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Equivalence of Geometric and Combinatorial
Dehn Functions

José Burillo and Jennifer Taback

Abstract. We prove that if a finitely presented group acts properly discon-
tinuously, cocompactly and by isometries on a simply connected Riemannian
manifold, then the Dehn function of the group and the corresponding filling
function of the manifold are equivalent, in a sense described below. We also
prove this result for simplicial complexes X where the metric on X restricts
to a Riemannian metric with corners on each simplex.
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1. Dehn functions and their equivalence

Let X be a simply connected 2-complex , and let w be an edge circuit in X(1).
If D is a van Kampen diagram for w (see [5]), then the area of D is defined as the
number of 2-cells on D, and the area of w, denoted a(w), is defined as the minimum
of the areas of all van Kampen diagrams for w. The Dehn function of X is then
defined to be

δX(n) = max a(w),
where the maximum is taken over all loops w of length l(w) ≤ n. Given two
functions f and g from N to N (or, more generally, from R

+ to R
+), we say that

f ≺ g if there exist positive constants A, B, C, D, E so that

f(n) ≤ Ag(Bn+ C) +Dn+ E.
Two such functions are called equivalent (denoted f ≡ g) if f ≺ g and g ≺ f . The
Dehn function is invariant under quasi-isometries; when one considers the 1-skeleton
of a complex as a metric space with the path metric, where every edge has length
one, two complexes with quasi-isometric 1-skeleta have equivalent Dehn functions
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(see [1]). Let G be a finitely presented group, and let P be a finite presentation
for G. Let K = K(P) be the 2-complex associated to P, i.e., the 2-complex with
a single vertex, an oriented edge for every generator of P, and a 2-cell for every
relator, attached to the edges according to the spelling of the relator. Then the Dehn
function of P is, by definition, the Dehn function δK̃ of the universal covering of K.
Two finite presentations P and Q for the same group G yield 2-complexes K̃(P)
and K̃(Q) with quasi-isometric 1-skeleta, and hence equivalent Dehn functions.
Thus the Dehn function of the group G is defined to be the equivalence class of
the Dehn function of any of its presentations. An extensive treatment of Dehn
functions of finitely presented groups is given in [4]. A closely related definition
can be formulated in the context of Riemannian manifolds, dating back to the
isoperimetric problem for R

n in the calculus of variations. Given a Lipschitz loop
γ in a simply connected Riemannian manifold M , we define the area of γ to be
the infimum of the areas of all Lipschitz discs bounded by γ. We then define the
geometric Dehn function of M by

δM (x) = max
l(γ)≤x

area(γ)

where l(γ) represents the length of γ. It is natural to consider the question of
whether the Dehn functions of a simply connected Riemannian manifold M and
of a finitely presented group G acting properly discontinuously and cocompactly
by isometries on M agree. The fact that they effectively agree has been implic-
itly assumed in the literature, though no proof has been given. A closely related
statement is given in [2, Theorem 10.3.3], applying the Deformation Theorem of
Geometric Measure Theory ([3, 4.2.9] and [8]) to this setting, and which provides
the basis of the Pushing Lemma below. This paper is devoted to providing a com-
plete and detailed proof that the combinatorial and geometric Dehn functions are
equivalent. It is known to the authors that M. Bridson has lectured on an alternate,
unpublished proof of the same result. The authors would like to thank Professor S.
M. Gersten for his encouragement and his useful remarks, Kevin Whyte for helpful
conversations and the referee for his precise comments.

We state our result below not only for Riemannian manifolds, but for simplicial
complexes with certain metric properties, to obtain the greatest generality. We
require that the metric on the simplicial complex restricts on each simplex to give
the structure of a Riemannian manifold with corners. Recall that each point p in a
manifold with corners has a neighborhood diffeomorphic to a neighborhood of the
origin in R

k
+ × R

n−k, for appropriate integers n and k, where the point p maps to
the origin. For a complete definition of a manifold with corners, we refer the reader
to [6]. Clearly, for such a simplicial complex, the Dehn function is well-defined,
since a loop in it will intersect only finitely many simplices, and the length of a
loop is computed by summing the lengths of its component parts in each simplex.
Similarly, the area of a disc is well-defined, so we can consider the Dehn function
of such a complex. Once a triangulation is defined on a Riemannian manifold, it
trivially becomes a simplicial complex of this type, where the Riemannian structure
on each simplex is induced by the global structure of the manifold. The main
advantage of using these complexes is that our result applies to spaces which are
not topologically manifolds.
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Theorem 1.1. Let M be a simply connected simplicial complex whose metric re-
stricts on each simplex to give the structure of a Riemannian manifold with corners.
Let G be a finitely presented group acting properly discontinuosly, cocompactly and
by isometries on M . Let τ be a triangulation of M , i.e., a G-invariant subdivi-
sion of the simplicial structure for M . Then the following three Dehn functions are
equivalent:

