
New York Journal of Mathematics
New York J. Math. 9 (2003) 295–302.

On unit-regular ideals

Huanyin Chen and Miaosen Chen

Abstract. In this paper we introduce the notion of unit-regular ideals for
unital rings, which is a natural generalization of unit-regular rings. It is shown
that every square matrix over unit-regular ideals admits a diagonal reduction.
We also prove that a regular ideal of a unital ring is unit-regular if and only if
pseudo-similarity via the ideal is similarity.

Let I be an ideal of a unital ring R. We say that I is regular in case for every
x ∈ I there exists y ∈ I such that x = xyx. Following Goodearl [7], a unital
ring R is unit-regular provided that for every x ∈ R there exists u ∈ U(R) such
that x = xux. Unit-regular rings play an important role in the structure theory of
regular rings. In this paper we introduce the notion of unit-regular ideals for unital
rings, which is a natural generalization of unit-regular rings. We say that an ideal
I of a unital ring R is unit-regular in case for every x ∈ I, there exists u ∈ U(R)
such that x = xux.

Let D be a division ring, V a countably generated infinite dimensional vector
space over D. Let I = {x ∈ EndDV | dimD(xV ) < ∞}. Clearly, I is an ideal
of EndDV . Given any x ∈ I, we have right D-module split exact sequences 0 →
Kerx → V → xV → 0 and 0 → xV → V → V/xV → 0. Then V ∼= xV ⊕ Kerx ∼=
V/xV ⊕ xV ; hence, dimD(Kerx) = dimD(V/xV ) = ∞ because dimD(xV ) < ∞.
By [5, Corollary], x ∈ EndD(V ) is unit-regular. Therefore I is a unit-regular ideal
of EndD(V ), while EndD(V ) is not a unit-regular ring by [5, Corollary]. This shows
that the notion of unit-regular ideal is a nontrivial generalization of unit-regularity
for regular rings.

An m× n matrix A over a unital ring R is called to admit a diagonal reduction
if there exist P ∈ GLm(R) and Q ∈ GLn(R) such that PAQ is a diagonal matrix.
It is well-known that every square matrix over unit-regular rings admits a diagonal
reduction by invertible matrices (cf. [9, Theorem 3]). But Henriksen’s method can
not be extend to unit-regular ideals. P. Ara et al. have extended this result to
separative exchange rings (cf. [1, Theorem 2.4]). Let D be a division ring, V an
infinite dimensional vector space over D. Set R = EndD(V ). Then R is one-
sided unit-regular, so it is a separative regular ring. Given any A ∈ Mn(R), by
[1, Theorem 2.5], A admits a diagonal reduction. So we can find U, V ∈ GLn(R)
such that UAV = diag(r1, . . . , rn). Assume now that all ri ∈ R are idempotents.
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Let E = diag(r1, . . . , rn). Then A = U−1EV −1, whence AV UA = A. That is,
Mn(R) is unit-regular. This shows that R is unit-regular, a contradiction. This
infers that there exists some square matrix over R which doesn’t admit a diagonal
reduction with idempotent entries. In other words, we may not reduce some square
matrices over unit-regular ideals to diagonal matrices with idempotent entries by
Ara’s technique. In this paper, we will prove that every square matrix over unit-
regular ideals admits a diagonal reduction with idempotent entries. We also prove
that a regular ideal of a unital ring is unit-regular if and only if pseudo-similarity
via the ideal is similarity, which give a nontrivial generalization of [8, Theorem].

Throughout, all rings are associative with identity and all modules are right
modules. U(R) denotes the set of all units of R and GLn(R) denotes the general
linear group of R. The notation FP(I) stands for the set of all finitely generated
projective right R-modules P such that P = PI.

Lemma 1. Let I be a regular ideal of a unital ring R. Then the following are
equivalent:
(1) I is unit-regular.
(2) If aR+ bR = R with a ∈ I, then there exists y ∈ R such that a+ by ∈ U(R).
(3) If Ra+Rb = R with a ∈ I, then there exists z ∈ R such that a+ zb ∈ U(R).

Proof. (1) ⇒ (2) Suppose that aR + bR = R with a ∈ I. Then ax + bz = 1
for some x, z ∈ R. Since a ∈ I, we have u ∈ U(R) such that a = aua. Set
au = e. Then e ∈ R is an idempotent. Furthermore, we have eu−1x + bz = 1;
hence e+ bz(1− e) = 1− eu−1x(1− e) ∈ U(R). Let y = z(1− e)u−1. We see that
a+ by =

(
1− eu−1x(1− e)

)
u−1 ∈ U(R), as asserted.

