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Power weak mixing does not imply multiple
recurrence in infinite measure
and other counterexamples
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Abstract. We show that for infinite measure-preserving transformations,
power weak mixing does not imply multiple recurrence. We also show that
the infinite measure-preserving “Chacon transformation” known to have in-
finite ergodic index is not power weakly mixing, and is 3-recurrent but not
multiply recurrent. We also construct some doubly ergodic infinite measure-
preserving transformations that are not of positive type but have conservative
Cartesian square. Finally, we study the power double ergodicity property.
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1. Preliminaries

In 1977, Furstenberg [F81] showed that if T is a finite measure-preserving (in-
vertible) transformation on a measure space (X,λ), then for all integers d >
0 and all sets A of positive measure there exists an integer n > 0 such that
λ(T dn(A) ∩ T (d−1)n(A) ∩ · · · ∩ A) > 0; this property is called d-recurrence, and
if this property holds for all d > 0 then it is called multiple recurrence. This the-
orem is a far reaching generalization of Poincaré’s Recurrence Theorem, which is
probably the first result in measurable dynamics and asserts that if T is a finite
measure-preserving transformation then for any set A of positive measure there
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exists an integer n > 0 such that λ(Tn(A) ∩ A) > 0; this property of T is called
recurrence or conservativity. Furstenberg used his Multiple Recurrence Theorem to
give another proof of Szemerédi’s Theorem on the existence of arithmetic proges-
sions in sequences of integers of positive upper Banach density. For some time now
there has been interest in studying the multiple recurrence property for transforma-
tions preserving an infinite measure and investigating whether it is possible to use
similar results for infinite measure-preserving tranformations to prove combinato-
rial properties for certain sequences of integers. For a discussion of these questions
we refer the reader to [AN00].

It is well-known that infinite measure-preserving transformations need not be re-
current; however if T is ergodic and invertible on a non-atomic space then it must
be recurrent. But Eigen, Hajian and Halverson in [EHH98] constructed examples
of ergodic, invertible, rank one infinite measure-preserving transformations that are
not multiply recurrent. More recently, Aaronson and Nakada [AN00] have shown
that if T is an infinite measure-preserving Markov shift, then T is d-recurrent if and
only if the Cartesian product of d copies of T is recurrent. Markov shifts are of a
different nature than rank one tranformations, and using techniques from [AFS97]
one can observe that the transformations of Eigen, Hajian and Halverson have re-
current but non-ergodic Cartesian products. Thus it is of interest to investigate if
there are some dynamical properties that force multiple recurrence or d-recurrence
for general infinite measure-preserving transformations. A counterexample in this
direction was obtained by Adams, Friedman and Silva [AFS01], who showed that
there exists an infinite measure-preserving rank one T with all finite Cartesian
products of T ergodic (and recurrent), but such that T is not 2-recurrent and hence
not multiply recurrent; so infinite ergodic index (i.e., all finite Cartesian products
ergodic), for infinite measure-preserving transformations, does not imply multiple
recurrence. However, the example T in [AFS01] is such that T × T 2 is not conser-
vative, and thus it is of interest to ask whether conservativity of products of powers
implies multiple recurrence. A transformation is said to be power weakly mixing if
all finite Cartesian products of arbitrary non-zero powers of the transformation are
ergodic. The transformation of [AFS01] is an infinite ergodic index transformation
that is not power weakly mixing.

In Section 2 we show that the infinite measure-preserving transformation that
was shown in [DGMS99] to be power weakly mixing is not multiply recurrent; we in
fact show that it is 3-recurrent but not 16-recurrent, and thus power weak mixing
does not imply multiple recurrence for infinite measure-preserving transformations.
After this work was completed, T. Adams told the fourth-named author that is is
possible to modify the construction of [AFS01] to obtain a power weakly mixing
transformation that is not 2-recurrent (unpublished). More recently Danilenko and
the fourth-named author have generalized these examples to actions of countable
discrete Abelian groups. However, the constuctions of [AFS01] are more complex
than the simple geometric construction which we show is not multiply recurrent,
and the more recent constructions of Danilenko and Silva are algebraic in nature
and with methods different from those in this paper.

Section 3 studies the infinite measure-preserving “Chacon transformation” that
was shown in [AFS97] to be of infinite ergodic index. We show that this transfor-
mation is not power weakly mixing, but while arbitrary finite products of powers
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with absolute value is less than or equal to 4 of this transformation are recurrent,
the transformation is not 3-recurrent.

The examples in Sections 2 and 3 are rank one transformations constructed by
the process of cutting and stacking, where in particular each column in the induc-
tive construction is cut into a fixed, constant, number of subcolumns. This means
that the transformations have some partial rigidity (i.e., there is a sequence so that
sets come back to themselves at a constant rate when iterated along this sequence),
and by [AFS97] this implies that all their finite Cartesian products are conservative.
In Sections 4 and 5 our examples are also cutting and stacking transformations but
constructed in a different way, and are called tower staircases. Staircase construc-
tions gained importance when Adams [A98] used them to construct the first explicit
examples of finite measure-preserving rank one transformations that are mixing. In
the construction of staircases, columns are cut into an increasing, non-constant,
number of subcolumns, and spacers are added in a “staircase” fashion. They can
be of finite or infinite measure, and in our case infinite measure is obtained by
adding a small “tower”. In [BFMS01], it was shown that one can have infinite
measure-preserving tower staircases with strong dynamical properties such a dou-
ble ergodicity but with non-conservative Cartesian square. Sections 4 and 5 build
on these constructions and study tower staircases with some additional properties.

For finite measure-preserving transformations, Furstenberg [F81, Theorem 4.31]
showed that the double ergodicity property is equivalent to weak mixing. Double
ergodicity was studied in [BFMS01] for infinite measure-preserving transformations
and shown to be strictly weaker than conservative Cartesian square. It is also
shown in [BFMS01, Proposition 4.1] that in the infinite measure-preserving (and
nonsingular) case double ergodicity implies weak mixing. A proof that the converse
of this is not true is also given in [BFMS01]; however, we use this opportunity to
note that, while [AFS97] does not mention the double ergodicity concept, the proof
in [AFS97, Theorem 1.5] that shows that weak mixing does not imply ergodic
Cartesian square already shows that weak mixing does not imply double ergodicity.

In [AN00], it was shown that the property of positive type implies that all finite
Cartesian products of the transformation are conservative. In Section 4 we con-
struct a transformation that is doubly ergodic, with conservative Cartesian square,
but not of positive type. In Section 5 we introduce the property of power double
ergodicity, which is stronger than double ergodicity, and study some of its proper-
ties. We then construct a class of tower staircases T that are power doubly ergodic,
and observe that T contains transformations in a class of tower staircases that was
shown in [BFMS01] not to have conservative Cartesian square. We also show that
T contains transformations that are not of positive type.

Acknowledgments. This paper is based on research in the Ergodic Theory group
of the 2001 SMALL Undergraduate Summer Research Project at Williams College,
with Silva as faculty advisor. Support for the project was provided by a National
Science Foundation REU Grant and the Bronfman Science Center of Williams Col-
lege. We would like to thank the referee for several helpful remarks and suggestions.

Let (X,B, λ) denote a measure space isomorphic to the positive reals with
Lebesgue measure λ. A transformation T : X → X is said to be measurable if
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for all A ∈ B, T−1(A) ∈ B; if in addition λ(A) = λ(T−1(A)) we say that T is
measure-preserving. All our transformations will be invertible. A transformation T
is ergodic if for all A ∈ B, T−1(A) = A ⇒ λ(A)λ(Ac) = 0. T is conservative if for
all sets A of positive measure, there exists an n > 0 such that λ(Tn(A) ∩ A) > 0.
Note that T is conservative ergodic if and only if for all sets A, B of positive mea-
sure, there exists an n > 0 such that λ(Tn(A) ∩B) > 0. In our context (invertible
transformations in nonatomic spaces), ergodicity implies conservativity. T has infi-
nite ergodic index if all finite products T ×T × . . . T are ergodic. T is power weakly
mixing if for all k1, . . . , ki ∈ Z \ {0}, T ki × · · · × T k1 is ergodic.

