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On Hausdorff Dimension of Random Fractals

A. V. Dryakhlov and A. A. Tempelman

Abstract. We study random recursive constructions with finite “memory” in
complete metric spaces and the Hausdorff dimension of the generated random
fractals. With each such construction and any positive number β we associate
a linear operator V (β) in a finite dimensional space. We prove that under some
conditions on the random construction the Hausdorff dimension of the fractal
coincides with the value of the parameter β for which the spectral radius of
V (β) equals 1.
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1. Introduction

In this paper we compute the Hausdorff dimension of random fractals in a
complete metric space M which are generated by random recursive constructions.
This problem was studied by several authors (see Falconer [1], Graf, Mauldin and
Williams [4], Kifer [8], Mauldin and Williams [6], Pesin and Weiss [9], Tempelman
[11] and the references therein).
Let us remind here the definition of the Hausdorff measures and the Hausdorff

dimension. If β ≥ 0, δ > 0 and A is any subset of M, write

H
(β)
δ (A) = inf

{ ∞∑
i=1

(diam(Ui))β : A ⊂ ∪∞
i=1Ui, 0 < diam(Ui) ≤ δ

}
.
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Let

H(β)(A) = lim
δ→0

H
(β)
δ (A).

Then H(β) is the β-dimensional Hausdorff outer measure. It is known (see, for
example [2]) that there is a number dimH A, called the Hausdorff dimension of A,
such that

H(β)(A) =∞ if β < dimH A and H(β)(A) = 0 if β > dimH A.

We study iterated random constructions with a fixed non-random number of
“daughter” sets at each step of the construction. In this case our model generalizes
random models studied by Falconer [1] and by Mauldin and Williams [6]. Unlike
these authors we do not assume that the random scale coefficients are identically
distributed. On the other hand, our model generalizes the deterministic model
with “finite memory” studied by Tempelman [11] in which the scale coefficients
depend on several previous steps. As in [11], we introduce for each β > 0 a linear
“transition” operator V (β) associated with the construction; we denote by ρ(β) the
spectral radius of this operator. Let K denote the random fractal obtained by the
iterating process. We prove that dimH K = α almost surely, where α is the unique
solution of the equation ρ(β) = 1.
In Section 2 we define random constructions in complete metric spaces and in-

troduce some additional properties of such constructions.
In Section 3 we define a non-random transition operator and study properties

of sequences of random variables associated with random constructions. We show
that for the number α defined above dimH K ≤ α almost surely.
In Section 4 we study properties of random variables obtained as limits of some

martingales constructed in the previous section. In Section 6 these results are used
in the definition and study of a special random probability measure which is the
crucial tool in the proof of our main result.
In Section 5 we prove some auxiliary statements related to the metric space of

sequences with a metric that meets some restrictions specified below.
In Section 6 we prove the main result: dimH K = α a.s. In view of the upper

estimate for the dimension obtained in Section 2, we prove here that the lower
estimate is valid (this is actually the most difficult part of the proof). This is done
on one hand by constructing a random measure analogous to the one studied in [6]
and on the other hand by using methods developed in [11], namely, by the study
of local “cylinder-wise” dimension of this measure and its relation to the “global”
Hausdorff dimension.

2. Random constructions

First of all let us introduce some notation related to finite sequences. Denote
by N the set of all positive integers. Let ∆ = {1, . . . , N}, where N ∈ N. We
also consider ∆∗ =

⋃∞
n=1∆

n, the set of all finite sequences, and the set ∆N of all
infinite sequences of elements of ∆. If σ = (σ1, . . . , σk), then |σ| = k is the length
and if η = (η1, . . . , ηn) then (σ, η) = (σ1, . . . , σk, η1, . . . , ηn) is the concatenated
sequence. ∆0 contains only the empty sequence ∅ with the following property:
(∅, η) = (η, ∅) = η for any η ∈ ∆∗. If π ∈ ∆∗ or π ∈ ∆N then π|n denotes the
sequence obtained by restricting π to the first n entries, where π|0 = ∅. In ∆∗ we
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consider a partial order: for σ, η ∈ ∆∗ we put η < σ if and only if σ = (η, ξ) for
some ξ ∈ ∆∗.
Let (M, λ) be a complete metric space; by diam(A) we denote the diameter of

a set A ⊂ M; [A] denotes the closure of A; B(x, r) denotes the open ball of radius
r centered at x. We consider a probability space (Ω,G, P ) and for each ω ∈ Ω a
countable family of closed nonempty subsets of M:

I(ω) = {Iσ(ω) : σ ∈ ∆∗}
We call the family I a random construction if for almost every ω ∈ Ω

lim
n→∞ maxσ∈∆n

diam(Iσ) = 0(2.1)

and

Iσ ⊂ Iη, if η < σ.(2.2)

We also consider a family of positive random variables {lσ : σ ∈ ∆∗}. We assume
that for almost every ω this family is monotone in the sense lσ,p(ω) < lσ(ω) for
each σ ∈ ∆∗and each p ∈ ∆, and

lim
n→∞ l[π|n](ω) = 0, for every π ∈ ∆N.

Remark. It can be shown that in this case the convergence is uniform:

lim
n→∞ maxσ∈∆n

lσ(ω) = 0.(2.3)

We study the properties of the “random fractal”

K(ω) =
∞⋂

n=1

⋃
σ∈∆n

Iσ(ω).