(2) ⇒ (1) Given any x ∈ I, we have y ∈ R such that x = xyx. From xy +
(1 − xy) = 1, we have z ∈ R such that x + (1 − xy)z ∈ U(R). By [6, Lemma
3.1], we have s ∈ R such that y + s(1 − xy) = u ∈ U(R). Therefore x = xyx =
x
(
y + s(1− xy)

)
x = xux, as required.

(1) ⇔ (3) By symmetry, we get the result. �

For any α, β, a, b ∈ R, we set

[α, β] =
(
α 0
0 β

)
, B12(a) =

(
1 a
0 1

)
, B21(b) =

(
1 0
b 1

)
.

In [4, Proposition 2], the first author and F. Li showed that ideal-stable range
conditions are invariant under matrix extensions. Now we give an analogue for
unit-regular ideals.

Theorem 2. Let I be a unit-regular ideal of a unital ring R. Then Mn(I) is a
unit-regular ideal of Mn(R).

Proof. Let I be a unit-regular ideal of a unital ring R. By [2, Lemma 2], Mn(I) is
a regular ideal of Mn(R). Suppose that AX +B = In with A = (aij) ∈Mn(I) and

X = (xij), B = (bij) ∈ Mn(R). Then
(

A B
−In X

)
=

(
X XA− In
In A

)−1

∈
GL2

(
Mn(R)

)
. Since a11R + · · ·+ a1nR + b11R + · · ·+ b1nR = R with a11 ∈ I, by

Lemma 1, we can find y2, . . . , yn, z1, . . . , zn ∈ R such that

a11 + a12y2 + · · ·+ a1nyn + b11z1 + · · ·+ b1nzn = u1 ∈ U(R).
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Thus

(
A B

−In X

)




1 01×(2n−1)

y2
...
yn

z1
...
zn

I2n−1




=




u1 a12 . . . a1n b11 . . . b1n

a′21 a22 . . . a2n b21 . . . b2n

...
...

. . .
...

. . .
...

∗∗ an2 . . . ann bn1 . . . bnn

∗∗ 0 . . . 0 x11 . . . x1n

...
...

. . .
...

. . .
...

∗∗ 0 . . . −1 xn1 . . . xnn



;

hence,

( ∗ 0
0 In

) (
A B

−In X

) ( ∗ 0
∗∗ In

)
=




u1 a′12 . . . a′1n b′11 . . . b′1n

0 a′22 . . . a′2n b′21 . . . b′2n
...

...
. . .

...
. . .

...
0 a′n2 . . . a′nn b′n1 . . . b′nn

∗∗ 0 . . . 0 x11 . . . x1n

...
...

. . .
...

. . .
...

∗∗ 0 . . . −1 xn1 . . . xnn



,

where a′22 = a22 − a′21u
−1
1 a12 ∈ I. Analogously, we claim that

[∗, ∗]
(

A B
−In X

)
B21(∗)[∗, ∗]

=




u1 a
(n)
12 . . . a

(n)
1n b

(n)
11 . . . b

(n)
1n

0 u2 . . . a
(n)
2n b

(n)
21 . . . b

(n)
2n

...
...

. . .
...

. . .
...

0 0 . . . un b
(n)
n1 . . . b

(n)
nn

∗∗ ∗ . . . ∗ x11 . . . x1n

...
...

. . .
...

. . .
...

∗∗ ∗ . . . ∗ xn1 . . . xnn




= [∗, ∗]B21(∗)B12(∗),
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where u1, u2, . . . , un ∈ U(R). So
(

A B
−In X

)
= [∗, ∗]B21(∗)B12(∗)B21(∗); and

then
(

A B
−In X

)
B21(Y ) = [∗, ∗]B21(∗)B12(∗) for a Y ∈ Mn(R). This implies

that A+BY ∈ GLn(R). It follows by Lemma 1 that Mn(I) is unit-regular. �

Corollary 3. Let I be a unit-regular ideal of a unital ring R. Then every square
matrix over I is a product of an idempotent matrix and an invertible matrix.

Proof. Let A ∈Mn(I). In view of Theorem 2, there exists U ∈ GLn(R) such that
A = AUA. Set E = AU . Then E = E2 and A = EU−1, as asserted. �

Lemma 4. Let I be a unit-regular ideal of a unital ring R. Suppose that a, b ∈ I.
Then the following hold:
(1) If aR = bR, then there exists u ∈ U(R) such that a = bu.
(2) If Ra = Rb, then there exists u ∈ U(R) such that a = ub.