We describe a geometric construction for rank one transformations using “cut
and stack” procedures, see e.g. [F70]. A column C is an ordered set of h > 0
pairwise disjoint intervals in R of the same measure. We think of the intervals in
a column as being stacked so that element i + 1 is directly above element i, 0 ≤
i ≤ h− 2. The elements of C are called levels and h is the height of C. When clear
from the context we also let C denote the union of the levels of the column. The
column C partially defines a transformation T = TC on all levels in C except level
h− 1, by the (unique orientation preserving) translation that takes level i to level
i + 1. In other words, T maps a point in any level i, 0 ≤ i < h − 1, to the point
directly above it in level i + 1. Thus if we let B be the bottom level in C, we can
write the ith level as T i(B), i = 0, . . . , h − 1. A cut and stack construction for a
measure-preserving transformation T : X −→ X consists of a sequence of columns
Cn = {Bn, T (Bn), . . . , Thn−1(Bn)} of height hn such that:

i) Cn+1 is obtained by (vertically) cutting Cn into rn ≥ 2 equal-measure sub-
columns (or copies of Cn), putting a number of spacers (new levels of the same
measure as any of the levels in the rn subcolumns) above each subcolumn,
mapping the top level of each subcolumn to the spacer above it, and stacking
left under right (i.e., the top level (or top spacer if it exists) of each sub-
column is mapped by translation to the bottom subinterval of the adjacent
subcolumn to its right). In this way Cn+1 consists of rn copies of Cn, possibly
separated by spacers. Given a level I in Cn we denote by I [i] the portion of
I in subcolumn i of Cn, 0 ≤ i ≤ rn − 1.

ii) Bn is a union of elements from {Bn+1, T (Bn+1), . . . , Thn+1−1(Bn+1)}.
iii)

⋃
n Cn generates the Borel sets, i.e., for all subsets A in X with λ(A) > 0 and

for all ε > 0, there exists B, a finite union of elements from Cn, for some n,
such that λ(A∆B) < ε.

Note that I = T k(B	) is in C	, for k = 0, . . . , h	−1. For any n > �, I is the union
of some elements in Cn = {Bn, T (Bn), . . . , Thn−1(Bn)}. We call the elements in
this union copies of I. We denote by In,j , for 0 ≤ j ≤ r	 · · · · · rn−1 −1, the jth copy
of I in Cn, numbered from the bottom up, and by I

[i]
n,j the portion of In,j which is

in the subcolumn i, 0 ≤ i ≤ rn − 1.

Definition 1.1. Let N > 0 and � ≥ k > 0. The distance between levels T 	(BN )
and T k(BN ) in CN is defined to be �− k. For k ≥ 0 and I in CN define σN,k to be
the finite ordered set consisting of the distances between the copies of I in CN+k+1,
starting from the bottom of CN+k+1, so that the ith element of σN,k is the distance
between copy i and copy i + 1 of I in CN+k+1. (Note that σN,k is independent
of the choice of I in CN .) We denote by ord(σN,k) the number of terms in the
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sequence σN,k and by Σ(σN,k) the sum of the terms in the sequence σN,k. Note
that ord(σN,k) < ∞. In general, given a finite set A we denote by Σ(A) the sum of
the elements of A.

Given a level I in CN , we have λ(I∩T j(I)) > 0 for an integer j > 0 if and only if
j is equal to the sum of consecutive terms of σN,k for some k, since the intersection
must be of copies of I in CN+k+1 for some k. We call this sequence of terms of σN,k

summing to j a j-subseries of σN,k. We will have λ(I ∩ T j(I) ∩ · · · ∩ T dj(I)) > 0 if
and only if, for some k, σN,k contains d adjacent j-subseries. We call the sequence
composed of d adjacent j-subseries a d-sum sequence, and we call j the common
sum of this sequence. If rn = r is independent of n and σN,k contains a d-sum
sequence with common sum j, then for a level I in CN , since the intersections are
of full levels in CN+k+1, we have

λ(I ∩ T j(I) ∩ · · · ∩ T dj(I)) ≥
(

1
r

)k+1

λ(I).

2. Power weakly mixing but not multiply recurrent

An invertible transformation T is d-recurrent if for any set A of positive measure,
there exists an integer n > 0 such that λ(T dn(A) ∩ T (d−1)n(A) ∩ · · · ∩A) > 0. If T
is d-recurrent for all integers d > 0, then T is called multiply recurrent.

In this section we describe a rank one, infinite measure-preserving transformation
T that is known to be power weakly mixing and show that it is not multiply
recurrent. We also show that for infinitely many positive integers d there exist power
weakly mixing transformations that are d-recurrent but not d+1-recurrent. Finally,
we describe a large class of transformations which are not multiply recurrent.

We now construct the rank one transformation T shown in [DGMS99] to be
power weakly mixing. First we define inductively a sequence of columns. Let C0

have base B = [0, 1) and height h0 = 1. Given a column Cn with base Bn,0 =[
0, 1

4n

)
and height hn, Cn+1 is formed as follows: Cn is cut vertically three times

so that Bn,0 is cut into the intervals B[0]
n,0 = [0, 1

4n+1 ), B[1]
n,0 =

[
1

4n+1 ,
1
2 ( 1

4n )
)
, B[2]

n,0 =[
1
2 ( 1

4n ), 3
4 ( 1

4n )
)
, B[3]

n,0 =
[
3
4 ( 1

4n ), 1
4n

)
. Next, a column of spacers hn high is added

to the subcolumn whose base is B
[1]
n,0, and a single spacer is added to the top

of the subcolumn whose base is B
[3]
n,0. Finally, the four subcolumns are stacked

left under right, i.e., the top level of a subcolumn is sent to the bottom level of
the subcolumn to the right by the translation map. The resulting column Cn+1

now has base Bn+1,0 =
[
0, 1

4n+1

)
and height hn+1 = 5hn + 1 = 5n+2−1

4 . Note
that

⋃
n≥0 Cn = [0,∞). We see that σN,0 = hN , 2hN , hN and Σ(σN,0) = 4hN .

Furthermore, for k ≥ 1, we see that

σN,k =σN,k−1, hN+k − Σ(σN,k−1), σN,k−1, 2hN+k − Σ(σN,k−1),

σN,k−1, hN+k − Σ(σN,k−1), σN,k−1.

Then

Σ(σN,k) = 4hN+k + Σ(σN,k−1) = 4
N+k∑
j=N

hj = 5N+1


 k∑

j=0

5j


− (k + 1)
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Σ(σN,k) =
5N+1(5k+1 − 1)

4
− k − 1

This yields hN+k − Σ(σN,k−1) = hN + k and thus

σN,k = σN,k−1, hN + k, σN,k−1, hN+k + hN + k, σN,k−1, hN + k, σN,k−1.

Note that σN,k is symmetric about its center term.

Lemma 2.1. If σN,k contains a d-sum sequence for d ≥ 4, then the sequence does
not contain the center term of σN,k (the hN+k + hN + k term).

Proof. We will prove this by contradiction. Suppose σN,k contains a d-sum se-
quence with common sum j that contains the center term of σN,k, d ≥ 4. Then
j ≥ hN+k + hN + k. Also, either the terms right of the center term or the terms left
of the center term must completely contain at least 2 j-subseries. By symmetry
we may assume without loss of generality that the terms left of the center term
contain at least 2 complete j-subseries. Thus the sum of the terms in σN,k left of
the center term is at least 2j, so

2Σ(σN,k−1) + hN + k ≥ 2(hN+k + hN + k)

Then
5N+k+1 − 5N+1

2
− 2k + hN + k ≥ 5N+k+1 − 1

2
+ 2hN + 2k

which simplifies to
0 ≥ 3hN + 3k.