(1) the Dehn function δG of any finite presentation of G,
(2) the Dehn function δτ(2) of the 2-skeleton of τ , and
(3) the Dehn function δM of M .

When a Riemannian manifold is triangulated, then it acquires the structure of
a simplicial complex with the stipulated metric condition. Hence, as an immediate
corollary of this theorem, we obtain the following result.

Corollary 1.2. Let M be a simply connected Riemannian manifold and let G be a
finitely presented group acting properly discontinuosly, cocompactly and by isome-
tries on M . Then the geometric Dehn function of M and the combinatorial Dehn
function of G are equivalent.

The fact that δG and δτ(2) are equivalent is clear: since G acts cocompactly
on τ , there is a quasi-isometry between τ (1) and the 1-skeleton of K̃(P) for any
presentation P of G, and the equivalence follows from the results in [1]. We will
concentrate on the proof of the equivalence between δτ(2) and δM . The arguments
will be mainly geometric, relating the lengths and areas of loops and discs inM with
those included in the triangulation τ . The first step in this direction is the Pushing
Lemma, which is a complete analog of the Deformation Theorem in Geometric
Measure Theory and already stated and proved, in a slightly different way, in [2,
Theorem 10.3.3], and whose proof we will follow closely.

2. Technical lemmas

The Pushing Lemma, stated below, will allow us to relate arbitrary Lipschitz
chains inM to chains in the corresponding skeleta of τ . The main technical problem
to be overcome is that projection of a Lipschitz chain to τ from a badly chosen
point can increase the volume of the chain arbitrarily. We overcome this by using
techniques from measure theory that assure the existence of a center of projection
far enough from the chain, thus providing control on the growth of the volume.

Lemma 2.1 (Pushing Lemma). Let M , G and τ be as above. Then there exists
a constant C, depending only on M and τ , with the following property: Let T be
a Lipschitz k-chain in M , such that ∂T is included in τ (k−1). Then there exists
another Lipschitz k-chain R, with ∂R = ∂T , which is included in τ (k), and a
Lipschitz (k + 1)-chain S, with ∂S = T −R, satisfying

volk(R) ≤ Cvolk(T ) and volk+1(S) ≤ Cvolk(T ).
In particular, if T is a loop, so is R, and S is a homotopy from T to R.

The Pushing Lemma differs from the statement in [2] because it applies to chains
as well as cycles, since the boundary of the chain is not modified, as it is included
in the (k − 1)-skeleton. A statement for cycles is not sufficient, since this lemma
will be applied to chains as well as loops, and the fact that ∂T = ∂R is crucial in
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the proof of the main theorem. We first prove a lemma which will later allow us to
choose our center of projection to lie away from the Lipschitz chain T .

Lemma 2.2. Let f : Sk → σk+1 be Lipschitz with constant L, where σk+1 is the
standard Euclidean (k+1)-simplex. Then f(Sk) has Lebesgue (k+1)-measure zero.

Proof. Since Sk is compact, choose a finite open cover of Sk by k-dimensional balls
Bi of radius 1

n . We can cover Sk with C1n
k such balls, for some constant C1. The

image of any ball Bi under the Lipschitz map f is contained in a (k+1)-dimensional
ball B′

i ⊂ σk+1 with (k + 1)-volume C2
nk+1 for some constant C2. Then the total

volume of the collection {B′
i} is at most C1C2

n . So f(Sk) is contained in an open set
of σk+1 whose total volume is C1C2

n and thus f(Sk) has Lebesgue measure 0. �

Proof of Lemma 2.1. The proof will proceed by descending induction on the
skeleta of τ . Assume that a Lipschitz k-chain T is included in τ (i) but not in τ (i−1),
for i > k. We want to proceed simplex by simplex, choosing an appropriate point
not in T in each simplex and projecting the chain T radially from this point to the
boundary of the simplex. We will prove the following claim.

