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Positive Radial Solutions of Nonlinear Elliptic
Systems

Abdelaziz Ahammou

Abstract. In this article, we are concerned with the existence of positive
radial solutions of the problem

(S+)




−∆pu = f(x, u, v) in Ω,
−∆qv = g(x, u, v) in Ω,
u = v = 0 on ∂Ω,

where Ω is a ball in RN and f, g are positive functions satisfying
f(x, 0, 0) = g(x, 0, 0) = 0. Under some growth conditions, we show the
existence of a positive radial solution of the problem S+. We use tradi-
tional techniques of the topological degree theory. When Ω = RN , we
give some sufficient conditions of nonexistence.
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1. Introduction and main result

In this work, we are concerned with the existence of positive radial solutions of
the problem

(S+)




−∆pu = a(x)u|u|α−1 + b(x)v|v|β−1 in Ω,
−∆qv = c(x)u|u|γ−1 + d(x)v|v|δ−1 in Ω,
u = v = 0 on ∂Ω,
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where Ω := BR is the ball centered in zero and radius R > 0 in RN , a, b, c and d are
given positive continuous functions. Our motivation for studying the system S+ is
based essentially from the fact that the problem has not necessarily a variational
structure. We shall make recourse to topological degree methods by using the blow-
up technique introduced by Gidas and Spruck [10] in the scalar case. This method
explores the different exponents (α, β, δ, γ). In the scalar case the interested reader
may refer to [5], [6] and [16]. In the case of systems, many authors have extended
this method to different situations (see [4], [3] and [15]).
In recent years, for the scalar case the problems of existence and nonexistence

have been studied by several authors by using different approaches (see[5], [6] and
[16]). For the systems case, we mention the recent results of Boccardo, Fleckinger
and de Thelin [2] where the authors prove the existence of the weak solutions of
the following problem:


−∆pu = a(x)u|u|α−1 + b(x)v|v|β−1 + h1(x) in Ω,
−∆qv = c(x)u|u|γ−1 + d(x)v|v|δ−1 + h2(x) in Ω,
u = v = 0 on ∂Ω,

(1.1)

under the following assumptions:

max(p, q) < N.(H1)

(p− 1)(q − 1) > βγ.(H2)

One of the following conditions holds:(H3)

(i) p− 1 > α, q − 1 > δ.

(ii)
{

p− 1 = α, q − 1 = δ,
‖ a ‖< λ(1,p) and ‖ d ‖< λ(1,q).

(iii)
{

p− 1 = α, q − 1 < δ,
and ‖ a ‖< λ(1,p).

Here, Ω is smooth and bounded in RN , λ(1,m) (m = p, q) is the first eigenvalue of
the operator ∆m (m = p, q) on Ω and h1 ∈ Lp′

(Ω), h2 ∈ Lq′
(Ω). We observe that,

with the same approach in [2], if h1 and h2 are identically zero, the solution (u, v)
would be a trivial solution. Always in the system case, the interested reader may
refer to [1], [4], [7], [8], [9], [11] and [12].
Now, we state our main result.

Theorem 1.1. We assume that the hypotheses (H1), (H2) and (H3) hold. We also
suppose that

a, b, c, d ∈ C0([0,+∞[) with inf
s∈[0,+∞[

(a(s), b(s), c(s), d(s)) > 0.(H4)

Then the problem (S+) possesses a solution (u, v) in C1(BR) ∩ C2(BR\{0}), such
that u > 0, v > 0 in BR.