However, hN ≥ 1 and k ≥ 0, so this is a contradiction. Thus if σN,k contains a
d-sum sequence for d ≥ 4, then the sequence does not contain the center term of
σN,k. �

Given a real number 0 < ε < 1 and a set A ⊂ X, λ(A) > 0, we say that a subset
I ⊂ X of finite positive measure is (at least) (1 − ε)-full of A if

λ(I ∩A) > (1 − ε)λ(I).

Theorem 2.1. Let T be the rank one transformation defined above. Then T is a
power weakly mixing transformation that is 3-recurrent but not multiply recurrent.
Hence power weak mixing does not imply multiple recurrence.

Proof. T was shown to be power weakly mixing in [DGMS99]. First we will show
that T is 3-recurrent. Given a set A ⊂ X, λ(A) > 0, we may pick a level I in some
CN such that I is (1 − 1

512 )-full of A. We define subsequences S1, S2, and S3 of
σN,2 where S1 consists of terms 2 through 8, S2 terms 9 through 19, and S3 terms
20 through 26 of σN,2. Then

Σ(S1) = 2hN + hN + (hN + 1) + hN + 2hN + hN + (hN+1 + hN + 1)
= 14hN + 3,

and similarly,

Σ(S2) = Σ(S3) = 14hn + 3.

Thus σN,2 contains a 3-sum sequence with j = 14hN +3, so λ(I∩T jI∩T 2jI∩T 3jI) ≥
( 1
64 )λ(I). Also, since I is

(
1 − 1

512

)
-full of A, each copy of I in CN+3 is 7

8 -full of
A. Hence λ(I ∩ A ∩ T j(I ∩ A) ∩ T 2j(I ∩ A) ∩ T 3j(I ∩ A)) > 1

128λ(I). Therefore
λ(A ∩ T j(A) ∩ T 2j(A) ∩ T 3j(A)) > 1

128λ(I) > 0.
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Now we will prove that T is not 16-recurrent by contradiction; in fact, we will
show that for any integers N, k ≥ 0, σN,k does not contain a 16-sum sequence.
Suppose T is 16-recurrent. Choose an integer N ≥ 0 and a level I in CN . Then
there exist integers j ≥ 1 and k ≥ 2 such that σN,k contains a 16-sum sequence
with common sum j and k = min{h|σN,h contains a 16-sum sequence with common
sum j}. By Lemma 2.1 the 16-sum sequence may not contain the center term of
σN,k. Since

σN,k = σN,k−1, hN + k, σN,k−1, hN+k + hN + k, σN,k−1, hN + k, σN,k−1

the 16-sum sequence must be entirely contained in

SN,k = σN,k−1, hN + k, σN,k−1

and by the definition of k it must contain the center term thereof (otherwise the
16-sum sequence is entirely contained in σN,k−1, contradicting the definition of k).
Thus we see that one of the σN,k−1 sequences must contain at least 8 complete,
adjacent j-subseries; without loss of generality let it be the further right one and
define � as the sum of the terms in the right-side σN,k−1 that are in the same j-
subseries as the hN + k term. Note that 0 ≤ � < j. Now let k′ = min{k|σN,k

contains an 8-sum sequence with common sum j}, so k′ < k. If we start from the
left end of σN,k′ and take the first 8 consecutive j-subseries, we may define �′ as
the sum of the terms in σN,k′ to the left of all 8 j-subseries. Then �′ ≤ � since the
first ord(σN,k′) terms of σN,k−1 are the same as σN,k′ . As before all 8 j-subseries
must be contained in SN,k′ = σN,k′−1, hN + k′, σN,k′−1 and one of these j-subseries
must contain the center term thereof. Since we took the first 8 j-subseries in σN,k′

starting from the left, the left-side σN,k′−1 in SN,k′ must contain at least 4 complete,
adjacent j-subseries. Then by Lemma 2.1 none of these j-subseries may contain
the center term of σN,k′−1, and since the j-subseries contained in σN,k′−1 must be
adjacent to an additional j-subseries containing the hN + k′ term of SN,k′ , all of
the j-subseries in the left-side σN,k′−1 must be to the right of the center term of
σN,k′−1. Thus all of the j-subseries in σN,k′ must be to the right of the center term
of the left-most σN,k′−1 and thus �′ > 1

2Σ(σn,k′−1) > 4j. Then � ≥ �′ > j which
is a contradiction. Thus there is no k such that σN,k contains a 16-sum sequence,
and thus T is not 16-recurrent. �

Remark 2.1. By this method it is possible to find infinitely many positive in-
tegers d such that there exists a power weakly mixing transformation T that is
d-recurrent but not d+1-recurrent. We consider a class of transformations Tr de-
fined by columns Cn, where we cut Cn into r ≥ 3 subcolumns, place a column of
spacers hn high over the second subcolumn from the left and a single spacer over the
subcolumn furthest to the right, and then stack left under right to form Cn+1. (Note
that the transformation previously considered is T4.) Then each Tr is dr-recurrent
but not dr+1-recurrent; 2 ≤ d3 < 13 and for r ≥ 4, r − 3 ≤ dr < r3 − r2 − r.

Proposition 2.1. Let T be a rank one transformation constructed by cutting Cn

into rn subcolumns and placing sn,i spacers over subcolumn i, 0 ≤ i ≤ rn − 1. If
{rn} is bounded, then T is not multiply recurrent if

lim inf
n→∞

an

hn
> 0, where an = max

0≤i≤rn−1
sn,i.
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Proof. Choose an integer R > 0 such that ∀n > 0, rn ≤ R and choose integers
N, q > 0 such that for n ≥ N , an

hn
> 1

q . Define bn to be the smallest integer greater

than R(hn+an)
an

and define pn = maxN≤k≤n bk. Now σN,n−N contains a term larger
than an, so a pn-sum sequence contained in σN,n−N cannot contain this term since
pnan > R(hn + an) > Σ(σN,n−N ). Now suppose for some k > N , σN,k−N contains
an (R2pk +R2−1)-sum sequence with common sum j. Removing the R−1 possible
terms that are not completely contained in some σN,k−N−1, we see that at least one
σN,k−N−1 contains an m-sum sequence, m ≥ (pkR+R−1), no further than j from
one of its ends (by this we mean that the sum of consecutive terms starting from the
end of σN,k−N−1 which are not included in the m-sum sequence is less than j). Then
considering the lowest � such that σN,	 contains an m-sum sequence with common
sum j, we see that at least one of the σN,	−1 sequences must contain a pk-sum
sequence and thus the m-sum sequence in σN,	 cannot contain the larger than aN+	

term in any σN,	−1. However, this implies that the m-sum sequence is not within
j of the end of σN,	, which is a contradiction. Thus for no n ≥ N does σN,n−N

contain an (R2pn + R2 − 1)-sum sequence. However, (q + 3)R3 > (R2pn + R2 − 1)
for n ≥ N , so T is not (q + 3)R3-recurrent. Thus T is not multiply recurrent. �

The following proposition shows that the converse of Proposition 2.1 is not true.

Proposition 2.2. There exists an infinite measure-preserving transformation T
with {rn} bounded such that

lim sup
n→∞

an

hn
> 0

and
lim inf
n→∞

an

hn
= 0

but T is not multiply recurrent.

Proof. Let T be a cut and stack transformation with rn = 2 for all n. Let sn,i =
2hn if i = 0 and n is odd, and let sn,i = 0 otherwise. Then lim supn→∞

an

hn
= 2 and

lim infn→∞ an

hn
= 0. We will prove that T is not 8-recurrent. We see that for n odd,

σN,n−N = σN,n−N−1, 3hn − Σ(σN,n−N−1), σN,n−N−1

and for n even

σN,n−N = σN,n−N−1, hn − Σ(σN,n−N−1), σN,n−N−1

= σN,n−N−2, 3hn−1 − Σ(σN,n−N−2), σN,n−N−2,

hn − Σ(σN,n−N−1), σN,n−N−2, 3hn−1 − Σ(σN,n−N−2), σN,n−N−2.