Remark. There are interesting examples of fractals obtained by constructions
without the property (2.2) (see, for example, [11]). But the same fractals can
be obtained by modified constructions satisfying this condition.

We recall the notion of the Moran index introduced explicitly in [9],[11] (this
characteristic was essentially used in [7]). Let m ≥ 1 be an integer. Consider a
sequence π ∈ ∆N and positive numbers r and b. If l[π|m] ≥ r we define the natural
number k(r, π) > m as follows: l[π|k(r,π)+1] < r ≤ l[π|k(r,π)]; if l[π|m] < r we put
k(r, π) = m.
The Moran index of the construction I(ω), corresponding to a constant b, is the

minimal number γω(b) with the following property: for any x ∈ M and any π ∈ ∆N

and n > m there exist at most γω(b) pairwise disjoint sets I[η(t)|k(l[π|n],η(t))], t ∈ N,

where η(t) ∈ ∆N, such that B(x, bl[π|n]) ∩ I[η(t)|k(l[π|n],η(t))] = ∅; if such a number
γω(b) does not exist we put γω(b) =∞.
Let Lσ,p = lσ,p/lσ for σ ∈ ∆∗, p ∈ ∆. We assume in the sequel that the following

conditions are fulfilled:
i. For each σ ∈ ∆∗ and for almost every ω

diam(Iσ(ω)) ≤ lσ(ω).(2.4)

ii. The random vectors (Lσ,1, . . . , Lσ,N ), σ ∈ ∆∗, are independent.
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iii. There exists an integer m ≥ 1 such that for any σ ∈ ∆∗ and any η ∈ ∆m−1

the random vectors (Lσ,η,1, . . . , Lσ,η,N ) and (Lη,1, . . . , Lη,N ) have the same
distribution.

In case of need we also consider the following restrictions.
iv. If neither σ < η nor η < σ then for almost every ω

Iη(ω) ∩ Iσ(ω) ∩K(ω) = ∅.(2.5)

v. For almost every ω

lim
n→∞

log l[π|n+1](ω)
log l[π|n](ω)

= 1 for all π ∈ ∆N.(2.6)

vi. For almost every ω there exists b = b(ω) > 0 such that

γω(b) < ∞.(2.7)

Remarks. 1. The case m = 1 when the random vectors (Lσ,1, . . . , Lσ,N ) are
identically distributed is covered in [1] and [6].

2. It is obvious that (2.6) is satisfied if there exists a positive random variable
a(ω) such that for each σ ∈ ∆∗and for almost every ω

Lσ(ω) ≥ a(ω).(2.8)

Note that in [11] conditions (2.6) and (2.8) are referred to as “regularity” and
“strong regularity” respectively.

3. It is clear that condition (2.5) is fulfilled if

Iη(ω) ∩ Iσ(ω) = ∅(2.9)

as long as neither σ < η nor η < σ.
4. Condition (2.7) admits stronger but more tractable versions (see [11]). We
consider here the simplest one. Let

Λ(A,B) = inf{λ(x, y) : x ∈ A, y ∈ B} for A,B ∈ M.

It is easy to see that γω(b) = 1 if the following stronger version of condition
(2.9) is met:

Λ(Iη(ω), Iσ(ω)) ≥ bmax(lη(ω), lσ(ω))(2.10)

if neither σ < η nor η < σ.
5. While condition (2.4) establishes an upper bound for the diameter of the
set Iσ(ω), condition (2.7) implies a lower bound. The stronger condition
(2.10) means that in the metric subspace K(ω) ⊂ M the intrinsic diameter of
Iσ(ω) ∩K(ω) cannot be smaller than blσ(ω) (see [11] for details).

There are numerous examples of fractals in finite dimensional spaces. We give
an example of a non-random fractal in the Hilbert space H that is not contained in
any finite dimensional subspace of H.

Example 2.1. Let e1, e2, . . . be an orthonormal base in the Hilbert space H. De-
note an = 4−n, rn = 4−n−1; we put here ∆ = {0, 1}. If π = (p1, p2, . . . ) ∈ ∆N

then

xπ|n =
n∑

k=1

akpkek, xπ =
∞∑

k=1

akpkek
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and Iπ|n = [B(xπ|n, rn)]. The fractal K = {xπ : π ∈ ∆N}. It is easy to check that
our construction satisfies conditions (i)-(iii) and (2.10). If π = (1, 1, . . . ) then the
vectors xπ|n, n = 1, 2, . . . are contained in K and are linearly independent.

Following [11] we say that two constructions I(1) and I(2) are conjunctive if
I
(1)
σ (ω) ∩ I

(2)
σ (ω) = ∅ for almost every ω and for each σ ∈ ∆∗. The following

proposition is a simple corollary of this definition.

Proposition 2.1. For almost every ω conjunctive constructions define the same
fractal.

This gives us the opportunity to study simple conjunctive constructions possess-
ing better properties and defining the same fractal as the given one. We will use
this opportunity later. Here we confine ourselves to the following example.

Example 2.2. Assume the random construction Iσ(ω) = B(xσ(ω), rσ(ω)), σ ∈
∆∗, meets condition (2.9); then for any d such that 0 < d < 1, the conjunctive
construction B(xσ(ω), drσ(ω)), σ ∈ ∆∗, enjoys the stronger property (2.10).

