Abstract. For any field k and any integers m, n with $0 \leqslant 2 m \leqslant$ $n+1$, let W_{n} be the k-vector space of sequences $\left(x_{0}, \ldots, x_{n}\right)$, and let $H_{m} \subseteq W_{n}$ be the subset of sequences satisfying a degree- m linear recursion - that is, for which there exist $a_{0}, \ldots, a_{m} \in k$, not all zero, such that

$$
\sum_{i=0}^{m} a_{i} x_{i+j}=0
$$

holds for each $j=0,1, \ldots, n-m$. Equivalently, H_{m} is the set of $\left(x_{0}, \ldots, x_{n}\right)$ such that the $(m+1) \times(n-m+1)$ matrix with (i, j) entry $x_{i+j}(0 \leqslant i \leqslant m, 0 \leqslant j \leqslant n-m)$ has rank at most m. We use elementary linear and polynomial algebra to study these sets H_{m}. In particular, when k is a finite field of q elements, we write the characteristic function of H_{m} as a linear combination of characteristic functions of linear subspaces of dimensions m and $m+1$ in W_{n}. We deduce a formula for the discrete Fourier transform of this characteristic function, and obtain some consequences. For instance, if the $2 m+1$ entries of a square Hankel matrix of order $m+1$ are chosen independently from a fixed but not necessarily uniform distribution μ on k, then as $m \rightarrow \infty$ the matrix is singular with probability approaching $1 / q$ provided $\|\widehat{\mu}\|_{1}<q^{1 / 2}$. This bound $q^{1 / 2}$ is best possible if q is a square.