Suppose σN,n−N contains a d-sum sequence for d ≥ 4. Then for n odd the sequence
cannot contain the center term of σN,n−N , and for n even it cannot contain the
3hn−1 − Σ(σN,n−N−2) term.

Now choose a level I in CN and suppose T is 8-recurrent. Then there exists a
least integer n > N such that σN,n−N contains an 8-sum sequence. Let j denote
the common sum of this sequence and note that n must be even since this sequence
must contain the center term of σN,n−N . Now the sequence cannot contain the
3hn−1−Σ(σN,n−N−2) term in σN,n−N so one of the two center σN,n−N−1 sequences
must contain a 4-sum sequence with common sum j within j of its end. Consider
the lowest integer � such that σN,	−N contains a 4-sum sequence with common sum
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j (note that � must be even). This sequence must contain the center term of σN,	−N ,
but it cannot contain the 3h	−1 − Σ(σN,	−N−2) term. Thus the 4-sum sequence
is farther than j from the end of σN,	−N and any 4-sum sequence in σN,n−N−1 is
more than j from the end of σN,n−N−1, which is a contradiction. Therefore T is
not 8-recurrent. �

Remark 2.2. There is a multiply recurrent infinite measure-preserving transfor-
mation T with {rn} bounded such that

lim sup
n→∞

an

hn
> 0

but
lim inf
n→∞

an

hn
= 0.

In fact, let T be a cut and stack transformation with rn = 2 for all n. Let sn,i = 0
unless n = 2k for some integer k ≥ 1, in which case sn,0 = 2hn and sn,1 = 0. The
proof is left to the reader.

If {rn} is bounded, then T is not multiply recurrent if

lim inf
n→∞

sn,rn−1

hn+2
> 0.

3. 4-power conservative but not 3-recurrent

A nonsingular, invertible transformation is called d-power conservative if T k1 ×
· · · × T kr is conservative for any sequence of nonzero integers {k1 . . . kr} such that
|ki| ≤ d. There exist examples of infinite ergodic index transformations that are
not 2-power conservative [AFS01]; this example is also not 2-recurrent. In this
section we show that the infinite measure-preserving “Chacon transformation” T
of [AFS97] that has infinite ergodic index, is 4-power conservative but is not 3-
recurrent and is not 7-power conservative, and so not power weakly mixing. We
use the notion of partial rigidity to show conservativity of products. A measure-
preserving transformation T is partially rigid if there exists a fixed α, 0 < α ≤ 1,
and a strictly increasing sequence {an} such that for any measurable set A of finite
measure,

lim inf
n→∞ λ(T an(A) ∩A) ≥ αλ(A).

It is clear that if T is partially rigid then it must be conservative. It was shown in
[AFS97] that if T and S are partially rigid along the same sequence {an} then T×S
is partially rigid along {an}, and so if T is partially rigid all its finite Cartesian
products are conservative.

The transformation T is a cut and stack transformation constructed by cutting
column Cn into three pieces, so rn = 3 for all n ≥ 0, adding no spacers over
subcolumn 0, a single spacer over subcolumn 1 and a tower of 3hn + 1 spacers
over subcolumn 2, and then stacking left under right. More precisely, let the first
column C0 have base B = [0, 1) and height h0 = 1 and, given a column Cn with
base Bn,0 =

[
0, 1

3n

)
and height hn, Cn+1 is formed as follows: Cn is cut vertically

twice so that Bn is cut into the intervals B[1]
n,0 =

[
0, 1

3n+1

)
, B[2]

n,0 =
[

1
3n+1 ,

2
3n+1

)
and

B
[3]
n,0 =

[
2

3n+1 ,
1
3n

)
. Then add one spacer to the top of the subcolumn whose base



10 Gruher, Hines, Patel, Silva, and Waelder

is B
[2]
n,0 and 3hn + 1 spacers to the top of the subcolumn whose base is B

[3]
n,0, and

stack left to right. The height of Cn is given by:

hn = 6hn−1 + 2 =
(

7
5

)
6n − 2

5
.

We see that σ1,0 = 8, 9 and

σ1,n = σ1,n−1, hn+1 − Σ(σ1,n−1), σ1,n−1, hn+1 − Σ(σ1,n−1) + 1, σ1,n−1,

Σ(σ1,n−1) = 2

(
n∑

k=1

hk

)
+ n =

14
25

6n+1 +
n

5
− 84

25
.

Then hn − Σ(σ1,n−2) =
(

21
25

)
6n − n

5 + 79
25 , so

σ1,n−1 = σ1,n−2,

(
21
25

)
6n − n

5
+

79
25

, σ1,n−2,

(
21
25

)
6n − n

5
+

104
25

, σ1,n−2.

Lemma 3.1. The transformation T defined above is not 3-recurrent.

Proof. We will prove this by contradiction. Choose a level I in C1. Suppose we
have λ(I ∩ T j(I) ∩ T 2j(I) ∩ T 3j(I)) > 0 for some integer j > 0. Then there exists
a lowest integer k ≥ 2 such that σ1,k−1 contains a 3-sum sequence with common
sum j, and one of the j-subseries must contain either the ( 21

25 )6k − k
5 + 79

25 or the
( 21
25 )6k− k

5 + 104
25 term of σ1,k−1. Then j ≥ ( 21

25 )6k− k
5 + 79

25 > Σ(σ1,k−2). Since σ1,k−1

contains 3 j-subseries, at least one of the j-subseries must be completely contained
in one of the σ1,k−2 sequences, which requires j ≤ Σ(σ1,k−2), a contradiction. �
Lemma 3.2. T is 4-power conservative.

Proof. As shown in [AFS97], if each of T k1 , . . . , T kr is partially rigid along the
same sequence {an}, then T k1 × · · · × T kr is partially rigid along {an} and so is
conservative. Also, it is sufficient to check the partial rigidity property on levels
[AFS97]. Given a level I in CN , we see that for N ≤ n, 0 ≤ j ≤ 3(n−N):

λ(T 2hn+1(I [1]
n,j) ∩ I

[3]
n,j) =

(
1
3

)
λ(In,j),

so since I consists of 3n−N levels in Cn, λ(T 2hn+1(I) ∩ I) ≥ ( 1
3 )λ(I). Thus T is

partially rigid along {2hn + 1}n≥N . Furthermore,

λ(T 4hn+2(I [3]
n,j) ∩ I

[1]
n,j) ≥

(
1
9

)
λ(In,j).

Therefore λ(T 4hn+2(I)∩ I) ≥ ( 1
9 )λ(I), so T 2 is partially rigid along {2hn + 1}n≥N .

Also,

λ(T 6hn+3(I [2]
n,j) ∩ I

[2]
n,j) ≥

(
1
9

)
λ(In,j)

so that T 3 is partially rigid along {2hn + 1}n≥N . Finally,

λ(T 8hn+4(I [1]
n,j) ∩ I

[3]
n,j) ≥

(
1
9

)
λ(In,j)

so T 4 is also partially rigid along {2hn + 1}n≥N . Note that for any α > 0 and any
integer m > 0 such that λ(Tm(I)∩I) > αλ(I), we also have λ(I∩T−m(I)) > αλ(I)
since T is measure-preserving. Thus T k1×· · ·×T kr is partially rigid for any |ki| ≤ 4,
which completes the proof. �
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Theorem 3.1. Let T be the rank one transformation where Cn+1 is created by
cutting Cn into 3 subcolumns and placing 1 spacer over the second subcolumn and
3hn + 1 spacers over the third (defined above). Then T has infinite ergodic index
[AFS97], is not 3-recurrent, and is 4-power conservative but is not 7-power conser-
vative and therefore is not power weakly mixing.

Proof. That T has infinite ergodic index was shown in [AFS97]. 3-recurrence and
4-power conservatity were shown for T in Lemma 3.1 and Lemma 3.2, respectively.
We will prove that T is not 7-power conservative by contradiction. Fix an integer
N ≥ 3. Choose a level I in CN and let A = Π7

i=1I. Suppose there exists an integer
m > 0 such that

λ((T × T 2 × · · · × T 7)m(A) ∩A) > 0.