3. The transition operator and random sequences related to
random constructions

Let m > 1. Consider Nm−1-dimensional real vector space

Φ = {u(x1, . . . , xm−1) : 1 ≤ x1, . . . , xm−1 ≤ N}.
For any β > 0 we define a linear operator V (β) : u −→ uV (β) = w in Φ by

w(x2, . . . , xm) =
∑

x1∈∆

u(x1, . . . , xm−1)ELβ
x1,...,xm

.

Remark. In case m = 1 we can also consider an operator V (β) given by N × N

matrix with identical rows (ELβ
1 , . . . ,ELβ

N ).

Let us introduce the random variables

S
(p2,...,pm)
β,n =

∑
σ∈∆n:

σn−m+2=p2,...,σn=pm

lβσ

=
∑

σ∈∆n−m+1

lβσ,p2,...,pm

=
∑

σ∈∆n−m

∑
p1∈∆1

lβσ,p1,...,pm

=
∑

p1∈∆1

∑
σ∈∆n−m

lβσ,p1,...,pm−1
Lβ

σ,p1,...,pm
,

where p2, . . . , pm ∈ ∆, n ≥ m.
We shall consider the following σ-algebras:

Fn = σ({Lη : η ∈ ∆∗ and |η| ≤ n}) for n = 1, 2, . . .

and

F =
∞∨

n=1

Fn.
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Denote by Sβ,n the random vector (S
(p2,...,pm)
β,n : 1 ≤ p2, . . . , pm ≤ N). By EY we

denote the expectation of a random variable or a random vector Y .

Lemma 3.1. For any β > 0 and n ≥ m there exists ESβ,n and

E(Sβ,n|Fn−1) = Sβ,n−1V
(β).

Proof. Using the fact that for any σ ∈ ∆n−m, p1, . . . , pm ∈ ∆ the variables
lσ,p1,...,,pm−1 are Fn−1-measurable and Lσ,p1,...,,pm are independent of Fn−1 we have

E(Sp2,...,pm

β,n |Fn−1) =
∑

p1∈∆

∑
σ∈∆n−m

lβσ,p1,...,pm−1
ELβ

σ,p1,...,pm

=
∑

p1∈∆

( ∑
σ∈∆n−m

lβσ,p1,...,pm−1

)
ELβ

p1,...,pm

=
∑

p1∈∆

S
(p1,...,pm−1)
β,n−1 ELβ

p1,...,pm

which holds for any p2, . . . , pm ∈ ∆. �

Denote v(β)(x1, . . . , xm) = ELβ
x1,...,xm

and let ρ(β) = ρ(V (β)) be the spectral
radius of the operator V (β). Since for every x1, . . . , xm ∈ ∆ almost surely 0 <
Lx1,...,xm < 1, it is easy to prove the following statement.

Lemma 3.2. ρ(·) is a continuous strictly decreasing function such that ρ(0) > 1
and limβ→∞ ρ(β) = 0. Therefore, there is a unique solution α of the equation
ρ(β) = 1.

Since ELβ
p1,...,pm

> 0 for any p1, . . . , pm ∈ ∆, the operators V (β) are inde-
composable. Therefore by the Perron-Frobenius theorem (see, for example, [3]),
ρ(β) is an eigenvalue of V (β) and there exists a positive right eigenvector r(β) =
(r(β)(x1, . . . , xm−1) : 1 ≤ x1, . . . , xm−1 ≤ N) ∈ Φ, that is, V (β)r(β) = ρ(β)r(β).
Perform the following standard transformation:

ṽ(β)(x1, . . . , xm) =
v(β)(x1, . . . , xm)r(β)(x2, . . . , xm)

ρ(β)r(β)(x1, . . . , xm−1)
.(3.1)

We notice that the new operator Ṽ (β) = (ṽ(β)(x1, . . . , xm) : 1 ≤ x1, . . . , xm ≤ N)
is stochastic, i.e., for all x1, . . . , xm−1 ∈ ∆∑

xm∈∆

ṽ(β)(x1, . . . , xm) = 1

We can rewrite (3.1) as

v(β)(x1, . . . , xm) =
ρ(β)r(β)(x1, . . . , xm−1)ṽ(β)(x1, . . . , xm)

r(β)(x2, . . . , xm)
.

Denote

S̃
(p2,...,pm)
β,n = r(β)(p2, . . . , pm)S

(p2,...,pm)
β,n /ρn(β), n ≥ m

and

S̃β,n = (S̃
(p2,...,pm)
β,n : 1 ≤ p2, . . . , pm ≤ N), n ≥ m.
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From Lemma 3.1 it follows immediately that

E(S̃(p2,...,pm)
β,n |Fn−1) =

∑
p1∈∆

S̃
(p1,...,pm−1)
β,n−1 ṽ(β)(p1, . . . , pm),(3.2)

for any p2, . . . , pm ∈ ∆, i.e.,
E(S̃β,n|Fn−1) = S̃β,n−1Ṽ

(β), n > m.

Define

Zβ,n =
∑

p2,...,pm

S̃
(p2,...,pm)
β,n , n ≥ m.

Lemma 3.3. The sequence (Zβ,n, Fn), n ≥ m, is a positive martingale.