Proof. Suppose that aR = bR with a, b ∈ I. Then we have x, y ∈ R such that
ax = b and a = by. Assume that a = aa′a. Replacing a′ax with x, we may assume
that x ∈ I. Likewise, we may assume that y ∈ I. Obviously, b = ax = byx. From
yx+(1− yx) = 1, we have z ∈ R such that y+(1− yx)z = u ∈ U(R) by Lemma 1.
As a result, we get a = by = b

(
y+(1−yx)z) = bu. The second statement is proved

by the symmetry. �

Theorem 5. Let I be a regular ideal of a unital ring R. Then the following are
equivalent:
(1) I is unit-regular.
(2) If aR ∼= bR with a, b ∈ I, then there exist u, v ∈ U(R) such that a = ubv.

Proof. (1) ⇒ (2) Suppose that ψ : aR ∼= bR with a, b ∈ I. Clearly, ψ(a)R = bR.
Because of the regularity of I, we have an idempotent e ∈ R such that bR = eR.
Hence ψ(a)R = eR. This infers that ψ(a) ∈ R is regular as well. So we can find
c ∈ R such that ψ(a) = ψ(a)cψ(a) = ψ

(
acψ(a)

)
. It follows that a = acψ(a) ∈

Rψ(a), whence Ra ⊆ Rψ(a). Inasmuch as a ∈ I is regular, we have a = ada for
some d ∈ R. This implies that ψ(a) = ψ(ada) = ψ(a)da ∈ Ra; hence, Rψ(a) ⊆ Ra.
So we see that Ra = Rψ(a). Clearly, ψ(a) ∈ I. In view of Lemma 4, there exist
u, v ∈ U(R) such that ψ(a) = ua and b = ψ(a)v. Therefore we conclude that
b = uav.

(2) ⇒ (1) Given any x ∈ I, there exists y ∈ R such that x = xyx. Set e = xy.
Then we have xR = eR with x, e ∈ I, so there are u, v ∈ U(R) such that x = uev.
We easily check that x = x(v−1u−1)x, as required. �

Lemma 6. Let I be a regular ideal of a unital ring R. If P ∈ FP(I), then there
exist idempotents e1, . . . , en ∈ I such that P ∼= e1R⊕ · · · ⊕ enR.

Proof. Suppose that P ∈ FP(I). Then we have a right R-module Q such that
P ⊕ Q ∼= nR for some n ∈ N. Let e : nR → P be the projection onto P . Then
P ∼= e(nR), whence EndR(P ) ∼= eMn(R)e. Inasmuch as P = PI, we have e(nR) =
e(nR)I ⊆ nI. Set e = (α1, . . . , αn) ∈Mn(R). We have e(1, 0, . . . , 0)T ∈ nI. Hence
α1 ∈ nI. Likewise, we have α2, . . . , αn ∈ nI. Therefore e ∈ Mn(I). Since I is
a regular ideal of R, by [2, Lemma 2], Mn(I) is also regular. One directly checks
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that EndR(P ) is a regular ring, hence an exchange ring. Thus P has the finitely

exchange property. Set M = P ⊕Q. Then we have M = P ⊕Q =
n⊕

i=1

Ri with all

Ri
∼= R. By the finite exchange property of P , we have Qi(1 ≤ i ≤ n) such that

M = P ⊕
(

n⊕
i=1

Qi

)
, where all Qi are direct summands of Ri respectively. Assume

that Qi ⊕ Pi = Ri for all i. Then P ⊕
(

n⊕
i=1

Qi

)
=

(
n⊕

i=1

Pi

)
⊕

(
n⊕

i=1

Qi

)
. Hence

P ∼= P1 ⊕ · · · ⊕ Pn, where Pi is isomorphic to a direct summand of R as a right
R-module for all i. So we have idempotents ei such that Pi

∼= eiR. Clearly, eiR
is a finitely generated projective right R-module. It follows from P = PI that
P

⊗
R

(R/I) = 0; hence, Pi

⊗
R

(R/I) = 0. That is, (eiR)
⊗
R

(R/I) = 0, so eiR =

eiRI ⊆ I. Furthermore, we have ei ∈ I for all i. Therefore P ∼= e1R ⊕ · · · ⊕ enR
with all ei ∈ I. �

Theorem 7. Let I be a unit-regular ideal of a unital ring R. Then for any A ∈
Mn(I), there exist invertible matrices P,Q ∈Mn(R) such that

PAQ = diag(e1, . . . , en)

for some idempotents e1, . . . , en ∈ I.