Then ∃ n > N such that hn−1 < m ≤ hn.
First we claim that m �= hn. Every term of σ3,n−4 is at least 302, so any two

copies of I are a distance � ≥ 302 apart. Consider T 2hn+1(J), where J is a copy of
I in Cn. T 2hn+1(J [1]) = J [3], so T 2hn(J [1]) ∩ I = ∅. Furthermore, T 2hn(J [2]) and
T 2hn(J [3]) are both in the spacers above the third subcolumn. Thus T 2hn(I)∩I = ∅
and so m �= hn.

Since the tower of spacers that is added to Cn−1 to build Cn consists of half of
the height of Cn, all the copies of I in Cn are in the bottom hn

2 levels. Then the
distance (i.e., number of levels measured in Cn+1) from the lowest copy of I in the
first subcolumn of Cn (seen as a level in Cn+1) to the highest copy of I in the third
subcolumn is no more than 5

2hn + 1, and the distance from the highest copy of I in
the third subcolumn to the top of Cn+1 is at least 7

2hn+1. Therefore T km(I)∩I = ∅
if 5

2hn + 1 < km ≤ 7
2hn + 1. We will prove inductively that km ≤ 5

2hn + 1 for all k
such that 1 ≤ k ≤ 7. For k = 1, m ≤ hn < 5

2hn+1. Next suppose that km ≤ 5
2hn+1

for some k, 1 ≤ k < 7. Then since m < hn,

(k + 1)m ≤ 5
2
hn + 1 + m <

7
2
hn + 1.

But T (k+1)m(I) ∩ I = ∅ if 5
2hn + 1 < (k + 1)m ≤ 7

2hn + 1, so (k + 1)m ≤ 5
2hn + 1.

Therefore km ≤ 5
2hn + 1 for 1 ≤ k ≤ 7.

Let k = 7. Then

hn−1 < m <
5
14

hn + 1 < 3hn−1,

since hn−1 ≥ 302. Furthermore, we have seen that it cannot be the case that
5
2hn−1 + 1 < km ≤ 7

2hn−1 + 1, so we cannot have 5
2hn−1 + 1 < m ≤ 7

2hn−1 +
1, 5

2hn−1 + 1 < 2m ≤ 7
2hn−1 + 1, or 5

2hn−1 + 1 < 3m ≤ 7
2hn−1 + 1. Thus either

7
6
hn−1 + 1 < m ≤ 5

4
hn−1

or
7
4
hn−1 + 1 < m ≤ 5

2
hn−1.

Clearly the first case occurs only if n ≥ N + 2; the only possibilities for the second
case with n = N + 1 are m = 2hN and m = 2hN + 1. However, T 4hN (I) ∩ I = ∅
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and T 10hN+5(I) ∩ I = ∅, so we need only consider the case when n ≥ N + 2. We
will consider first the case when 7

6hn−1 < m ≤ 5
4hn−1, which is equivalent to

42hn−2 + 14 < 6m ≤ 45hn−2 + 15.(1)

Given a copy of I in Cn−2, we see that in order to have λ(T p(I) ∩ I) > 0 while
sending I through the tower of spacers above the third subcolumn of Cn−1 no more
than once, we must have p ≤ 38hn−2. However, to send I through the tower of
Cn−1 twice, we require p > 91

2 hn−2. Thus for 1 ≤ k ≤ 7, we cannot have

38hn−2 < km ≤ 91
2
hn−2.

However, this contradicts (1), since hn−2 ≥ 50.
We now consider the other case:

7
4
hn−1 < m ≤ 5

2
hn−1,

21
2
hn−2 +

7
2
< m ≤ 15hn−2 + 5.

Then 4m ≥ 42hn−2 + 14 > 38hn−2. Then 4m > 91
2 hn−2, so we have

91
8
hn−2 < m ≤ 15hn−2 + 5,

79hn−2 < 7m ≤ 105hn−2 + 35.

Now, the distance between copies of I along a path not passing through the tower
in Cn can be no greater than 149

2 hn−2, and the distance between copies of I along
a path that does pass through the Cn tower must be at least 108hn−2. So 7m ≥
108hn−2, which is a contradiction. �

4. Conservative product, doubly ergodic but not positive
type

Examples of conservative ergodic, infinite measure-preserving transformations T
such that T × T is not conservative have been know for some time. The first ex-
amples were constructed by Kakutani and Parry [KP63] and were infinite Markov
shifts. Markov shifts were also used in [ALW79] to construct an infinite measure-
preserving transformation T that is weakly mixing but such that T × T is not
conservative, hence not ergodic. An infinite (or finite) measure-preserving trans-
formations T is said to be weakly mixing if for all ergodic finite measure-preserving
transformations S, the product T × S is ergodic. Rank one versions of the first
example, and of the second example but with T × T conservative but not ergodic,
were constructed in [AFS97]. As remarked in Section 3, one technique to show
conservativity of products is partial rigidity. It is easy to see that, for the rank
one transformations of the previous sections, if the number of cuts {rn} is bounded
then the transformation is partially rigid (along the sequence of heights {hn}). A
property that is weaker than partial rigidity, originally introduced by Hajian and
Kakutani, is positive type. A transformation T is said to be of positive type if for
all measurable sets A such that λ(A) > 0:

lim sup
n→∞

λ(Tn(A) ∩A) > 0.
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It was recently shown by Aaronson and Nakada [AN00] that positive type implies
all finite Cartesian products conservative. Here we construct an infinite measure-
preserving transformation T such that T ×T is conservative but T is not of positive
type, and such that in addition T satisfies an interesting dynamical property called
double ergodicity.

While in the finite measure-preserving case weak mixing and power weak mixing
are equivalent, it is now well-known that in the case of infinite measure-preserving
transformations there is an increasing hiearchy of properties between weak mix-
ing and power weak mixing. The first counterexample in this direction is due to
Kakutani and Parry [KP63] where, in particular, they construct an infinite measure-
preserving transformations T such that T × T is ergodic but T × T × T is not. A
transformation T is doubly ergodic if for all A, B with λ(A)λ(B) > 0, there exists
an n > 0 such that λ(T−n(A) ∩ A) > 0 and λ(T−n(A) ∩ B) > 0. Furstenberg
[F81] showed that for finite measure-preserving transformations double ergodicity
is equivalent to weak mixing. However, in [BFMS01] it is shown that double ergo-
dicty of T does not imply that T × T is ergodic. This is done by showing that all
tower staircases (defined below) are doubly ergodic and then showing that there are
tower staircases with T × T not conservative, hence not ergodic. It is also shown
in [BFMS01] that double ergodicity implies weak mixing; as mentioned earlier, a
proof that the converse is not true is also given in [BFMS01], but the proof in
[AFS97, Theorem 1.5] that shows weak mixing does not imply ergodic Cartesian
square already shows that weak mixing does not imply double ergodicity.

In this section we construct a class of tower staircases, which by [BFMS01] are
doubly ergodic, and show that they are not of positive type but have conservative
Cartesian square. A cut and stack transformation is called a tower staircase if
sn,i = i for 0 ≤ i ≤ rn − 2 and rn → ∞. They may be finite or infinite measure-
preserving depending of the choice of rn and of the “tower” sn,rn−1. If in addition
sn,rn−1 = rn − 1 they are called pure staircases. Pure staircases were used by
Adams [A98] to construct explicit examples of finite measure-preserving rank one
transformations that are mixing. In our case here (as in [BFMS01]) we use the
staircase part (sn,i = i, 0 ≤ i ≤ rn − 2) to obtain double ergodicity, and the
tower part (sn,rn−1) to obtain not positive type, while still obtaining conservative
Cartesian square. One property of tower staircases is that the sequence of cuts {rn}
increases to ∞ and so the earlier argument of partial rigidity cannot be used to
show conservativity of products; in fact, by [BFMS01] there exist tower staircases
with non-conservative Cartesian square. The proof that our special class of tower
staircases has conservative Cartesian square follows the technique in [BFMS01] that
uses Siegel’s Lemma from Diophantive equations. In what follows of this section T
will be a tower staircase transformation with rn = n and the number of spacers on
the tower in column Cn given by

sn,rn−1 = (nhn + (n− 1)(n− 2)/2)2.