Proof. Indeed from (3.2) we have

E(Zβ,n|Fn−1) =
∑

p2,...,pm

E(S̃(p2,...,pm)
β,n |Fn−1)

=
∑

p2,...,pm

∑
p1

S̃
(p1,...,pm−1)
β,n−1 ṽ(β)(p1, . . . , pm)

=
∑

p1,...,pm−1

S̃
(p1,...,pm−1)
β,n−1

∑
pm

ṽ(β)(p1, . . . , pm)

=
∑

p1,...,pm−1

S̃
(p1,...,pm−1)
β,n−1 = Zβ,n−1,

since Ṽ (β) is stochastic. �

Therefore, by the martingale convergence theorem, for almost every ω there
exists the limit limn→∞ Zβ,n; if β = α we denote this limit by X. As an immediate
consequence we obtain the following upper estimate for the Hausdorff dimension of
the random fractal K.

Theorem 3.1. For almost every ω

dimH K(ω) ≤ α,

where α is defined in Lemma 3.2.

Proof. Let β > α. So by Lemma 3.2 ρ(β) < 1. Along with Zβ,n we consider also

Zβ,n =
∑

p2,...,pm

S
(p2,...,pm)
β,n .

Denote here
1
ξ
= min

x1,...,xm−1
r(β)(x1, . . . , xm−1) > 0.

Then it is easy to see that for any n

0 ≤ Zβ,n ≤ ξρn(β)Zβ,n.

Since ρ(β) < 1 and the sequence Zβ,n is convergent a.s., this implies that for almost
every ω

Zβ,n → 0 as n → ∞.
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Now, for any n we have K ⊂ ⋃
σ∈∆n Iσ. By (2.3) for any small δ > 0 we can find

n = n(δ) such that lσ ≤ δ for every σ ∈ ∆n. Hence

H
(β)
δ (K) ≤

∑
σ∈∆n

lβσ = Zβ,n.

Let δ → 0, then n(δ)→ ∞ and, therefore, H(β)(K) = 0 for any β > α. This proves
the theorem. �

Fix σ ∈ ∆∗. Assume |σ| = k. We define the random variables

S
(p2,...,pm)
σ;β,n =

( ∑
η∈∆n−m+1

lβσ,η,p2,...,pm

)
/lβσ

=
∑

η∈∆n−m+1

n∏
t=1

Lβ
σ,[η,p2,...,pm|t],

where β > 0, p2, . . . , pm ∈ ∆, n ≥ m. We consider also the random vector

Sσ;β,n =
(
S

(p2,...,pm)
σ;β,n : 1 ≤ p2, . . . , pm ≤ N

)
.

The following lemma generalizes Lemma 3.1.

Lemma 3.4. For any β > 0 and n ≥ m

E(Sσ;β,n|Fk+n−1) = Sσ;β,n−1V
(β).

Proof. We have

S
(p2,...,pm)
σ;β,n =

( ∑
p1∈∆

∑
η∈∆n−m

lβσ,η,p1,...,pm

)
/lβσ

=
( ∑

p1∈∆

∑
η∈∆n−m

lβσ,η,p1,...,pm−1
Lβ

σ,η,p1,...,pm

)
/lβσ .

Now, since for each σ ∈ ∆k and η ∈ ∆n−mthe random variables lσ and lσ,η,p1,...,pm−1

are Fk+n−1-measurable, Lσ,η,p1,...,pm
is independent of Fk+n−1 andELβ

σ,η,p1,...,pm
=

ELβ
p1,...,pm

, we get

E(S(p2,...,pm)
σ;β,n |Fk+n−1) =

∑
p1∈∆

( 1
lβσ

∑
η∈∆n−m

lβσ,η,p1,...,pm−1

)
v(β)(p1, . . . , pm)

=
∑

p1∈∆

S
(p1,...,pm−1)
σ;β,n−1 v(β)(p1, . . . , pm),

which finishes the proof. �

Define

Zσ;β,n =
( ∑

p2,...,pm

r(β)(p2, . . . , pm)S
(p2,...,pm)
σ;β,n

)
/ρn(β).

The same way as before it can be shown that (Zσ;β,n,Fk+n), n ≥ m, form a
positive martingale. Therefore by the martingale convergence theorem for almost
every ω there exists limn Zσ;β,n. When β = α we denote this limit by Xσ. These
limit random variables Xσ play a significant role in constructing a special random
measure in Section 6 that will be an essential tool in the prove that dimH K(ω) ≥ α.
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4. Properties of the random variables X and Xσ

Note that for any k the family {Xσ : σ ∈ ∆k} consists of independent variables
and independent of Fk. There are the following relations between the limit random
variables X and Xσ, σ ∈ ∆∗.

Lemma 4.1.
(a) X∅ = X/lα∅ .
(b) For any k lασXσ =

∑
η∈∆k lασ,ηXσ,η.

(c) X =
∑

η∈∆k lαη Xη.

