ABSTRACT. In this article, we are concerned with the existence of positive radial solutions of the problem

$$
\left(S^{+}\right) \begin{cases}-\Delta_{p} u=f(x, u, v) & \text { in } \Omega \\ -\Delta_{q} v=g(x, u, v) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a ball in R^{N} and f, g are positive functions satisfying $f(x, 0,0)=g(x, 0,0)=0$. Under some growth conditions, we show the existence of a positive radial solution of the problem S^{+}. We use traditional techniques of the topological degree theory. When $\Omega=R^{N}$, we give some sufficient conditions of nonexistence.