We first show that T × T is conservative. In [BFMS01] it is shown that if T is a
tower staircase with {rn} ↑ ∞ such that

(rn)1/n < M, for some M, and
∞∏

n=	

(
1 − 1

rn

)
> 0,
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then T × T is conservative. Our contribution here is to note that essentially the
same proof in [BFMS01] works for the case when rn = n; we include the details
for completeness. Before proceeding further, we introduce some notation. Let I be
a level in Cn and let j ≥ 0. We describe a way to index copies of I in Cn+j . In
Cn+j there are n+ j− 1 copies of Cn+j−1, separated by spacers. Each copy can be
indexed from bottom to top with an integer from 0 to n+ j − 2 and we denote the
k1-copy, for 0 ≤ k1 < n + j − 1, by Cn,j [k1]. In turn, there are n + j − 2 copies of
Cn+j−2 in Cn+j−1 and when viewed in Cn+j each Cn,j [k1] has copies of Cn+j−2,
and the k2 such copy, 0 ≤ k2 < n+ j−2, in Cn,j [k1], is denoted by Cn,j [k1, k2]. We
continue in this way until we see copies of Cn. For example, for j = 3, the copies of
Cn in Cn+3 are indexed by Cn,j [k1, k2, k3] with 0 ≤ ki < n− (3 − i), i = 1, 2, 3. In
this way each copy of I in Cn+j is in a unique Cn,j [k1, . . . , kj ] for some k1, . . . , kj ,
and so it can be indexed by a j-tuple of numbers [a1, a2, . . . , aj ] , 0 ≤ ai < rn+j−i

where ai = ki. The following proposition follows by induction and its proof can be
found in [BFMS01].

Proposition 4.1. The distance d(a, b) between levels a = [a1, a2, . . . , aj ] and b =
[b1, b2, . . . , bj ] is given by

d(a, b) =
j∑

k=1

(
(bk − ak)hn+j−k +

(bk − ak)(bk + ak − 1)
2

)
.

This result is negative if a is above b; the usual positive distance is given by |d(a, b)|.
Given a, b copies of I in Cn+j we can specify a j-tuple c by letting ck = bk − ak.

For convenience, we refer to this j-tuple c as b−a. We use a corollary from Siegel’s
Lemma below. The proof of the corollary is as in [BFMS01] but we include it here
for completeness and to correct some typos in [BFMS01]; a proof of Siegel’s Lemma
may be found in [HS00].

Siegel’s Lemma. Suppose we have a system of equations with integer coefficients,
with n > m:

a11x1+ · · · + a1nxn = 0
...

am1x1+ · · · + amnxn = 0

Suppose also that |aij | ≤ A where A is a positive integer. Then there is a nontrivial
solution in the integers with

|xi| < 1 + (nA)m/(n−m) (i = 1, . . . , n).

Corollary 4.1. Given {rk}∞k=1 increasing with r
1
k

k < M , for some M > 0, and
given n ≥ 1, there exists j such that for any {dk}j

k=1 with |dk| ≤ rn+k there exists
a nontrivial solution in integers {xk}j

k=1 to
∑j

k=1 dkxk = 0 with |xk| < M + 2.

Proof. Using Siegel’s Lemma for m = 1, for any j there always exists a solution

with |xk| < 1+(jrn+j)
1

j−1 = 1+(j
1

j−1 )(rn+j
1

n+j )
n+j
j−1 , which tends to 1+(1)(M) as

j → ∞. Thus for each j sufficiently large there is a solution with |xk| < 2 +M . �

Proposition 4.2. T × T is conservative.
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Proof. We first show a special type of conservativity on sets I × J where I and
J are levels in column Cn. Let Cn+j(I) = {copies of I in Cn+j} and similarly for
Cn+j(J) . The squares are indexed by pairs (a, b), a ∈ Cn+j(I), b ∈ Cn+j(J). We
say that a pair (a, b) is a unique distance pair if there are no other pairs (a′, b′) such
that d(a, b) = d(a′, b′).

Suppose we have a pair of copies in Cn+j , a ∈ Cn+j(I) and b ∈ Cn+j(J).
Suppose also that 4 ≤ ak, bk ≤ n + j − k − 4. Call the fraction of copies that
satisfy this condition α2. We claim that α2 → 1 as n → ∞. We show this as
follows: There are (n+j−8)(n+j−9) . . . (n−7) choices for a and b independently.
Thus, there are [(n+ j − 8) . . . (n− 7)]2 choices for (a, b). Since there are a total of
[(n + j − 1)(n + j − 2) . . . (n)]2 pairs, the fraction α2 is thus given by

α2 =
(

(n + j − 8) . . . (n− 7)
(n + j − 1)(n + j − 2) . . . (n)

)2

.

Thus, α2 → 1 as n → ∞.
Let c = b−a. By Corollary 4.1 let j be large enough so that

∑j
k=1 ckxk = 0 has

a solution with |xk| < 4 for all k. Let x = [x1, x2, . . . , xj ] and set a′ = a + x and
b′ = b + x. By our choice of a and b, a′ ∈ Cn+j(I) and b′ ∈ Cn+j(J). We claim
that d(a′, b′) = d(a, b). Using Proposition 4.1:

d(a′, b′) =
j∑

k=1

(b′k − a′k)
(
hn+j−k +

b′k + a′k − 1
2

)

=
j∑

k=1

(bk − ak)
(
hn+j−k +

bk + xk + ak + xk − 1
2

)

=
j∑

k=1

(bk − ak)
(
hn+j−k +

bk + ak − 1
2

)
+

j∑
k=1

ckxk

=
j∑

k=1

(bk − ak)
(
hn+j−k +

bk + ak − 1
2

)
= d(a, b).

It follows that if T k(a) = a′, for some k �= 0, then T k(b) = b′, and so a square that
corresponds to a non-unique distance pair lies in the set

E =
⋃
k �=0

((I × J) ∩ (T × T )k(I × J)),

so λ× λ(E) ≥ α2λ× λ(I × J).
This proves our preliminary version of conservativity.
Now let A ⊂ X ×X be of positive measure. We can find levels I and J in Cn,

where n can be as large as needed, such that I×J is at least 7
8 -full of A. Let j and

(a, b) be as above. So a fraction α2 of these (a, b)’s are not unique distance pairs.
Suppose (T × T )k(a × b) = a′ × b′ for some k �= 0, and assume |k| is the smallest
for which this holds. If k > 0 we call (a, b) a Type 1 square, and if k < 0 a Type 2
square. There is a natural one-to-one correspondence between Type 1 and Type 2
squares, i.e., a Type 1 square corresponds to the Type 2 square it is sent to. Thus
they have the same total measure, and so the total measure of the Type 1 squares,
as well as of the Type 2 squares, is at least 1

2α
2λ× λ(I × J). Since I × J is 7

8 -full
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of A then more than 1
2 of the Type 1 squares must be 1

2 -full of A and more than
1
2 if the Type 2 squares must be 1

2 -full of A. By the pigeonhole principle, there
must exist a pair related by the correspondance C and (T × T )k(C), some k �= 0,
each 1

2 -full of A. So λ× λ((T × T )k(A ∩ C) ∩ (A ∩ C)) > 0, which shows T × T is
conservative. �

We need some notation before our next proposition. Let I be a level in column
Cn. For r ≥ 0 define an In,r-cluster to be a set of n . . . (n + r) consecutive copies
of I, Ii (indexed from bottom to top), in which the distance between Ii and Ii+1

is given by the ith element of σn,r. Define an In,−1 cluster to be a set consisting of
single copy of I. Note that for j > r+ 1 if I is a level in Cn, then in Cn+j there are
(n + r + 1) . . . (n + j − 1) In,r clusters. Otherwise, for j = r + 1, there is one In,r

cluster in Cn+j . We let I [i]
n,r be the ith such cluster, labeled from the bottom of the

column to the top. Note that the number of spacers added to the tower at stage
n is equal to the square of the number of remaining levels. So the height hn+1 of
column Cn+1 is given by

hn+1 = nhn + (n− 1)(n− 2)/2 + (nhn + (n− 1)(n− 2)/2)2,

and the distance between adjacent In,j-clusters is greater than the square of their
length. Also Σ(σn,k) > (n+k−1)hn+k +Σ(σn,k−1). Hence Σ(σn,k) > (n+k−1)!2.