Proof. (a) For any n ≥ m, p2, . . . , pm ∈ ∆ we have
S

(p2,...,pm)
∅;n =

( ∑
η∈∆n−m+1

lαη,p2,...,pm

)
/lα∅ = S(p2,...,pm)

n /lα∅ ,

therefore, Z∅;n = Zn/l
α
∅ for n = m,m+1, . . . and by taking limit as n → ∞ we get

X∅ = X/lα∅ .
(b) Fix p2, . . . , pm ∈ ∆. Denote here

∆̃n−m+1 = {γ ∈ ∆n : γn−m+2 = p2, . . . , γn = pm}.
Then

S(p2,...,pm)
σ;n =

( ∑
γ∈∆̃n−m+1

lασ,γ

)
/lασ =

∑
γ∈∆̃n−m+1

n∏
t=1

Lα
σ,[γ|t].(4.1)

Let η ∈ ∆k. Notice that

lσ,η = lσ

k∏
t=1

Lσ,[η|t].(4.2)

Also, if γ ∈ ∆̃n−m+1 we have the following obvious identities for finite sequences in
∆∗:

(σ, [η|t]) = (σ, [η, γ|t]), if 1 ≤ t ≤ k,(4.3)

(σ, η, [γ|t− k]) = (σ, [η, γ|t]), if k + 1 ≤ t ≤ k + n.

From (4.1), (4.2) and (4.3) it follows that

∑
η∈∆k

lασ,ηS
(p2,...,pm)
σ,η;n =

∑
η∈∆k

lασ,η

( ∑
γ∈∆̃n−m+1

n∏
t=1

Lα
σ,η,[γ|t]

)

= lασ
∑

η∈∆k

( k∏
t=1

Lα
σ,[η,γ|t]

∑
γ∈∆̃n−m+1

k+n∏
t=k+1

Lα
σ,[η,γ|t]

)

= lασ
∑

η∈∆̃n+k−m+1

n+k∏
t=1

Lα
σ,[η|t] = lασS

(p2,...,pm)
σ;n+k .

This implies that for any σ ∈ ∆∗, n ≥ m and k

lασZσ;α,n+k =
∑

η∈∆k

lασ,ηZσ,η;α,n.(4.4)
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Now, by taking limit of both sides of (4.4) as n → ∞ we obtain (b).
(c) This follows from (a) and (b). �

Obviously, for almost every ω Xσ(ω) ≥ 0 for each σ ∈ ∆∗. We are going to
prove that each of Xσ is positive with probability 1. The key to this is the following
theorem about the moments of Xσ which is rather close to the one considered in
[6].

Theorem 4.1. For each σ ∈ ∆∗the random sequence {Zσ;n, n ≥ m} is Lk-bounded
for any k ∈ N.

Proof. For simplicity, we will prove the theorem for the special case σ = ∅; the
general case of σ = ∅ can be handled analogously. Denote here

Z̃β,n = Zβ,nρ
n(β) for β > 0 and n = m,m+ 1, . . .

Notice that

Z̃β,n =
∑

σ∈∆n−m+1

∑
p2,...,pm

lβσ,p2,...,pm
r(β)(p2, . . . , pm).

Therefore Z̃β,n < Nnmaxp2,...,pm
r(β)(p2, . . . , pm) and thus E Z̃t

β,n < ∞ for any
β > 0, t > 0 and n. Using induction on t we shall show that for any β ≥ α, t ∈ N

E Z̃t
β,n ≤ cγn, n = m,m+ 1, . . .(4.5)

for some constants c = c(β, t) > 0 and γ = γ(β, t) ∈ (0, 1] such that γ(β, t) < 1 if
β > α. When t = 1 we have

E Z̃β,n = ρn(β)EZβ,n.

Since ρ(β) ∈ (0, 1) for β > α and (Zβ,n,Fn) forms a martingale, (4.5) holds in this
case.
Let k > 1. Assume that (4.5) holds for any t ∈ [1, k − 1]. We have

Z̃β,n+1 =
∑

η=(σ,p1,...,pm−1)

lβη
( ∑

pm

Lβ
η,pm

r(β)(p2, . . . , pm)
)
.

Thus

Z̃k
β,n+1 =

k∑
h=1

∑
j1≥···≥jh≥1
j1+···+jh=k

∑
η(1),...,η(h)∈∆n

η(s) 
=η(t),s 
=t

h∏
i=1

ljiβ
η(i)

( ∑
pm

Lβ
η(i),pm

r(i)(p(i)
2 , . . . , p

(i)
m−1, pm)

)ji
,

where η(i) = (σ(i), p
(1)
1 , . . . , p

(i)
m−1) ∈ ∆n.

Since for every η ∈ ∆n the random variable lη is Fn-measurable and the family{∑
pm

Lβ
η,pm

r(β)(p2, . . . , pm) : η ∈ ∆n
}
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consists of independent random variables and does not depend on Fn, we find

E(Z̃k
β,n+1|Fn) =

k∑
h=1

∑
j1≥···≥jh≥1
j1+···+jh=k

(4.6)

∑
η(1),...,η(h)∈∆n

η(s) 
=η(t),s 
=t

h∏
i=1

ljiβ
η(i) E

[( ∑
pm

Lβ

p
(i)
1 ,...,p

(i)
m−1,pm

r(β)(p(i)
2 , . . . , p

(i)
m−1, pm)

)ji
]
.

For the term in (4.6) with h = k the only choice is j1 = · · · = jk = 1. Recall that
for any p1, . . . , pm−1 ∈ ∆∑

pm

ELβ
p1,...,pm−1,pm

r(β)(p2, . . . , pm) = ρ(β)r(β)(p1, . . . , pm−1).