The paper is organized as follows. At first, we consider the operator of solu-
tion S1 associated to the problem (S+) which allows us to seek solutions of the
problem (S+) as a fixed points of S1. In Section 2 we introduce two families of
operators, (Sλ)λ and (Tµ)µ, linked to the problem (S+), acting in a suitable func-
tional space and we give a fundamental lemma. In Section 3, we prove that for
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any positive solution (u, v) of the problem, it is bounded. By using the theory
of degree, we show that there exists a positive number ρ1 > 0 sufficiently large
such that deg(S1, B(0, ρ1)) = 1. On the other hand, in Section 4 by means of the
argument blow-up, we show that there exists a number ρ2 > 0 sufficiently small
such that deg(S1, B(0, ρ2)) = 0. In Section 5 by the excision property we deduce
the existence of the nontrivial positive solutions of (S+) stated in Theorem 1.1.
Finally, in Section 6 we give sufficient conditions for the nonexistence of positive
radial solutions of the problem (S+) on Ω = RN .

2. Preliminaries

We now consider χ the space

χ = {(u, v) ∈ C0(Ω)× C0(Ω) | u = v = 0on ∂Ω}
equipped with the norm ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞, which makes it a Banach space.
Let Sλ and Tτ : χ → χ be the operators defined by Sλ(u, v) = (S1(u, v);S2(u, v))
and Tτ (u, v) = (T 1(u, v);T 2(u, v)) such that

S1(u, v)(r) = λ
1

p−1

∫ R

r

[
t1−N

∫ t

0

sN−1(a(s)|u(s)|α + b(s)|v(s)|β)ds
] 1

p−1

dt,

S2(u, v)(r) = λ
1

q−1

∫ R

r

[
t1−N

∫ t

0

sN−1(c(s)|u(s)|γ + d(s)|v(s)|δ)ds
] 1

q−1

dt,

and

T 1(u, v)(r) =
∫ R

r

[
t1−N

∫ t

0

sN−1(a(s)|u(s)|α + b(s)|(v(s) + τ)|β)ds
] 1

p−1

dt,

T 2(u, v)(r) =
∫ R

r

[
t1−N

∫ t

0

sN−1(c(s)|u(s)|γ + d(s)|v(s)|δ)ds
] 1

q−1

dt.

It is well know that, for all λ ∈ [0, 1] and for all τ ∈ [0,∞[, Sλ and Tτ are completely
continuous operators on χ. From the Maximum principle this implies that Sλ(χ) ⊂
χ and that the problem (S+) is equivalent to find some non trivial fixed point
(u, v) ∈ χ of the operator S1 (by taking λ = 1) such that u′(0) = v′(0) = 0.
We make use in a fundamental way of the following lemma (cf. [3, Lemma 2.1,

p. 2076]):

Lemma 2.1. Let u ∈ C1([0.R]) ∩ C2(]0, R]), u ≥ 0, satisfying

−(rN−1|u′(r)|p−2u′(r))′ ≥ 0 on [0, R].(2.1)

Then, for any r ∈]0, R
2 [ we have :

u(r) ≥ CN,p r|u′(r)|(2.2)

where

CN,p =
p− 1
N − p

(
1− 2 p−N

p−1

)
.(2.3)

Proof. Integrating (2.1) from r to s ∈ [r, R
2 [ we have:

sN−1|u′(s)|p−1 ≥ rN−1|u′(r)|p−1(2.4)
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and therefore:

−u′(s) ≥ r
N−1
p−1 |u′(r)|s−N−1

p−1 .(2.5)

Integrating again from r to 2r with respect to s, we obtain:

u(r) ≥ u(r)− u(2r) ≥ r
N−1
p−1 |u′(r)|

∫ 2r

r

s−
N−1
p−1 ds.(2.6)

Since
∫ 2r

r
s−

N−1
p−1 ds = CN,pr

−N−p
p−1 , we obtain the Lemma. �

In the following sections, we do not distinguish notationally between a sequence
and one of its subsequences, to keep the notation simple.

3. A priori bounds for positive solutions of (S+)

Proposition 3.1. Under the hypotheses (H1), (H2), (H3) and (H4) there exists
some C0 > 0 such that ∀λ ∈ [0, 1] if (u, v) ∈ χ is a fixed point of the operator Sλ

then
‖(u, v)‖ ≤ C0.