Proposition 4.3. The transformation T described above is not of positive type.

Proof. We show that T is not of positive type on levels. Fix N > 1 and let I be
a level in CN . Let r > 0 and choose k = kr such that N + k− 1 = Σ(σN,r); clearly
r < k. From the construction of T it follows that

Σ(σN,k) = (N + k − 1)hN+k + (N + k − 1)(N + k − 2)/2 + Σ(σN,k−1).

Now, for each r > 0, we study λ(T j(I)∩I) for Σ(σN,k−1) < j ≤ Σ(σN,k). For this we
consider the copies of I in column CN+k. We first note that if j < hN+k−Σ(σN,k−1),
then clearly λ(T j(I) ∩ I) = 0. Next consider values of j such that

hN+k − Σ(σN,k−1) ≤ j

≤ (N + k − 1)hN+k

+ (N + k − 1)(N + k − 2)/2 + Σ(σN,k−1).

Since each copy of I in CN+k is cut into n+ k subintervals, the image of each copy
under T j consists of a sequence of no more than N + k − 1 subintervals in column
CN+k, plus at least one subinterval which gets lost in the tower of CN+k. The
distance between the top-most and bottom-most such subintervals in CN+k (not
counting those lost in the tower) is at most (N + k− 1)(N + k)/2, which is clearly
less than the spacing between the IN,r+1-clusters in an IN,r+2-cluster. Thus, each
copy in CN+k can intersect at most N(N +1) . . . (N +r+1) copies under the action
of T j . Since there are N(N+1) . . . (N+k−1) copies of I in CN+k, and the measure
of each subinterval is λ(I)/N(N + 1) . . . (N + k) then

λ(T j(I) ∩ I) ≤ N(N + 1) . . . (N + r + 1)
N + k

λ(I)

=
N(N + 1) . . . (N + r + 1)

Σ(σN,r) + 1
λ(I).
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Since

lim
r→∞

n . . . (n + r + 1)
Σ(σn,r) + 1

λ(I) = 0,

it follows that limj→∞ λ(Tn(I) ∩ I) = 0. Therefore T is not positive type. �

We thus arrive at the following result:

Theorem 4.1. There exists an infinite measure-preserving transformation T such
that T × T is conservative and T is doubly ergodic, but T is not of positive type.

5. Power double ergodicity

A transformation T is said to be power doubly ergodic if for all sets A,B of
positive measure and all integers k1, k2 > 0 there is an integer n > 0 such that

λ(T−nk1(A) ∩A)λ(T−nk2(A) ∩B) > 0.

We note that power double ergodicity is a strictly stronger property than double
ergodicity. It was shown in [AFS01] that there exists a transformation T such that
T has infinite ergodic index, but T × T 2 is not conservative on product sets. Thus,
there exists a set A×B such that λ((T ×T 2)n(A×B)∩ (A×B)) = 0 for all n �= 0.
It follows that λ(Tn(A)∩A)λ(T 2n(B)∩B) = 0 for all n �= 0, which implies that T
is not power doubly ergodic (since it fails for k1 = 1 and k2 = 2), but since T × T
is ergodic (and conservative), T is doubly ergodic. In this section we first prove
some basic properties of power double ergodicity and then show that a large class
of tower staircases T are power doubly ergodic. We then observe that T contains
transformations in a class of tower staircases that was shown in [BFMS01] not to
have conservative Cartesian square. Finally we show that there are transformations
in T that are not of positive type; it is not clear if there are transformations here
with nonconservative Cartesian square.

To state and prove the basic properties of power double ergodicity we do not need
that T is measure-preserving, we only require T to be nonsingular, i.e., λ(A) = 0 if
and only if λ(T−1(A)) = 0. The proofs of these properties are very similar to the
proofs of the corrensponding porperties for double ergodicity in [BFMS01], and so
we include the details only in the case of Theorem 5.1.

Theorem 5.1. Let T be a nonsingular power doubly ergodic transformation. Let
A,B,C and D be sets of positive measure. Then for all nonzero integers k1, k2 there
exists an integer n > 0 such that λ(T−nk1(A)∩B) > 0 and λ(T−nk2(C)∩D) > 0.

Proof. We first show that for any sets A,B,C of positive measure and for all
k1, k2 > 0, there exists � > 0 such that λ(T−	k1(A)∩A)λ(T−	k2(C)∩B) > 0. Now,
there exists a j > 0 such that λ(T−j(C) ∩ A) > 0 and λ(T−j(B)) > 0. Also, there
exists � > 0 such that

λ(T−	k1(T−j(C) ∩A) ∩ (T−j(C) ∩A)) > 0 and

λ(T−	k2(T−j(C) ∩A) ∩ T−j(B)) > 0.

Thus,

λ(T−	k1(A) ∩A) > 0 and λ(T−	k2−j(C) ∩ T−j(B)) > 0.

Then, by nonsingularity, λ(T−	k2(C) ∩B) > 0, which proves this first part.



18 Gruher, Hines, Patel, Silva, and Waelder

Now let k1 and k2 be given and let A,B,C,D be sets of positive measure. As
before, there exists m > 0 and j > 0 such that:

λ(T−m(A) ∩B)λ(T−m(B)) > 0, and

λ(T−j(C) ∩D) > 0λ(T−j(D)) > 0.

By the first part, there exists � > 0 such that

λ(T−	k1(T−m(A) ∩B) ∩ T−m(B)) > 0 and

λ(T−	k2(T−j(C) ∩D) ∩ T−j(C) ∩D) > 0.

Also, there exists p > 0 such that

λ(T−pk1(T−	k1(T−m(A) ∩B) ∩ T−m(B)) ∩ T−	k1(T−m(A) ∩B) ∩ T−m(B)) > 0,

and λ(T−pk2(T−	k2(T−j(C) ∩D) ∩ T−j(C) ∩D) ∩ T−j(D)) > 0.

Thus,

λ(T−pk1−	k1−m(A) ∩ T−m(B)) > 0 and

λ(T−pk2−	k2−j(C) ∩ T−j(D)) > 0.

Finally, letting n = p + �, we obtain

λ(T−nk1(A) ∩B)λ(T−nk1(C) ∩D) > 0.

�
The proof of the following theorem follows similar ideas and is left to the reader.

Theorem 5.2.
a) Suppose T is a power doubly ergodic nonsingular endomorphism. Then for
all integers k1, k2 > 0, and p1, . . . , pn where pi = k1 or k2 and A1, . . . , An,
B1, . . . , Bn sets of positive measure, there exists m > 0 such that:

λ(T−mp1(A1) ∩B1) > 0,
...

λ(T−mpn(An) ∩Bn) > 0.

b) Suppose T is a nonsingular automorphism on X. Then T is power doubly
ergodic if and only if T−1 is power doubly ergodic.

c) If T power doubly ergodic then T k power doubly ergodic for all k > 0.

The remainder of this section is devoted to showing specific properties of classes
of cutting and stacking transformations. Our first goal is to show that a large class
of tower staircases is power doubly ergodic. We require the following lemma from
[BFMS01, Lemma 5.4]. The proof simply uses the idea that if a sum of terms is
positive then at least one of the terms is positive.