Claim: There exists a constant C with the property that for every simplex, there
is a point p not in T so that radial projection of T from p to the boundary of the
simplex does not increase the volume of the chain by more than a multiplicative
factor of C.

Observe that since T is compact, it only intersects finitely many simplices of τ ,
and in each simplex is only modified by a radial projection from a point not in
T . These radial projections increase the Lipschitz constant of T , but the chain R
obtained after the projections will still be Lipschitz. To simplify the computations,
we will work through the proof in the unit Euclidean simplex. Since G acts cocom-
pactly onM , we can construct a sufficiently fine finite triangulation of the quotient
and lift it to M . If the simplices are small enough we can map them to R

n via the
exponential map. Since the exponential map is Lipschitz, the changes in the metric
are bounded by only a multiplicative constant. We then have a finite number of
simplices in R

n, so the distortion is again bounded. Thus working with the unit
simplex only affects the value of the constant C.

Let σ be the unit Euclidean i-simplex, O the barycenter of σ, and r a positive
number so that the ball of center O and radius 3r is included in the interior of σ.
Let B be the ball of center O and radius r, with u an element of B, and Bu the
ball of center u and radius 2r. Clearly B ⊂ Bu, for all u. Let πu be the radial
projection with center u of Bu \ {u} onto ∂Bu. Let Q = T ∩ σ. We want to see
that there exists a constant v0 independent of T and σ, and a point u ∈ B \ Q,
dependent on T , with

volk(πuQ) ≤ v0 volk(Q).
From Lemma 2.2, we see that the set B \Q has the same measure as B, allowing
us to choose u ∈ B \Q. For every positive real number v define

Av = {u ∈ B \Q | volk(πuQ) > v volk(Q)}
and let α(v) = mi(Av), where mi is the i-dimensional Lebesgue measure. We want
to prove that

lim
v→∞α(v) = 0.
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Then we will choose v0 with α(v0) < mi(B), so the measure of Av0 will be less
than the measure of B. Thus there will exist a point u ∈ (B \Q) \Av0 , which will
be the center of projection. Since u /∈ Av0 , this projection will increase the area at
most by a multiplicative factor v0.
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Figure 1: Projecting Q to the boundary of Bu.

We have

volk(πuQ) ≤ volk(πu(Q ∩Bu)) + volk(Q)

≤
∫

Q∩Bu

(
2r

||x− u||
)k

dx+ volk(Q),

where the first term accounts for the volume obtained after projecting, and the
second term takes care of the possibility of Q and Bu being disjoint. Assume now
that volk(Q) is nonzero (if volk(Q) = 0 then volk(πuQ) = 0). Then we have:

α(v) v volk(Q) = v volk(Q)
∫

Av

du =
∫

Av

v volk(Q) du

≤
∫

Av

volk(πuQ) du ≤
∫

B

volk(πuQ) du

≤
∫

B

(∫
Q∩Bu

(
2r

||x− u||
)k

dx+ volk(Q)

)
du

= (2r)k
∫

Q∩Bu

∫
B

||u− x||−k du dx+ voli(B)volk(Q).

Notice that the function
(

2r
||x−u||

)k

is bounded above and below, since u /∈ Q∩Bu,
and is integrated over compact regions. This allows us to change the order of
integration. Now make a change of variables, letting w = u − x, and increase
the domain of integration to B(0, 3r). We continue with the upper bound for
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α(v) v volk(Q):

α(v) v volk(Q) ≤ (2r)k
∫

Q∩Bu

∫
B

||u− x||−k du dx+ voli(B)volk(Q)

≤ (2r)k
∫

Q∩Bu

dx

∫
B(O,3r)

||w||−k dw + voli(B)volk(Q)

≤ Kvolk(Q),

where

K = (2r)k
∫

B(O,3r)

||w||−k dw + voli(B).