This implies that ∀ρ1 > C0, ∀λ ∈]0, 1[ we have
deg(I − Sλ, B(0, ρ1), 0) = const = 1,(3.1)

where B(0, ρ1) = {(u, v) ∈ χ | ‖(u, v)‖ ≤ ρ1}.
Proof. We suppose by contradiction that there exist λ ∈ [0, 1] and (u, v) ∈ χ such
that

(u, v) = Sλ(u, v)(3.2)

with ‖(u, v)‖ = c > 0. Notice that by definition of Sλ we get u′ ≤ 0, v′ ≤ 0 in
[0, R]. Hence ‖(u, v)‖ = u(0) + v(0). Thus, since

u(0) = λ
1

p−1

∫ R

0

[
t1−N

∫ t

0

sN−1(a(s)|u(s)|α + b(s)|v(s)|β)ds
] 1

p−1

dt,(3.3)

v(0) = λ
1

q−1

∫ R

0

[
t1−N

∫ t

0

sN−1(c(s)|u(s)|γ + d(s)|v(s)|δ)ds
] 1

q−1

dt,

we have

u(0) ≤ Cλ
1

p−1
[
(u(0))α + (v(0))β

] 1
p−1(3.4)

v(0) ≤ Cλ
1

q−1
[
(u(0))γ + (v(0))δ

] 1
q−1 .(3.5)

Moreover, from (H3), there exist two numbers $ > 0 and k > 0 such that

β

p− 1 <
$

k
<

q − 1
γ

.(3.6)

Denote

σ = (u(0))
1
� + (v(0))

1
k ,(3.7)

Hence, from (3.4) and (3.5), we get

(u(0))
1
� ≤ Cλ

1
�(p−1)

[
σ�α + σkβ

] 1
�(p−1)(3.8)
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(v(0))
1
k ≤ Cλ

1
k(q−1)

[
σ�γ + σkδ

] 1
k(q−1) .(3.9)

Summing (3.8) and (3.9), we deduce that σ satisfies

1 ≤ Cλ
1

�(p−1)

[
σ�(α−p+1) + σkβ−�(p−1)

] 1
�(p−1)

(3.10)

+ Cλ
1

k(q−1)

[
σ�γ−k(q−1) + σk(δ−q+1)

] 1
k(q−1)

.

First Case: (H3)(i) is satisfied.
Here, (3.10) leads us to a contradiction for σ sufficiently large.

Second Case: (H3)(ii) or (H3)(iii) is satisfied.
In this case we suppose that there exist some sequences {λn} and {(un, vn)}

satisfy (3.2), this implies that

−∆pun = λna(x)un|un|α−1 + λnb(x)vn|vn|β−1 in B(0, R),
−∆qvn = λnc(x)un|un|γ−1 + λnd(x)vn|vn|δ−1 in B(0, R),
un = vn = 0 on ∂B(0, R),

(3.11)

and we suppose that cn = ‖(un, vn)‖ → +∞ as n → +∞. Then, from (3.10), we
deduce easily that λn → λ > 0 as n → +∞. We introduce new functions ũn and
ṽn in the following way:

ũn(r) =
un(r)
σn

�
, ṽn(r) =

vn(r)
σn

k

where,
σn = (un(0))

1
� + (vn(0))

1
k .

Taking (ũn, ṽn) in (3.11) we get, in B(0, R)

−∆pũn(x) = σn
�(α+1−p)λna(x)|ũn(x)|α + σn

−�(p−1)+kβλnb(x)|ṽn(x)|β(3.12)

−∆q ṽn(x) = σn
−k(q−1)+�γλnc(x)|ũn(x)|γ + σn

k(δ+1−q)λnd(x)|ṽn(x)|δ,(3.13)

ũn = ṽn = 0 on ∂B(0, R),

Multiplying (3.12) by ũn, (3.13) by ṽn and by integrating, we infer∫
B

| � ũn(x)|p = σn
�(δ+1−p)λn

∫
B

a(x)|ũn(x)|α+1dx

+σn
−�(p−1)+kβλn

∫
B

b(x)|ṽn(x)|δũn(x)dx∫
B

| � ṽn(x)|q = σn
−k(q−1)+�γλn

∫
B

c(x)|ũn(x)|γ ṽn(x)dx

+σn
k(δ+1−q)λn

∫
B

d(x)|ṽn(x)|δ+1dx.