Hence this term is

ρk(β)
∑

η(1),...,η(k)∈∆n

η(s) 
=η(t),s 
=t

k∏
i=1

lβ
η(i)r

(β)(p(i)
1 , . . . , p

(i)
m−1) ≤ ρk(β)Z̃k

β,n.(4.7)

Now, if h < k in (4.6), then j1 ≥ 2. Since
max

1≤j≤k
max

p1,...,pm−1∈∆
E

[( ∑
pm

Lβ
p1,...,pm

r(β)(p2, . . . , pm)
)j]

< ∞

and

min
1≤j≤k

min
p1,...,pm−1∈∆

r(jβ)(p1, . . . , pm−1) > 0,

there is a constant c1 = c1(β, k) such that

∑
η(1),...,η(h)∈∆n

η(s) 
=η(t),s 
=t

h∏
i=1

ljiβ
η(i) E

[( ∑
pm

Lβ

p
(i)
1 ,...,p

(i)
m−1,pm

r(β)(p(i)
2 , . . . , p

(i)
m−1, pm)

)ji
]

(4.8)

≤ c1
∑

η(1),...,η(h)∈∆n

η(s) 
=η(t),s 
=t

h∏
i=1

ljiβ
η(i)r

(jiβ)(p(i)
1 , . . . , p

(i)
m−1) ≤ c1

h∏
i=1

Z̃jiβ,n.

Thus, from (4.6), (4.7) and (4.8) it follows that

E(Z̃k
β,n+1|Fn) ≤ ρk(β)Z̃k

β,n + c1

k−1∑
h=1

∑
j1≥···≥jh≥1
j1+···+jh=k

h∏
i=1

Z̃jiβ,n.(4.9)

By the Hölder inequality

E
( h∏

i=1

Z̃jiβ,n

) ≤
h∏

i=1

‖Z̃jiβ,n‖h.

Hence by taking expectations in (4.9) we can get

E Z̃k
β,n+1 ≤ ρk(β)E Z̃k

β,n + c1Mn,(4.10)
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where

Mn =
k−1∑
h=1

∑
j1≥···≥jh≥1
j1+···+jh=k

h∏
i=1

‖Z̃jiβ,n‖h.

Iterating (4.10) backward we find

E Z̃k
β,n+1 ≤ (ρ(β))(n−m+1)k E Z̃k

β,m + c1

n∑
t=m

(ρ(β))(n−t)kMt.(4.11)

Now, h ≤ k − 1, and by our induction hypothesis if ji ≥ 1
sup

n
‖Z̃jiβ,n‖h < ∞.

Since j1 ≥ 2 and β ≥ α then j1β > α. Again by the induction hypothesis we have
for any n

E Z̃h
j1β,n = ‖Z̃jiβ,n‖h

h ≤ c(j1β, h)γ(j1β, h)n,

where c(j1β, h) > 0 and γ(j1β, h) ∈ (0, 1). Thus, from (4.11) it is clear that (4.5)
holds for t = k, which completes the proof. �
Corollary 4.1. Each of the random variables Xσ, σ ∈ ∆∗, has finite moments of
any order k ∈ N.

We also have the following important property of the random variables Xσ.

Corollary 4.2.

P (Xσ > 0) = 1 for each σ ∈ ∆∗.(4.12)

Proof. First, since for each σ ∈ ∆∗ the expectation EXσ = EZσ;α,m > 0 we find
that P (Xσ > 0) > 0 or P (Xσ = 0) < 1. Consider here the following σ-algebras

Fn
n = σ{Lη : η ∈ ∆n}, Fn = σ{Lη : η ∈ ∆∗ and |η| ≥ n}, n ∈ N

Since Fn
n , n ∈ N are independent and, by construction of random variables Xσ the

event {Xσ = 0} belongs to the “tail” σ-algebra Fn for any σ ∈ ∆n and for any
n > 0, the relation (4.12) follows now by the Kolmogorov’s Zero-or-One Law (see,
for example, [10]). �
Now, we shall prove that in fact there are only finitely many different distribu-

tions of Xσ, σ ∈ ∆∗. More precisely the following holds.

Theorem 4.2. Let |σ| = k ≥ m − 1 and σk−m+2 = p1, . . . , σk = pm−1 for some
p1, . . . , pm−1 ∈ ∆. Then Xσ and Xp1,...,pm−1 are identically distributed.

In order to prove Theorem 4.2 we establish the following lemma. Denote here

∆(n) =
n⋃

t=1

∆t, ∆(n)
0 =

n⋃
t=0

∆t.

Lemma 4.2. For any n the random vectors

(Lσ,η; η ∈ ∆(n)) and (Lp1,...,pm−1,η; η ∈ ∆(n))

have the same distribution, provided that |σ| = k ≥ m− 1 and
σk−m+2 = p1, . . . , σk = pm−1.
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Proof. It’s enough to prove that for any family of Borel sets Bη, η ∈ ∆(n)

P
(
Lσ,η ∈ Bη, η ∈ ∆(n)

)
= P

(
Lp1,...,pm−1,η ∈ Bη, η ∈ ∆(n)

)
.

First of all we have

P (Lσ,η ∈ Bη : η ∈ ∆(n)) = P (Lσ,η,p ∈ Bη,p : η ∈ ∆(n−1)
0 , p ∈ ∆).(4.13)

Recall that (Lσ,η,1, Lσ,η,2, . . . ), η ∈ ∆(n−1)
0 are independent and distributed iden-

tically to

(Lp1,...,pm−1,η,1, Lp1,...,pm−1,η,2, . . . ).