Observe that K is finite and independent of T and σ. We conclude that α(v)v ≤ K.
Knowing K, we can find v0 such that K/v0 < mi(B), where v0 is a constant
independent of T and σ. We have now found Av0 with strictly less measure than
B, and can pick a point in (B \Q) \Av0 from which to project so that the volume
increases at most by a multiplicative factor v0. The result of the above argument
is the construction of another chain πuQ which is far enough from O. We can now
project radially from O to ∂σ, and the change of volume is bounded since πuQ is
at least at a distance r from O. The combination of this change of volume with v0
gives the constant needed in this precise skeleton. Combining the constants from
all of these steps, we obtain the desired constant C. Observe that these projections
leave τ (i−1) unchanged, so clearly ∂T is preserved. The (k+1)-chain S is obtained
by joining every x ∈ Q to πux by a segment. The volume of the piece of S contained
in σ is then bounded, as before, by

(2r)k+1

∫
Q∩Bu

dx

||x− u||k ,

where the extra factor 2r is obtained from the direction of the projection, since each
segment has length bounded by 2r. An argument similar to the previous one shows
that projecting from most points in B gives the correct bound for the volume. �

The third lemma states that for a Lipschitz map, almost every point in the
target space has a finite number of preimages. It is a direct consequence of the area
formula for Lipschitz maps, and it will be used in the proof of Theorem 1.1.

Lemma 2.3. Let A,B ⊂ R
k be open sets, and assume that volkA is finite. Let

f : A→ B be a Lipschitz map. Then the set of points in B with infinite preimages
under f has Hausdorff k-measure zero.

Proof. Since f is a Lipschitz map, by Rademacher’s Theorem ([3, 3.1.6]) it is
differentiable almost everywhere (with respect to the Lebesgue k-measure), so the
Jacobian Jkf(x) is well-defined for almost all x ∈ A. Observe that our notation is
slightly different from the one in [3], because Jkf(x) denotes the Jacobian here, but
the absolute value of the Jacobian in [3]. For y ∈ B, let N(f, y) be the number of
elements of f−1(y), possibly infinite, and denote by mk and hk the Lebesgue and
Hausdorff k-measures, respectively. Then the area formula for Lipschitz maps ([3,
3.2.3]) states that ∫

A

|Jkf(x)| dmk(x) =
∫

M

N(f, y) dhk(y).
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Since f is Lipschitz, we know that |Jkf(x)| is bounded, and since A has finite
volume, the integral on the left-hand side is finite. So the set where N(f, y) is
infinite cannot have positive Hausdorff k-measure, because then the right-hand
side of the equation would be infinite. �

3. Proof of the main theorem

We begin by proving the one of the two inequalities necessary for the equivalence
of δM and δτ(2) , namely

δM ≺ δτ(2) .(3.1)

Let γ be a Lipschitz loop in M , with length at most n. Using the Pushing Lemma,
we can construct a new loop η, of length at most Cn, which is included in the 1-
skeleton, and the homotopy between γ and η has area at most Cn. The loop η is not
necessarily combinatorial, but it is a rectifiable loop in a nonpositively curved space,
namely the metric graph τ (1). So there is a unique (up to reparametrization) closed
geodesic ζ in the free homotopy class of η. The straight homotopy (in τ (1)) from
η to ζ is a map from an annulus to τ (1). The length of ζ decreases monotonically
and its area can be made arbitrarily small. The combinatorial loop ζ can be filled
combinatorially by at most δτ(2)(Cn) 2-simplices in τ . Thus

δM (n) ≤ Aδτ(2)(Cn) + 2Cn,

where A is the area of the largest 2-cell in τ , and it follows that δM ≺ δτ(2) .
To prove the reverse inequality

δτ(2) ≺ δM ,
to (3.1), we start with a combinatorial loop γ in the 1-skeleton of τ , with length at
most n. Let

f : D2 −→M

be a Lipschitz disc inM with boundary γ, and with area a. We want to construct a
van Kampen diagram for γ and bound its area in terms of a. The first step is to use
the Pushing Lemma to find a new disc (also denoted f) which is included in τ (2),
and whose area is at most Ca. So assume that f(D2) is included in the 2-skeleton
of τ . We can also assume Ca is not zero, because if the area of f is zero, there
is no problem making it combinatorial and its area remains zero, satisfying the
inequalities trivially. So there exists an open 2-simplex σ of τ such that σ ∩ f(D2)
has strictly positive area. Observing that both σ and f−1(σ) are open sets, and
that f−1(σ) has finite area, since it lies in D2, so we can apply Lemma 2.3 to the
map

f
∣∣
f−1(σ) : f

−1(σ) −→ σ.