Observe that
(ũn(0))

1
� + (ũn(0))

1
k = 1.

Consequently, from (H3)(ii) or (H3)(iii), (H4) and (3.6) we deduce that (ũn, ṽn) is
bounded in W0

1,p(B(0, R))×W0
1,q(B(0, R)).
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Thus (ũn, ṽn) converges weakly to some (ũ, ṽ) ∈ W0
1,p(B(0, R))×W0

1,q(B(0, R)).
On the other hand, it easy to see that

‖∆pũn‖ ≤ C, ∀n ∈ N,

‖∆q ṽn‖ ≤ C, ∀n ∈ N

with some positive constant C > 0 depending on (N, p, q, a, b, c, d). Therefore, for all
n we have (ũn, ṽn) ∈ C1(B(0, R))×C1(B(0, R)) and ‖�ũn‖ ≤ K and ‖� ṽn‖ ≤ K.
Now since ‖(ũn, ṽn)‖ = 1 for all n, the Arzelà-Ascoli theorem together with the weak
convergence of (ũn, ṽn) to (ũ, ṽ) ensure that (ũn, ṽn) converges uniformly to (ũ, ṽ)
and that (ũ, ṽ) is not identically zero. Consequently, by passing to the limit it
follows that:

1. If (H3)(ii) is satisfied

−∆pũ(x) = λa(x)|ũ(x)|p−2ũ(x) in B(0, R),

−∆q ṽ(x) = λd(x)|ṽ(x)|q−2ṽ(x) in B(0, R).

But from ‖a‖ < λ(1,p) and ‖d‖ < λ(1,q) we get the contradiction.

2. If (H3)(iii) is satisfied, we obtain

−∆pũ(x) = λa(x)|ũ(x)|p−2ũ(x) in B(0, R),

−∆q ṽ(x) = 0 in B(0, R),

ũ = ṽ = 0 on ∂B(0, R).

Then from ‖a‖ < λ(1,p), we deduce the contradiction.

So, in the different cases there exists C0 > 0 sufficiently large such that ∀ρ1 > C0

we have
deg(I − Sλ, B(0, ρ1), 0) = const ∀λ ∈ [0, 1].

Hence

deg(I − S1, B(0, ρ1), 0) = deg(I − S0, B(0, ρ1), 0) = 1 ∀ρ1 > C0.(3.14)

The proof of Proposition 3.1 is complete. �

4. The blow up to isolate the trivial solution

We shall prove, under (H1), (H2), and (H4), that there exists some ρ2 > 0 such
that

deg(I − Tτ , B(0, ρ2), 0) = 0 ∀τ ∈ [0,∞[.
Proposition 4.1. Under the assumptions (H1), (H2) and (H4) there exists some
ρ > 0 such that for all τ ∈ [0,∞[ and for all fixed points (u, v) ∈ χ\{(0, 0)} of Tτ

we have ‖(u, v)‖ > ρ. This implies that, for ρ2 sufficiently small,

deg(I − Tτ , B(0, ρ), 0) = const = 0 ∀τ ∈ [0,∞[.
Proof. Firstly, from the maximum principle, it follows that the problem

(u, v) = Tτ ((u, v))(4.1)
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is equivalent to find solutions u, v of

− (rN−1|u′(r)|p−2u′(r)
)′
= rN−1

[
a(r)|u(r)|α + b(r)|v(r) + τ |β] ,(4.2)

− (rN−1|v′(r)|q−2v′(r)
)′
= rN−1

[
c(r)|u(r)|γ + d(r)|v(r)|δ] ,(4.3)

u′(0) = v′(0) = u(R) = v(R) = 0.(4.4)

