ABSTRACT. Let G be a finite group and k a field of characteristic p dividing |G|. Then Greenlees has developed a spectral sequence whose E_2 term is the local cohomology of $H^*(G, k)$ with respect to the maximal ideal, and which converges to $H_*(G, k)$. Greenlees and Lyubeznik have used Grothendieck's dual localization to provide a localized form of this spectral sequence with respect to a homogeneous prime ideal \mathfrak{p} in $H^*(G, k)$, and converging to the injective hull $I_{\mathfrak{p}}$ of $H^*(G, k)/\mathfrak{p}$.

The purpose of this paper is give a representation theoretic interpretation of these local cohomology spectral sequences. We construct a double complex based on Rickard's idempotent kGmodules, and agreeing with the Greenlees spectral sequence from the E_2 page onwards. We do the same for the Greenlees-Lyubeznik spectral sequence, except that we can only prove that the E_2 pages are isomorphic, not that the spectral sequences are. Ours converges to the Tate cohomology of the certain modules κ_{p} introduced in a paper of Benson, Carlson and Rickard. This leads us to conjecture that $\hat{H}^*(G, \kappa_{\mathfrak{p}}) \cong I_{\mathfrak{p}}$, after a suitable shift in degree. We draw some consequences of this conjecture, including the statement that $\kappa_{\mathfrak{p}}$ is a pure injective module. We are able to prove the conjecture in some cases, including the case where $H^*(G,k)_{\mathfrak{p}}$ is Cohen–Macaulay.