Proof. Since I is a unit-regular ideal of R, Mn(I) is a unit-regular ideal of Mn(R)
by Theorem 2. Given any A ∈ Mn(I), we have B ∈ GLn(R) such that A =
ABA. Set E = AB. Then E = E2 ∈ Mn(I) and AMn(R) = EMn(R). Clearly,
ERn ∈ FP(I). From Lemma 6, we can find idempotents e1, . . . , en ∈ I such
that ERn ∼= e1R ⊕ · · · ⊕ enR ∼= diag(e1, . . . , en)Rn as right R-modules. Hence
ERn×1 ∼= diag(e1, . . . , en)Rn×1, where Rn×1 consisting of all n-column vectors over
R is a right R-module and a left Mn(R)-module. Let R1×n = {(x1, . . . , xn) | xi ∈
R}. Then R1×n is a left R-module and a right Mn(R)-module. One checks that
(ERn×1)

⊗
R

R1×n ∼= (
diag(e1, . . . , en)Rn×1

) ⊗
R

R1×n. In addition, Rn×1
⊗
R1×n ∼=

Mn(R) as right Mn(R)-modules. Thus,

AMn(R) = EMn(R) ∼= diag(e1, . . . , en)Mn(R).

According to Theorem 5, we have invertible matrices P,Q ∈ Mn(R) such that
PAQ = diag(e1, . . . , en), as asserted. �

Let I be an ideal of a unital ring R. We say that I has stable range one provided
that aR+ bR = R with a ∈ 1 + I, b ∈ R implies that a+ by ∈ U(R) for a y ∈ R. It
is well known that I having stable range one depends only on the ring structure of
I and not on the ambient ring R. Let I and J be regular ideals of a unital ring R.
If I has stable range one, then I + J is unit-regular if and only if so is J .

Corollary 8. Let R be a regular, right self-injective ring, and let A ∈ Mn(R). If
AMn(R) is directly finite, then there exist invertible matrices P,Q ∈ Mn(R) such
that PAQ = diag(e1, . . . , en) for some idempotents e1, . . . , en ∈ R.

Proof. Let I = {x ∈ R | xR is a directly finite right R–module }. In view of [7,
Corollary 9.21], I is an ideal of R. Given any idempotent e ∈ I, we know from [7,
Corollary 9.3 and Theorem 9.17] that eRe is unit-regular; hence, I has stable range
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one. This infers that I is unit-regular. Inasmuch as AMn(R) is directly finite, we
deduce that A ∈Mn(I). Therefore we complete the proof by Theorem 7. �

Let R be a unital ring, and let A ∈ Mn(R). If Mn(R)AMn(R) is a unit-
regular ideal of Mn(R), we claim that there exist invertible matrices P,Q ∈Mn(R)
such that PAQ = diag(e1, . . . , en) for some idempotents e1, . . . , en ∈ R. Since
Mn(R)AMn(R) is a unit-regular ideal ofMn(R), we have an ideal J of R such that
Mn(J) = Mn(R)AMn(R). Hence A ∈ Mn(J). Clearly, J is a regular ideal of R;
hence, A is a regular matrix over J . Analogously to Theorem 7, the result follows.
We say that a is pseudo-similar to b via I provided that there exist x, y, z ∈ I such
that xay = b, zbx = a and xyx = xzx = x. We denote it by a∼b via I. Note that
if eR ∼= fR for idempotents e, f ∈ I then e∼f via I, where I is an ideal of R.

Lemma 9. Let I be an ideal of a unital ring R. Then the following are equivalent:
(1) a∼b via I.
(2) There exist some x, y ∈ I such that a = xby, b = yax, x = xyx and y = yxy.

Proof. (2)⇒(1) is trivial.
(1)⇒(2) As a∼b via I, there are x, y, z ∈ I such that b = xay, zbx = a and

x = xyx = xzx. Then xa(yxy) = xzbx(yxy) = xzb(xyx)y = xzbxy = xay = b.
Analogously, (zxz)bx = a. By replacing y with yxy and z with zxz, we can assume
y = yxy and z = zxz. Furthermore, we directly check that xazxy = xzbxzxy =
xzbxy = xay = b, zxybx = zxyxayx = zxayx = zbx = a, zxy = zxyxzxy and
x = xzxyx, thus yielding the result. �
Theorem 10. Let I be a regular ideal of a unital ring R. Then the following are
equivalent:
(1) I is unit-regular.
(2) Whenever a∼b via I, there exists u ∈ U(R) such that a = ubu−1.