By integrating on [0, r] we get

−u′(r) ≥ C r
1

p−1 (v(r) + τ)
β

p−1 ,(4.5)

−v′(r) ≥ C r
1

q−1 (u(r))
δ

q−1 .(4.6)

Hence, u′ < 0 and v′ < 0 and it follows that 0 ≤ u(r), 0 ≤ v(r).
Thus, from (4.5), we have

−u′(r) ≥ C r
1

p−1 τ
β

p−1 .(4.7)

By integrating (4.7) from 0 to R, we obtain that

u(0) ≥ C R
p

p−1 τ
β

p−1 .(4.8)

Now, we introduce new functions ũ and ṽ in the following way:

ũ(r) =
u(r)
σ�

(4.9)

ṽ(r) =
v(r)
σk

,

and make the change of variables

y =
r

σ
, on [0, R](4.10)

where

σ = (u(0))
1
� + (v(0))

1
k(4.11)

and $, k are positive numbers to be chosen below.
In this way we obtain the following equations for ũ(y) and ṽ(y) defined on interval

[0, R
σ ]:

− d

dy

(
yN−1

∣∣∣∣dũdy (y)
∣∣∣∣
p−2

dũ

dy
(y)

)
= yN−1F (ũ(y), ṽ(y)),(4.12)

− d

dy

(
yN−1

∣∣∣∣dṽdy (y)
∣∣∣∣
q−2

dṽ

dy
(y)

)
= yN−1G(ũ(y), ṽ(y)),(4.13)

dũ

dy
(0) =

dṽ

dy
(0) = ũ(Rσ) = ṽ(Rσ) = 0,(4.14)

where

F (ũ(y), ṽ(y)) =
[
a(σy)A|ũ(y)|α + b(σy)B

∣∣∣ṽ(y) + τ

σk

∣∣∣β] ,(4.15)

G(ũ(y), ṽ(y)) =
[
c(σy))C|ũ(y)|γ + d(σy))D|ṽ(y))|δ

]
,(4.16)
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and

A = σp+�(α−p+1)

C = σq+k(q−1)+�γ

B = σp−�(p−1)+kβ ,

D = σq+k(δ−q+1),

(4.17)

Rσ =
R

σ
.

By choosing

$ =
p(q − 1) + βq

(p− 1)(q − 1)− βγ
and k =

q(p− 1) + pγ

(p− 1)(q − 1)− βγ
,(4.18)

we obtain

A = σ�α−kβ , B = 1, C = 1, D = σkδ−�γ .(4.19)

Note that (ũ, ṽ) satisfies

dũ

dy
(y) ≤ 0, ũ(y) ≤ 1 ∀y ∈ [0, Rσ],(4.20)

dṽ

dy
(y) ≤ 0, ṽ(y) ≤ 1 ∀y ∈ [0, Rσ](4.21)

and

(ũ(0))
1
� + (ṽ(0))

1
k = 1.(4.22)

Thus, we have

−(yN−1|ũ′(y)|p−2ũ′(y))′ ≥ yN−1b(σy)|ṽ(y)|β , on [0, Rσ]
−(yN−1|ũ′(y)|q−2ũ′(y))′ ≥ yN−1c(σy)|ũ(y)|γ , on [0, Rσ]
ũ′(0) = ṽ′(0) = 0.

(4.23)

Integrating (4.23) on (0, y) and taking into account that (H4) holds, we have ∀y ∈
[0, Rσ]

|ũ′(y)| ≥
( y

N

) 1
p−1

b1(ṽ(y))
β

p−1 ,(4.24)

|ṽ′(y)| ≥
( y

N

) 1
q−1

c1(ũ(y))
γ

q−1 .(4.25)

From Lemma 2.1, we have for ∀y ∈ ]0, Rσ

2

]
ũ(y) ≥ CN,py|ũ′(y)| ≥ CN,p

(
1
N

) 1
p−1

y
p

p−1 b1|ṽ(y)|
β

p−1 ,(4.26)