Therefore each part in (4.13) is equal to

∏
η∈∆

(n−1)
0

P (Lσ,η,p ∈ Bη,p : p ∈ ∆) =
∏

η∈∆
(n−1)
0

P (Lp1,...,pm−1,η,p ∈ Bη,p : p ∈ ∆)

= P (Lp1,...,pm−1,η ∈ Bη : η ∈ ∆(n)).

�
Since by the definition

S(q1,...,qm−1)
σ;n =

∑
γ∈∆n−m+1

n∏
t=1

Lσ,[γ,q1,...,qm−1|t], n ≥ m− 1,

we immediately get that S(q1,...,qm−1)
σ;n is distributed identically to S

(q1,...,qm−1)
p1,...,pm−1;n pro-

vided |σ| = k and σk−m+2 = p1, . . . , σk = pm−1. This implies that Zσ;n has the
same distribution as Zp1,...,pm−1;n and since for each σ ∈ ∆∗

Xσ = lim
n

Zσ;n for almost every ω ,

this establishes Theorem 4.2.

5. Dimension of the sequence space

In this section we prove some auxiliary statements related to the metric space
(∆N, λ∗), where λ∗ is a metric that meets some restrictions specified below. We
define cylinders by

Cn(x) = {y ∈ ∆N : [y|n] = [x|n]}, for x ∈ ∆N and n ∈ N .

Let us consider a family of positive numbers {ly : y ∈ ∆∗} with properties (2.3)
and (2.6). We assume that the metric λ∗ satisfies the following condition:

diam(Cn(x)) ≤ l[x|n].

Then the family I[x|n] = Cn(x), x ∈ ∆N, n ∈ N is a (non-random) construction. It
is clear that the generated fractal K = ∆N. The construction Cn(x), x ∈ ∆N, n ∈ N

meets condition (2.5) and it is monotone.
Note that, since the construction is specified, the condition (vi) of Section 2

presents some restriction on the metric λ∗.
Let us denote by A the σ-algebra generated by the cylinders. It is easy to check

(see, for example, Proposition 1.1. in [11]) that any λ∗-Borel set is contained in A;
moreover, the λ∗-topology in ∆N coincides with the product topology; in particular,
∆N is λ∗-compact.
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Let µ be a finite measure on A. The ball-wise local dimension of µ at a point
x ∈ ∆N is defined as follows:

dB,µ(x)
def= lim inf

r→0

logµ(B(x, r))
log r

.

We consider also the the cylinder-wise local dimension of µ at x ∈ ∆N :

dC,µ(x)
def= lim inf

n→∞
logµ(Cn(x))
log[l[x|n]]

.(5.1)

The following theorem states an important relation between these notions of
local dimension.

Theorem 5.1. Under condition (vi) of Section 2,

dB,µ(x) ≥ dC,µ(x), x ∈ ∆N.

The proof of this statement is contained in the proof of Theorem 1.4 in [11].

Theorem 5.2. Assume dB,µ(x) ≥ d on a set F with µ(F ) > 0 where d is a positive
constant. Then dimH F ≥ d.

Proof. 1 Fix 0 < ε < d and s > 0. Let us consider the set F ε
s ⊂ ∆N, where

log[µ(B(x,r))]
log r ≥ d − ε for any r ≤ s. If δ < s then for any δ-cover of F ε

s by balls
{B(xi, ri)} with xi ∈ F ε

s we have
∑

i r
d−ε
i ≥ ∑

i µ(B(xi, ri)) ≥ µ(F ε
s ) > 0 for

sufficiently small s. This implies that dimH F ε
s ≥ d − ε for such s. Obviously,

F =↑ lims→0 F ε
s , and therefore dimH ∆N ≥ dimH F = lims→0 dimH(F ε

s ) ≥ d − ε.
Since ε was chosen arbitrarily the theorem is proved. �
Corollary 5.1. Let condition (vi) be fulfilled. Assume dC,µ(x) ≥ d on a set F with
µ(F ) > 0 where d is a positive constant. Then dimH ∆N ≥ d.

6. Main results

In this section we prove the main theorem that under restrictions on the random
construction I introduced earlier we have dimH K = α almost surely. We are going
to do this using cylinder-wise local dimension of a special measure µ on the space ∆N

and its relation to the “global” Hausdorff dimension as established in the previous
section.
Let A denote the σ-algebra in ∆N generated by the cylinders. If σ = [π|n], where

σ ∈ ∆n, π ∈ ∆N, we denote Cn(σ) = Cn(π).

Lemma 6.1. For almost every ω the relations

µω(Cn(σ)) = lασ (ω)Xσ(ω)/X(ω), π ∈ ∆N, n ∈ N,

define a probability measure on A.
Proof. Lemma 4.1 shows that for almost every ω the measure µω is a consistent
on the algebra of the cylindrical sets. Moreover for almost every ω

µω(∆N) =
∑

σ∈∆n

µω(Cn(σ)) =
1

X(ω)

∑
σ∈∆n

lασXσ(ω) = 1.

�
1This is an adaptation of the proof of Theorem 1.6 in [11].
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The proof of the following lemma is a modification of the proof of Theorem 3.5
in [6].

Lemma 6.2. With probability 1

dC,µ(π) ≥ α for every π ∈ ∆N.