Proof. (1) ⇒ (2) Suppose that a∼b via I. According to Lemma 9, there exist
x, y ∈ I such that a = xby, b = yax, x = xyx and y = yxy. Since I is unit-regular,
we have v ∈ U(R) such that y = yvy. Let u = (1−xy−vy)v(1−yx−yv). It is easy
to verify that (1−xy−vy)2 = 1 = (1−yx−yv)2; hence, u ∈ U(R). In addition, we
have au = a(1−xy− vy)v(1− yx− yv) = −av(1− yx− yv) = −av+ ax+ av = ax.
Likewise, we have xb = ub. Clearly, ax = xbyx = xyaxyx = xyax = xb. Therefore
au = ub, as required.

(2) ⇒ (1) Given any x ∈ I, there exists y ∈ R such that x = xyx. Clearly,
ψ : (xy)R ∼= (yx)R with idempotents xy, yx ∈ I. Hence xy∼yx via I, so we have
u ∈ U(R) such that 1 − xy = u(1 − yx)u−1. Set a = (1 − xy)u(1 − yx) and
b = (1− yx)u−1(1− xy). Then 1− xy = ab and 1− yx = ba. Thus φ : (1− xy)R ∼=
(1 − yx)R. Define u ∈ EndR(R) so that u restricts to ψ : xR = (xy)R ∼= (yx)R
and u restricts to φ : (1− xy)R ∼= (1− yx)R. It is easy to verify that x = xux, as
asserted. �

Let A,B ∈ Mn(R). If Mn(R)AMn(R) +Mn(R)BMn(R) is a unit-regular ideal
of Mn(R), by Theorem 10 we deduce that A∼B if and only if there exists some
U ∈ GLn(R) such that A = UBU−1.
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Corollary 11. Let I be a regular ideal of a unital ring R. Then the following are
equivalent:
(1) I is unit-regular.
(2) Whenever R = A1 ⊕ B1 = A2 ⊕ B2 with A1, A2 ∈ FP(I) and A1

∼= A2, we
have B1

∼= B2.
(3) Whenever aR ∼= bR with a, b ∈ I, we have R/aR ∼= R/bR.

Proof. (1) ⇒ (2) Suppose that R = A1 ⊕B1 = A2 ⊕B2 with A1, A2 ∈ FP(I) and
A1

∼= A2. Then we have idempotents e, f ∈ I such that eR ∼= fR, and whence
e∼f via I. By Theorem 10, there exists u ∈ U(R) such that e = ufu−1. Hence
1 − e = u(1 − f)u−1. Set a = (1 − e)u(1 − f) and b = (1 − f)u−1(1 − e). Then
1− e = ab and 1− f = ba. Therefore we get B1

∼= (1− e)R ∼= (1− f)R ∼= B2.
(2) ⇒ (3) Suppose that aR ∼= bR with a, b ∈ I. Since I is regular, we have

idempotents e, f ∈ I such that aR = eR and bR = fR. Hence R/aR ∼= (1− e)R ∼=
(1− f)R ∼= R/bR.

(3) ⇒ (1) Given idempotents e, f ∈ I such that eR ∼= fR, then (1 − e)R ∼=
R/eR ∼= R/fR ∼= (1−f)R. Analogously to Theorem 10, we complete the proof. �

Recall that an ideal I of a unital ring is of bounded index if there is a positive
integer n such that xn = 0 for any nilpotent x ∈ I.

Corollary 12. Every regular ideal of bounded index is unit-regular.

Proof. Let R be a unital ring with a regular ideal I of bounded index. Suppose
that R = A1 ⊕ B1 = A2 ⊕ B2 with A1, A2 ∈ FP(I) and A1

∼= A2. Then we
have an idempotent e ∈ I such that A1

∼= eR ∼= A2. Since EndR(eR) ∼= eRe is a
regular ring of bounded index, by [7, Corollary 7.11], it is unit-regular. Therefore
we get B1

∼= B2 from [7, Proposition 4.13]. It follows from Corollary 11 that I is a
unit-regular ideal of R. �
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