ṽ(y)) ≥ CN,qy|ṽ′(y)| ≥ CN,q

(
1
N

) 1
q−1

y
q

q−1 c1|ũ(y)|
γ

q−1 .(4.27)

Thus, from (4.26) and (4.27), we obtain

(ṽ(y))
(p−1)(q−1)−βγ

q(p−1)+pγ ≥ C y, ∀y ∈
]
0,

Rσ

2

]
,(4.28)

(ũ(y))
(p−1)(q−1)−βγ

p(q−1)+qβ ≥ C y, ∀y ∈
]
0,

Rσ

2

]
,(4.29)
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where here and henceforth C > 0 denotes a positive constant depending only of
(a, b, c, d,N, p, q). Taking into account (4.20), (4.21) and since (ũ, ṽ) are non in-
creasing functions on [0, Rσ], we obtain

y ≤ C, ∀y ∈
[
0,

Rσ

2

]
,(4.30)

where C := C(a, b, c, d,N, p, q). Then, as Rσ → ∞ when σ → 0, (4.30) it is not true
for σ sufficiently small. Consequently, since

σ ≤ ρ
1
� + ρ

1
k

where ‖(u, v)‖ = ρ, it follows, according the above argument, that for ρ sufficiently
small the equation (u, v) = Tτ ((u, v)) has no solution on ∂B(0, ρ) for τ ∈ [0,+∞[.
Then, deg(I−Tτ , B(0, ρ), 0) is well-defined and by properties of topological degree,
we get that

deg(I − Tτ , B(0, ρ), 0) = const, ∀τ ≥ 0.(4.31)

Moreover, from (4.8), Tτ1 has no solution in B(0, ρ) when τ1 it is sufficiently large
than ρ, then we get

deg(I − Tτ1 , B(0, ρ), 0) = 0.

Consequently, from of the Leray-Schauder degree properties, we deduce that

deg(I − Tτ , B(0, ρ), 0) = deg(I − Tτ1 , B(0, ρ), 0) = 0.

�

5. Proof of Theorem 1.1

The proof is an immediate consequence of Proposition 3.1 and Proposition 4.1.
By taking ρ2 sufficiently small, we may assume, from Proposition 4.1 and Leray-
Schauder degree properties, that

deg(I − Tτ , B(0, ρ), 0) = deg(I − T0, B(0, ρ), 0) = 0.(5.1)

Thus, from Proposition 3.1, for ρ1 > 0 sufficiently large we have

deg(I − S1, B(0, ρ1), 0) = 1.(5.2)

Then, since

S1 = T0,

by excision property we obtain

deg(I − S1, B(0, ρ1)\B(0, ρ2), 0) = +1.(5.3)

Consequently S1 admits at least one fixed point (u, v) �= (0, 0). Hence, we obtain
the results of Theorem 1.1.
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6. Nonexistence

In this section we study some nonexistence result for positive radial solutions for
quasilinear system of the form

(Sp,q)

{
−∆pu ≥ a(x)u|u|α−1 + b(x)v|v|β−1 in RN ,

−∆qv ≥ c(x)u|u|γ−1 + d(x)v|v|δ−1 in RN ,

First consider the semilinear case, i.e., p = q = 2. When, b = c = 0, the system
(Sp,q) reduced simply to the case of two single equations

−∆u ≥ uα, −∆v ≥ vδ on RN .

This prototype model has been studied quite extensively. For example, we survey
some results on a single equation, namely

−∆u = uα on RN .

In this case we give the results of Gidas and Spruck [10] where the authors prove
that if

0 < α <
N + 2
N − 2

then u = 0. A very elementary proof valid for

0 < α <
N

N − 2
was given by Souto [15]. In fact his proof is valid for the case of u being a nonneg-
ative supersolution, i.e.,

−∆u ≥ uα on RN .

