ABSTRACT. For any field k and any integers m, n with $0 \leq 2m \leq n+1$, let W_n be the k-vector space of sequences (x_0, \ldots, x_n) , and let $H_m \subseteq W_n$ be the subset of sequences satisfying a degree-m linear recursion — that is, for which there exist $a_0, \ldots, a_m \in k$, not all zero, such that

$$\sum_{i=0}^{m} a_i x_{i+j} = 0$$

holds for each j = 0, 1, ..., n - m. Equivalently, H_m is the set of (x_0,\ldots,x_n) such that the $(m+1) \times (n-m+1)$ matrix with (i,j)entry x_{i+i} $(0 \leq i \leq m, 0 \leq j \leq n-m)$ has rank at most m. We use elementary linear and polynomial algebra to study these sets H_m . In particular, when k is a finite field of q elements, we write the characteristic function of H_m as a linear combination of characteristic functions of linear subspaces of dimensions m and m+1in W_n . We deduce a formula for the discrete Fourier transform of this characteristic function, and obtain some consequences. For instance, if the 2m + 1 entries of a square Hankel matrix of order m+1 are chosen independently from a fixed but not necessarily uniform distribution μ on k, then as $m \to \infty$ the matrix is singular with probability approaching 1/q provided $\|\hat{\mu}\|_1 < q^{1/2}$. This bound $q^{1/2}$ is best possible if q is a square.