We conclude that the set of points with infinite preimages under f
∣∣
f−1(σ) has

measure zero, and, since the area of the image is strictly positive by the choice of
σ, we can choose a point p ∈ σ such that f−1(p) is finite.

Let X be a component of f−1(σ). Note that X is, clearly, an open set of D2, so
it is a manifold itself. If X ∩ f−1(p) = ∅, then f

∣∣
X can be modified by composing

with a radial projection from p. After this change, a component X of f−1(σ)
satisfies X ∩ f−1(p) �= ∅, and there are only finitely many of these components.
Moreover, if f

∣∣
X is not surjective, we can again modify f

∣∣
X by a radial projection
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from a point not in f(X), to push its image to ∂σ. After these changes to f , there
is a component X of f−1(σ) so that f

∣∣
X is surjective, and X ∩ f−1(p) �= ∅. If X

is one such component, the original f has not been modified in X by any radial
projection, and the map

f
∣∣
X : X −→ σ

is still Lipschitz, since it is the restriction of the original map f . We will obtain
a lower bound on the area of f

∣∣
X using the degree of f

∣∣
X . Observe that f

∣∣
X is

a map between two manifolds, so we can apply Rademacher’s theorem to it and
conclude that it is differentiable almost everywhere. Consequently, we can define
the degree of f

∣∣
X at a point y ∈ f(X) by

deg f
∣∣
X (y) =

∑
x∈f−1(y)

signJ2f(x).

Moreover, since X is an open connected component of f−1(σ), we have that f(X) ⊂
σ and f(∂X) ⊂ ∂σ, so f(X) and f(∂X) are disjoint. Then, by [3, 4.1.26], the degree
of f

∣∣
X is almost constant in f(X), and we can define the degree of f

∣∣
X as the value

dX it achieves at almost every y ∈ f(X). The lower bound on the area of f
∣∣
X is

given by the area formula for Lipschitz maps: if u is an integrable function with
respect to m2, we have (see [3, 3.2.3]):∫

X

u(x)|J2f(x)| dm2 =
∫

σ

∑
x∈f−1(y)∩X

u(x) dh2,

and taking u(x) = signJf(x) we obtain:

area f
∣∣
X =

∫
X

|J2f(x)| dm2 ≥
∣∣∣∣∫

X

J2f(x) dm2

∣∣∣∣
=
∣∣∣∣∫

X

signJ2f(x) |J2f(x)| dm2

∣∣∣∣
=
∣∣∣∣∫

σ

deg f
∣∣
X dh2

∣∣∣∣ =
√
3
4

|dX |.

Our goal is to find a simplicial map

g : D2 −→ τ (2)

(with some simplicial structure in D2) such that only |dX | simplices are mapped
by the identity to σ under g

∣∣
X , and the rest of X is mapped to ∂σ. Then we will

have that the combinatorial area of g is bounded as follows:∑
X

|dX | ≤
∑
X

4√
3
area

(
f
∣∣
X
) ≤ 4√

3
Ca,

giving us the required bound. Note that the map g is not combinatorial, but only
simplicial, and at the end of the proof a short argument will be required to ensure
the existence of a combinatorial map whose area admits the same upper bound.
The first step in finding the map g is to smooth the map f

∣∣
X , in order to apply

differentiable techniques to it. Let O be the barycenter of σ, and choose 0 < ε < r
such that:

∅ �= B(O, r − ε) ⊂ B(O, r) ⊂ B(O, 2r) ⊂ B(O, 2r + ε) ⊂ σ,
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and let U1 = f−1(B(O, r)) and U2 = f−1(B(O, 2r)). We have that U1 ⊂ U2 ⊂
U2 ⊂ X. Choose δ > 0 so that B(x, δ) ⊂ X for all x ∈ U2, and so that if |x−y| < δ
then |f(x)− f(y)| < ε, for all x, y ∈ X. Let ϕ be a C∞ bump function in R

2 with
support in B(0, δ), and with integral 1. Then, for x ∈ U2, we can construct the
convolution

f ∗ ϕ(x) =
∫

B(x,δ)

f(x− z)ϕ(z) dz,

which is C∞ in U2, and satisfies |f(x)− f ∗ ϕ(x)| < ε for all x ∈ U2. Also, if f
∣∣
X

was Lipschitz with constant L, then f ∗ϕ is also Lipschitz with the same constant:
if x, y ∈ U2,

|f ∗ ϕ(x)− f ∗ ϕ(y)| ≤ |f(x− z)− f(y − z)|
∫

B(0,δ)

ϕ(z) dz ≤ L|x− y|.