Always in the semilinear case, if a = d = 0 the system (Sp,q) becomes

−∆u ≥ vβ , −∆v ≥ uγ ,

which is natural extension of the well known Lane-Emden equation and thus is
referred to as the Lane-Emden system. This case is studied by Serrin and Zou [13];
the authors give a nonexistence of positive solutions for system (S2,2) when the
exponents β and γ are subcritical in the sense

1
β + 1

+
1

γ + 1
>

N − 2
N

.

Moreover, in [14] the same authors prove the existence of positive (radial) solution
(u, v) on RN for the system under the following assumption

1
β + 1

+
1

γ + 1
≤ N − 2

N
.

Let us now mention the key of our result concerning radial solutions of the quasi-
linear problem (Sp,q) in RN .

Lemma 6.1. Let r0 ≥ 0, N > m and w ∈ C1([r0,+∞[)∩C2([r0,+∞[) is a positive
supersolution of

−(rN−1|w′(r)|m−2w′(r))′ ≥ 0 on [r0,+∞[.(6.1)

Assume
w(r) > 0 and w′(r) < 0 ∀r ∈ [r0,+∞[.
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Then there exists a nonnegative number C > 0 such that

r
N−m
m−1 w(r) > C.

Proof. Since u satisfies (6.1) and w′(r) < 0, we deduce that rN−1|w′(r)|p−1 is an
increasing function on [r0,∞[. Hence there exists a non negative number C0 such
that

rN−1|w′(r)|m−1 > C0 ∀r ∈ [r0,+∞[.(6.2)

Thus, from Lemma 2.1, there exists a nonnegative number CN,m such that

w(r) ≥ CN,m r|w′(r)| ∀r ∈ [r0,+∞[.(6.3)

Consequently, multiplying (6.3) by r
N−m
m−1 we obtain

r
N−m
m−1 u(r) ≥ CN,m r

N−1
m−1 |w′(r)| ∀r ∈ [r0,+∞[.(6.4)

Then, from (6.2)and (6.4), we deduce that

r
N−m
m−1 w(r) ≥ CN,m r

N−1
m−1 |w′(r)| ≥ CN,mC

1
m−1
0 ∀r ∈ [r0,+∞[.

Hence the proof of the lemma. �

Our main result is the following:

Theorem 6.1. Let u, v ∈ C1(RN ) ∩ C2(RN\0) be nonnegative radial solutions of{ −∆pu ≥ b1v
β ,

−∆qv ≥ c1u
γ ,

where b1 > 0 and c1 > 0. Assume

max{p, q} < N, β > q − 1, and γ > p− 1,(H5)
1
β
+
1
γ

>
N − p

N(p− 1) +
N − q

N(q − 1) .(H6)

Then u = v = 0.

Proof. Since (u, v) is supposed to be radial positive solution, then (u, v) satisfies

−(rN−1|u′(r)|p−2u′(r))′ ≥ rN−1b1|v(r)|β ,
−(rN−1|v′(r)|q−2v′(r))′ ≥ rN−1c1|u(r)|γ ,
u′(0) = v′(0) = 0.

(6.5)

Integrating (6.5) on (0, r) and taking into account that u′ < 0, v′ < 0, we get

|u′(r)| ≥
( r

N

) 1
p−1 [

b1v
β(r)

] 1
p−1 , r > 0(6.6)

|v′(r)| ≥
( r

N

) 1
q−1

[c1uγ(r)]
1

q−1 , r > 0.(6.7)

Thus, from Lemma 2.1, we have

u(r) ≥ CN,pr|u′(r)| ≥ CN,p

(
1
N

) 1
p−1

r
p

p−1
[
b1v

β(r)
] 1

p−1 , r > 0(6.8)

v(r) ≥ CN,pr|v′(r)| ≥ CN,p

(
1
N

) 1
q−1

r
q

q−1 [c1uγ(r)]
1

q−1 , r > 0.(6.9)
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Then, from (6.8) and (6.9), we deduce

|u(r)|p−1 ≥ Crpb1v
β(r), ∀r > 0(6.10)

|v(r)|q−1 ≥ Crqc1u
γ(r), ∀r > 0.(6.11)