Proof. Recall that by Theorem 4.1 we have E(Xt
σ) < ∞ for any t > 0 and for each

σ ∈ ∆∗. Fix k > 0 and β < α. Then, since lσ and Xσ are independent,

P (lασXσ > klβσ) ≤
E([lα−β

σ ]tXt
σ)

kt
=
E l

(α−β)t
σ EXt

σ

kt
≤ c

kt
E l(α−β)t

σ ,

where c = maxq1,...,qm−1(EXt
q1,...,qm−1

) < ∞ by Theorem 4.2. Recall the notation

Zγ,n =
∑

σ∈∆n

lγσ,

and that

Zγ,n ≤ dρn(γ)Zγ,n for some constant d > 0.

Thus ∑
σ∈∆n

P (lασXσ > klβσ) ≤
c

kt
EZ(α−β)t ≤ cd

kt
ρn((α− β)t)EZ(α−β)t,m.(6.1)

Choose t0 > 0 such that ρ((α− β)t0) < 1. Then from (6.1) it follows
∞∑

n=0

P (∃σ ∈ ∆n : lασXσ > klβσ) < ∞.

By the Borel-Cantelli lemma we find that

P (∃n0 : ∀n ≥ n0 ∀π ∈ ∆N, lα[π|n]X[π|n] ≤ klβ[π|n]) = 1.

Fix ω such that µω is well defined and there is n0 = n0(ω) ∈ N such that for all
n ≥ n0 we have lα[π|n](ω)X[π|n](ω) ≤ klβ[π|n](ω). For each such ω

logµω(Cn(π))
log l[π|n](ω)

≥ β +
log k

log l[π|n](ω)
.(6.2)

Letting n → ∞ in (6.2) we find

lim inf
n→∞

logµω(Cn(π))
log l[π|n](ω)

≥ β,

which holds for any β < α and hence for β = α. �

The random fractal K(ω) corresponds to the whole space ∆N endowed with some
random metric. This correspondence is established as follows. Let π ∈ ∆N. Since
the space (M, λ) is complete, each of the sets Iσ is closed and diam(Iσ) → 0 as
|σ| → ∞ for almost every ω , the intersection ∩∞

n=1I[π|n] is nonempty and consists
of a single point which we denote xπ. It is easy to see that

K(ω) = {xπ(ω) : π ∈ ∆N}.
For each such ω we consider the “coding” map φ : K �→ ∆N defined by φ(xπ) = π.

The following lemma is proved in [11].
We assume that in the following three statements the condition (2.5) is fulfilled.
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Lemma 6.3. The map φ is one-to-one and φ(I[π|n]∩K) = Cn(π) for each π ∈ ∆N

and n ∈ N.

Now fix ω and let λK be the restriction of the metric λ toK. Then λ∗
ω = λK◦φ−1

is a metric in ∆N and for almost every ω we have that φ is an isometry between
metric spaces (K(ω), λK) and (∆N, λ∗

ω). It is obvious that for almost every ω
the metric λ∗

ω satisfies the conditions stated in Section 5. Therefore the following
statement holds.

Proposition 6.1. The set K(ω) is compact for almost every ω.

The following lemma allows us to use the results of the previous section to
compute the dimension of the fractal K(ω).

Lemma 6.4. For almost every ω

dimH K = dimH ∆N.

Theorem 6.1 (Main). Assume that conditions (iv), (v) and (vi) of Section 2 are
met. Then for almost every ω

dimH K(ω) = α.

Proof. We fix ω ∈ Ω for which conditions (iv), (v) and (vi) of Section 2 are fulfilled,
the measure µω exists and dC,µ(π, ω) ≥ α for all π ∈ ∆N. Then by Corollary 5.1 we
immediately obtain that for almost every ω

dimH K(ω) = dimH ∆N ≥ α,

which along with the upper estimate, Theorem 3.1, finishes the proof. �

Remark. As it is mentioned at the beginning, the condition (2.7), finiteness of
Moran index of the construction, is not very visual. We can replace (2.7) and (2.5)
with a stronger but more tractable condition (2.10).

In the following two corollaries we assume that condition (v) of Section 2 is
fulfilled.

Corollary 6.1. 2 Let J be a construction. Assume that for almost every ω there
is a conjunctive construction D = {Dσ : σ ∈ ∆∗} consisting of closed balls Dσ =
[B(xσ, blσ)], b = b(ω) > 0 so that the balls Dσ and Dη are disjoint if neither σ < η
nor η < σ.Then for almost every ω

dimH K(ω) = α.

Proof. For each ω we consider another construction D̃ = {B(xσ, dlσ) : σ ∈ ∆∗},
where d = d(ω) < b(ω). It is clear that for almost every ω the construction D̃(ω)
defines the same fractal K(ω) as the constructions D(ω) and J(ω). Now as it is
noticed in Example (2.2), this construction D(ω) satisfies the conditions (2.10) and
(2.4). It remains to apply Theorem 6.1. �

Let us note also the following simple particular case.

2See also [11].
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Corollary 6.2. Let J be a random construction. Assume that for almost every ω
there is b = b(ω) > 0 such that [B(xσ, blσ)] ⊂ Iσ where the balls [B(xσ, blσ)] and
[B(xη, blη)] are disjoint if neither σ < η nor η < σ. 3 Then for almost every ω

dimH K(ω) = α.
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