Now choose a Lipschitz function α on X with values in [0, 1] which is equal to 1 in
U1 and equal to 0 outside U2, and define

f̃ = α(f ∗ ϕ) + (1− α)f ∣∣X.
Note that f̃ is defined only on X. Then f̃ satisfies the following properties:

(1) f̃ is defined as a map from X into σ, which are both manifolds,
(2) |f(x)− f̃(x)| < ε for all x ∈ X,
(3) f̃ is smooth in U1,
(4) f̃ = f in X \ U2,
(5) f̃ is Lipschitz, and
(6) deg f̃ = deg f

∣∣
X .

The first four properties are clear from the construction of f̃ , and property (5) holds
because f

∣∣
X and f ∗ϕ and α are all Lipschitz. To see that the degree is unchanged,

since the degree of f̃ is almost constant (recall that X and σ are manifolds), and
f
∣∣
X and f̃ agree outside U2, we only need to find a point in σ\B(O, 2r+ε) for which

the degree is dX for both f
∣∣
X and f̃ . Again, using the fact that f̃ is a map between

manifolds, we can use Sard’s Theorem ([7]) to claim the existence of a regular value
for f̃ in B(O, r − ε) whose preimages are all in U1. Let q be this regular value
and let p1, . . . , pm be its preimages. Let V be an open disc with center q such that
f̃−1(V ) = V1 ∪ · · · ∪ Vm, where the Vi are discs around pi, pairwise disjoint, and
such that f̃

∣∣
Vi

is a diffeomorphism. In general, we will have that m > |dX |, and
must cancel discs with opposite orientations. Assume Vm−1 and Vm are mapped to
V with opposite orientations. Choose a ∈ ∂Vm−1 and a′ ∈ ∂Vm with f̃(a) = f̃(a′),
and join a and a′ with a simple path λ such that f̃(λ) is nullhomotopic in σ \ V .
This can be done because the map

f̃ : X \
m⋃

i=1

Vi −→ σ \ V

induces a surjective homomorphism of fundamental groups. After contracting f̃(λ),
we can assume f̃(λ) is the constant path f̃(a). Remove the discs Vm−1 and Vm and
perform surgery along λ. The new boundary thus created is mapped to ∂V under
f̃ by a map from S1 to itself of degree zero. Extend this map to a map from
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D2 to S1 and attach it to f̃ along this boundary. For the new map (which we
will continue calling f̃), the preimage of q consists only of the points p1, . . . , pm−2.
Repeating this process we will obtain a map where now only the discs V1, . . . , V|dX |
are mapped to V , all with the same orientation. Choose (temporarily) a sufficiently
fine subdivision of τ so that there is a 2-simplex W in V , and let ρi = f̃−1(W ).
Modify the map in X by composing with the expansion of W into all of σ.
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Figure 2: Making the map f simplicial

After this process is done for all σ, we obtain a map from D2 to τ (2), where all
the ρi are sent homeomorphically to 2-simplices of τ , and the rest of D2 is sent
to the 1-skeleton of τ . To finish the construction of g, find a simplicial structure
on D2 compatible with the simplicial structure on the original loop γ and which
includes all the ρi obtained for all σ as 2-simplices. Now approximate the map f̃
simplicially within τ (1) relative to all the ρi and to γ. The result is simplicial, and
the number of simplices sent by g homeomorphically to 2-simplices in τ is∑

X

|dX | ≤ 4√
3
Ca.

This map is not a van Kampen diagram yet, since it is only simplicial. To finalize
the proof of the inequality

δτ(2) ≺ δM ,
we will find a van Kampen diagram which satisfies the same upper bound as the
map g. Consider simplicial maps from a contractible planar 2-complex Y into τ (2),
with boundary γ, whose area satisfies the same bound as g. (The map g shows
the existence of such maps.) Among all these maps, choose one with the minimum
number of 2-cells in Y . This map is necessarily combinatorial, since if some 2-cell
of Y is collapsed to the 1-skeleton of τ (2), we could collapse it in Y and find a map
with fewer 2-cells. This map is the required van Kampen diagram for the loop γ,
and the second inequality is proved.
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