Lemma 5.1. Let A,B ⊂ X be sets of positive measure, and let levels I, J ⊂ Cm be
such that λ(I ∩A) +λ(J ∩B) > δλ(I), with I a distance � ≥ 0 above J . If we cut I
and J into rm equal pieces I0, . . . , Irm−1 and J0, . . . , Jrm−1, respectively (numbered
from left to right), then there is some k such that

λ(Ik ∩A) + λ(Jk ∩B) > δλ(Ik)

and Ik is � above Jk in Cm+1.
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Theorem 5.3. Let T be a tower staircase transformation with sequence of cuts
{rn}. If for all K > 0, there exists N such that for all integers n > N , rn > Khn,
then T is power doubly ergodic.

Proof. Let k1 > 0 and k2 > 0 be given and let k = max{k1, k2}. Let ε = 1
16k . As

the levels approximate measurable sets, for any sets A,B of positive measure there
exist levels I ′ and J ′ in some column Cm, with I ′ � levels above J ′, for some � > 0,
and such that I ′ and J ′ are (1 − ε

2 )-full of A and B, respectively. Let N be such
that for all n > N, rn > 16(k + 1)hn. Now

λ(I ′ ∩A) + λ(J ′ ∩B) > (1 − ε/2)(λ(I ′) + λ(J ′)) = (2 − ε)λ(I ′).

Let n > N . Appling Lemma 5.1 n − m + 1 times, we get levels I and J in
Cn, such that λ(I ∩ A) + λ(J ∩ B) > (2 − ε)λ(I), where I is � above J . The
inequality above implies that I and J are (1 − ε)-full of A and B, respectively.
Now let I0, . . . , Irn−1 and J0, . . . , Jrn−1 be the rn sub-intervals of I and J in Cn,
numbered from left to right. From the staircase construction it follows that for all
j, 0 ≤ j ≤ rn − (k − 1)hn − k�− 1,

T k1(hn+j)(I(k1−1)hn+k1j) = Thn+(k1−1)hn+k1j(I(k1−1)hn+k1j)
= I(k1−1)hn+k1j+1;

T (k2(hn+j)(I(k2−1)hn+k2j+	) = Thn+(k2−1)hn+k2j)(I(k2−1)hn+k2j+	)

= T−	(I(k2−1)hn+k2j+	+1)
= J(k2−1)hn+k2j+	+1.

Now we introduce some notation. Let

P = {0, 1, . . . , rn − [(k − 1)hn + k� + 1]},

and set G = {I(k1−1)hn+k1p : p ∈ P}, G′ = {I(k1−1)hn+k1p+1 : p ∈ P}, H =
{I(k2−1)hn+k2p+	 : p ∈ P}, and H ′ = {J(k2−1)hn+k2p+	+1 : p ∈ P}. Let Gp de-
note I(k1−1)hn+k1p, G′

p denote I(k1−1)hn+k1p+1, Hp denote I(k2−1)hn+k2p+	, and H ′
p

denote J(k2−1)hn+k2p+	+1.
Now, G, G′, H, H ′, and K all have the same number of elements. By our choice

of N ,

|G| = rn − (k − 1)hn − k�− 1

≥ rn − (k + 1)hn

> rn − rn

16
=

15
16

rn,

so

λ

(⋃
p

Gp

)
>

15
16

rn
λ(I)
rn

=
15
16

λ(I).
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Using that I is (1 − ε)-full of A,

λ
((⋃

Gp

)
∩A

)
= λ(I ∩A) − λ

((
I\
⋃

Gp

)
∩A

)
≥ (1 − ε)λ(I) − λ

(
I\
⋃

Gp

)
≥ (1 − ε)λ(I) − λ(I) + λ

(⋃
Gp

)
>

(
15
16

− ε

)
λ(I) =

7
8
λ(I).

Similarly,
⋃

p G
′
p and

⋃
p Hp are both 7

8 -full of A and
⋃

p H
′
p is 7

8 full of B. Thus
more than 3

4 of the intervals in G, G′ and H are at least 1
2 -full of A, and more than

3
4 of the intervals in H ′ are 1

2 -full of B. Now let

KG =
{
k ∈ K : Gk and G′

k are both at least 1
2 -full of A

}
,

KH =
{
k ∈ K : Hk and H ′

k are at least 1
2 -full of A and B, respectively

}
.

Note that if k ∈ KG then T k1(hn+k)(Gk) = G′
k, and if k ∈ KH then T k2(hn+k)(Hk) =

H ′
k. Also, |HG| > 1

2 |K|, and |HG| > 1
2 |K|. Therefore KG ∩ KH �= ∅. So for

k ∈ KG ∩KH it follows that λ(T k1(hn+k)(A) ∩A)λ(T k2(hn+k)(A) ∩B) > 0. �

We end with two counterexamples. For the first one we use a construction in
[BFMS01] where a class of tower staircases are constructed for which T × T is not
conservative. The conditions on these staircases are that rn must grow very fast,
namely rn > n2(2rn−1hn−1 + (rn−1 − 1)(rn−1 − 2)), and that the tower sn,rn−1

must be very big. (For the precise condition on sn,rn−1 we refer to [BFMS01,
p.1014] as it is not needed here.) By [BFMS01, Theorem 3], a tower staircase with
these properties satisfies that T × T is not conservative. By Theorem 5.3, a tower
staircase transformation with {rn} such that for all K > 0, there exists N , such
that for all integers n > N , rn > Khn, is power doubly ergodic. As this theorem
puts no condition on sn,rn−1 and clearly one can find {rn} to satisfy the conditions
of the two theorems just mentioned, it follows that there exist power double ergodic
staircases for which T × T is not conservative, hence not ergodic. So power double
ergodicity does not imply conservative Cartesian square. For our last example we
show that power double ergodicity does not imply positive type.

Proposition 5.1. Let T be a tower staircase with rn = �hn(1 + · · · + 1
n )� and the

number of spacers on the last subcolumn given by
(
rnhn + (rn−1)(rn−2)

2

)2

. Then T

is not of positive type.

We require some notation before the proof. Let wn denote the measure of a level
in column Cn. Define a diagonal D in Cn to be a set of intervals contained in Cn

of measure wn

rn
such that:

(1) For all I ∈ D, I is in a subcolumn of Cn.
(2) No two members of D are in the same subcolumn.
(3) There exists k such that for every interval I ∈ D, if J ∈ D and J is in

the subcolumn to the right of the subcolumn containing I then J is k levels
below I.



Multiple recurrence in infinite measure 21

We define a diagonal D to be a full-diagonal if it is not contained in any other
diagonal.

Proof. We show that T is not of positive type for a level I ⊂ Cn for a fixed n > 1.
Choose Σ(σn+k−1) < j ≤ Σ(σn+k) and consider the intersection of the image of
a copy of I in Cn+k under T j with I. Note that in Cn+k there are rn+k−1 . . . rn

copies of I. For convenience, denote this number by q = qn,k. Note that the image
of a copy of I in Cn+k consists of a sequence of full-diagonals in Cn+k. Since each
copy of I in Cn+k is cut into rn+k = �hn+k(1 + · · · + 1

n+k )� pieces, the image of a
copy of I under T j consists of no more than 2(n + k) full-diagonals. For each of
these full-diagonals, there can be no more than q intersections with I. Since there
are q copies of I in Cn+k, we get:

λ(T j(I) ∩ I) <
2(n + k)q2

rn+k . . . rn
λ(I)

=
2(n + k)q
rn+k

λ(I).

Since

rn+k > hn+k

= rn+k−1hn+k−1 +
(rn+k−1 − 1)(rn+k−1 − 2)

2

+
(
rn+k−1hn+k−1 +

(rn+k−1 − 1)(rn+k−1 − 2)
2

)2

,

it follows that rn+k > (rn+k−1!)2. Thus,

λ(T j(I) ∩ I) <
2(n + k)q

q2
λ(I)

=
2(n + k)

q
λ(I)

<
2(n + k)

(n + k − 1)!
λ(I).

Thus limn→∞ λ(Tn(I) ∩ I) = 0. �
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