AbStRact. We remove a small disc of radius $\varepsilon>0$ from the flat torus \mathbb{T}^{2} and consider a point-like particle that starts moving from the center of the disk with linear trajectory under angle ω. Let $\widetilde{\tau}_{\varepsilon}(\omega)$ denote the first exit time of the particle. For any interval $I \subseteq[0,2 \pi)$, any $r>0$, and any $\delta>0$, we estimate the moments of $\widetilde{\tau}_{\varepsilon}$ on I and prove the asymptotic formula

$$
\int_{I} \widetilde{\tau}_{\varepsilon}^{r}(\omega) d \omega=c_{r}|I| \varepsilon^{-r}+O_{\delta}\left(\varepsilon^{-r+\frac{1}{8}-\delta}\right) \quad \text { as } \quad \varepsilon \rightarrow 0^{+}
$$

where c_{r} is the constant

$$
\frac{12}{\pi^{2}} \int_{0}^{1 / 2}\left(x\left(x^{r-1}+(1-x)^{r-1}\right)+\frac{1-(1-x)^{r}}{r x(1-x)}-\frac{1-(1-x)^{r+1}}{(r+1) x(1-x)}\right) d x .
$$

A similar estimate is obtained for the moments of the number of reflections in the side cushions when \mathbb{T}^{2} is identified with $[0,1)^{2}$.