Hence, easily we obtain

r
−N

β + N−q
q−1

∣∣∣rN−p
p−1 u(r)

∣∣∣ p−1
β ≥ Cr

N−q
q−1 v(r), ∀r > 0(6.12)

r
−N

γ + N−p
p−1

∣∣∣rN−q
q−1 v(r)

∣∣∣ q−1
γ ≥ Cr

N−p
p−1 u(r), ∀r > 0.(6.13)

Multiplying (6.12) by (6.13), we get

r
−N

β + N−q
q−1

−N
γ + N−p

p−1 ≥ C
∣∣∣rN−q

q−1 v(r)
∣∣∣ γ−q+1

γ
∣∣∣rN−p

p−1 u(r)
∣∣∣ β−p+1

β

, ∀r > 0.(6.14)

Consequently, from (H5) and Lemma 6.1, there exists a number C > 0 such that
for all r > r0 > 0 we have

r
−N

β + N−q
q−1

−N
γ + N−p

p−1 ≥ C.

Then, from (H6), we obtain a contradiction. This concludes the proof of the The-
orem 6.1. �
Theorem 6.2. We make the following assumptions:

max(p, q) < N.(j) {
p− 1 ≥ α, q − 1 ≥ δ or
(p− 1)(q − 1) ≥ βγ.

(jj)

a, b, c, d : [0,+∞[→ [0,+∞[ are continuous functions such that(jjj)

inf
s∈[0,+∞[

(a(s), b(s), c(s)d(s)) > 0.

Under these assumptions, the problem

(Sp,q)

{
−∆pu ≥ a(x)u|u|α−1 + b(x)v|v|β−1 in RN ,

−∆qv ≥ c(x)u|u|γ−1 + d(x)v|v|δ−1 in RN ,

has no radial positive solutions in C1(RN ) ∩ C2(RN\0).
Proof. By contradiction, let (u, v) be radial positive solution of (Sp,q). Then (u, v)
satisfies

−(rN−1|u′(r)|p−2u′(r))′ ≥ rN−1
[
a(r)|u(r)|α + b(r)|v(r)|β] ,

−(rN−1|v′(r)|q−2v′(r))′ ≥ rN−1
[
c(r)|u(r)|γ + d(r)|v(r)|δ] ,

u′(0) = v′(0) = 0.
(6.15)

Arguing as in proof of Theorem 6.1, we deduce from (jjj) that there exits a non-
negative number C such that

|u(r)|p−1 ≥ Crp
[
a1u

α(r) + b1v
β(r)

]
, ∀r > 0(6.16)

|v(r)|q−1 ≥ Crq
[
c1u

γ(r) + d1v
δ(r)

]
, ∀r > 0.(6.17)
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Consequently:

Case 1. α ≤ p− 1 and δ ≤ q − 1.
From (6.16) and (6.17) we obtain

|u(0)|p−1−α ≥ |u(r)|p−1−α ≥ Crp, ∀r > 0,(6.18)

|v(0)|q−1−δ ≥ |v(r)|q−1−δ ≥ Crq, ∀r > 0.(6.19)

Since u and v are nonincreasing, (6.18) and (6.19) lead us to a contradiction.

Case 2. (p− 1)(q − 1) > βγ.

|u(r)|p−1 ≥ C rpb1v
β(r), ∀r > 0,(6.20)

|v(r)|q−1 ≥ C rqc1u
γ(r), ∀r > 0.(6.21)

Thus, from (6.20) and (6.21)

(v(r))
(p−1)(q−1)−βγ

q(p−1)+pγ ≥ C r, ∀r > 0,(6.22)

(u(r))
(p−1)(q−1)−βγ

p(q−1)+qβ ≥ C r, ∀r > 0.(6.23)

By an argument like that in Case 1, (6.22) and (6.23), provide a contradiction. This
concludes the proof of Theorem 6.2. �
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