′−1 ⊗ V n−1x, 0) +

n−1∑
j=0

πe−e′
aj ⊗ V jx, p−1πe−e′+1an ⊗ x

 .

Of course, (πe−e′−1 ⊗ V n−1x, 0) = (0, 0), so we only need to show the sum on the
right is zero. Since v(aj) ≥ e′ we know πe−e′

aj = ua′
jp for some a′

j ∈ R for all
j ≤ n; hence

πe−e′−1zn−1 = p

n−1∑
j=0

ua′
j ⊗ V jx, p−1πua′

n ⊗ x

 = (0, 0)

since MR is killed by p. However,

V(πe−e′−2zn−1) = V
n−1∑

j=0

πe−e′−1aj ⊗ V jx, p−1πe−e′
an ⊗ x


=

n−1∑
j=0

πe−e′−1aj ⊗ V j+1x + πe−e′
an ⊗ x

=
n−2∑
j=0

πe−e′−1aj ⊗ V j+1x + πe−e′
an ⊗ x.

Since t ≤ n− 2 we know πe−e′−1at ⊗V t+1x �= 0, and by the R-linear independence
of the set {1 ⊗ V jx | j ≤ n − 1} we have that V(πe−e′−2zn−1) �= 0 and hence
Ln−1 ∩ kerV = 0, thus (L, M) is a finite R-Honda system.

The above establishes that (L, M) is a finite R-Honda system in the case where
there exists a j ≤ n − 2 such that v(an−1) < e − 1. We now wish to show that the
condition v(an) < e − 2 also gives such a system. It suffices to show the result in
the case where v(aj) ≥ e − 1 for all j ≤ n − 2. Then

zn−1 = (1 ⊗ V n−1x, 0) +

n−1∑
j=0

πaj ⊗ V jx, p−1π2an ⊗ x


= (1 ⊗ V n−1x, 0) + (πan−1 ⊗ V n−1x, p−1π2an ⊗ x)

since v(πaj) ≥ e for j < n − 1. Clearly zn−1 �= (0, 0). We have

V(zn−1) = 1 ⊗ V nx + πan−1 ⊗ V nx + π2an ⊗ x = π2an ⊗ x �= 0

since v(π2an) < e. Thus Ln−1 ∩ kerV = 0, as desired.
Conversely, suppose v(aj) ≥ e−1 for all j ≤ n−2, and that v(an) ≥ e−2. Then

again we have

zn−1 = (1 ⊗ V n−1x, 0) + (πan−1 ⊗ V n−1x, p−1π2an ⊗ x) �= (0, 0)

and

V(zn−1) = 1 ⊗ V nx + πan−1 ⊗ V nx + π2an ⊗ x = π2an ⊗ x.

However, since v(π2an) ≥ e we get V(zn−1) = 0, thus zn−1 ∈ L∩kerV and (L, M)
is not a finite Honda system. �
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Remark 5.6. Of course, in the case R = W (k) we have e = 1, so it is impossible to
choose aj,r ∈ R to satisfy the conditions in the theorem. While it can also be shown
quickly using the “classical” theory of finite Honda systems, an immediate conse-
quence of this theorem is that these Hopf algebras do not lift to W (k). However,
they do lift to every extension of W (k) with low ramification.

Remark 5.7. The above provides every lift of H to R, however, different choices
of aj,r’s can lead to isomorphic finite Honda systems (and hence isomorphic Hopf
algebras). For example, it should be clear that if aj,r ≡ a′

j,r mod p for all j and r
then their finite Honda systems will be isomorphic.

Since the Dieudonné module of any height one Hopf algebra is a direct sum of
modules of the form E/E(F, V n), we obtain:

Corollary 5.8. Let H be the height one Hopf algebra defined over k corresponding
to the Dieudonné module

E/E(F, V n1) ⊕ E/E(F, V n2) ⊕ · · · ⊕ E/E(F, V nt)

with n1 ≥ n2 ≥ · · · ≥ nt. Then H lifts to R if 2 ≤ e ≤ p − 1. If e = 1 then H does
not lift to R.

As one can imagine, it can be difficult to explicitly compute the Hopf algebra
corresponding to a finite Honda system. Determining reasonable conditions for
when two finite Honda systems give the same lift seems like a very complicated
problem as well. We will conclude with a very small concrete example.

Example 5.9. Let M = E/E(F, V ). Then M corresponds to the unique simple
(affine finite abelian local-local) Hopf algebra H. Using (5.5) in the case where
n = 1 gives

z = z0 = (1 ⊗ x, 0) + (a0,0p
−1πa1,0 ⊗ x)

with v(a1,0) < e − 2. We may multiply by the appropriate invertible element of
R and assume z = (1 ⊗ x, p−1πc ⊗ x) with v(c) < e − 2. Thus the lifts of H
correspond to elements a = πc ∈ R with 1 ≤ v(a) ≤ e − 1 — of course this is a
well-known result of Tate and Oort [14, p. 21]. Let us denote the corresponding
R-Hopf algebra by Hc. Letting e′ = v(c) and c = πe′

c0 gives Hc = R[x]/(xp − bx),
where b = −πe−e′−1(uc0)−1.

In [14] it is also shown that Hc
∼= Hd if and only if c = drp−1 for some r ∈

R×. The corresponding map on the finite Honda systems is induced from the
endomorphism φ : M → M given by φ(x) = rσx. For explicit calculations of all of
the results in this example, see [12, 4.3].
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[9] A. Koch, Cyclic Dieudonné modules and Witt subgroups killed by p, Rocky Mountain J.
Math. 31 (2001), MR 1877332 (2002j:14051).

[10] A. Koch, Monogenic bialgebras over finite fields and rings of Witt Vectors, J. Pure Appl.
Algebra 163 (2001), 193–207, MR 1846661 (2002g:14067), Zbl 0988.16026.

[11] A. Koch, The Hopf algebra of a uniserial group, Pacific J. Math. 215 (2004), 347–356,
MR 2068786.

[12] A. Koch, Monogenic Hopf algebras over discrete valuation rings with low ramification, J.
Algebra, to appear.
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