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Continuous Homomorphisms on �N and Ramsey

Theory

Dennis Davenport� Neil Hindman� Imre Leader�

and Dona Strauss

Abstract� We consider the question of the existence of a nontrivial continu�
ous homomorphism from ��N�� into N� � �NnN� This problem is known to
be equivalent to the existence of distinct p and q in N� satisfying the equations
p p � q � q  q � q  p � p q� We obtain certain restrictions on possible
values of p and q in these equations and show that the existence of such p and
q implies the existence of p� q� and r satisfying the equations above and the
additional equations r � r  r� p � p r � r  p� and q � q  r � r  q� We
show that the existence of solutions to these equations implies the existence
of triples of subsets of N satisfying an unusual Ramsey Theoretic property�
In particular� they imply the existence of a subset A with the property that
whenever it is �nitely colored� there is a sequence in the complement of A� all
of whose sums two or more terms at a time are monochrome� Finally we show
that there do exist sets satisfying �nite approximations to this latter property�
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�� Introduction

In �	�	
 van Douwen asked �in ��
 published much later� whether there are topo�
logical and algebraic copies of the right topological semigroup ��N��� contained
in N� � �NnN � This question was answered in ���
 where it was in fact estab�
lished that if � is a continuous homomorphism from �N to N� 
 then ���N is �nite�
Whether one can have such a continuous homomorphism with j���Nj � � is a
di�cult open question which we address in this paper�
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Another old and di�cult problem in the algebra of �N was solved in �		� by E�
Zelenuk ��� who showed that there are no nontrivial �nite groups contained in N� �
�See ���
 Section ��� for a presentation of this proof�� Using Zelenuk�s Theorem

it is not hard to show that there is a nontrivial continuous homomorphism from
�N to N� if and only if there exist distinct p and q in N� such that p � p � q �
q � q � q � p � p � q� �See ���
 Corollary ������� It is in this guise that we shall
be investigating the continuous homomorphism problem�

The question of which �nite semigroups can exist in N� has implications for
a large class of semigroups of the form �S� It is not hard to prove that any
�nite semigroup in N� is contained in H �

T
n�N cl�N��

nN�� Now if S is any
in�nite discrete semigroup which is right cancellative and weakly left cancellative

S� contains copies of H ���
 Theorem ����� Thus a �nite semigroup which occurs
in N� also occurs in S�
 if S is any semigroup of this kind�

The conjecture that N� contains no elements of �nite order
 other than idem�
potents
 has implications about the nature of possible continuous homomorphisms
from �S into N� 
 where S is any semigroup at all� If C is any compact subsemigroup
of N� 
 its topological center ��C� � fx � C � �x � C � C is continuousg contains
only elements of �nite order���
 Corollary ���� It follows that
 if this conjecture
is true
 then any continuous homomorphism from �S into N� must map all the
elements of S to idempotents�

We write N for the positive integers and � for the nonnegative integers� Given
a set X 
 Pf �X� is the set of �nite nonempty subsets of X � The points of �N
are the ultra�lters on N and the topology of �N is de�ned by choosing the sets
of the form A � fp � �N � A � pg
 where A � N
 as a basis for the open sets�
Then each set A is clopen in �N and A � cl�NA� The operation � on �N is
the extension of ordinary addition on N making ��N��� into a right topological
semigroup �meaning that for all p � �N
 the operation �p � �N � �N de�ned by
�p�q� � q�p is continuous� with N as its topological center �which is the set of points
x such that the function �x � �N � �N de�ned by �x�q� � x � q is continuous��
Given p� q � �N and A � N
 A � p � q if and only if fx � N � �x � A � qg � p

where �x � A � fy � N � x � y � Ag� See ��� for an elementary introduction to
the compact right topological semigroup ��N����

In Section � we present some restrictions on possible values of p and q solving
the equations p � p � q � q � q � q � p � p � q� We further establish that the
existence of such a two element semigroup in N� implies the existence of a three
element semigroup fp� q� rg where p � p � q � q � q � q � p � p � q
 r � r � r

p � p � r � r � p
 and q � q � r � r � q �and consequently
 the existence of a
nontrivial continuous homomorphism from �N to N� implies the existence of such
a semigroup��

In Section � we show that the existence of the three element semigroup described
above implies the existence of a triple of disjoint subsets of N satisfying a strong
in�nitary Ramsey Theoretic property� A simpler consequence of this property is
the following assertion� If there is a nontrivial continuous homomorphism from �N
into N� � then there is a subset A of N with the property that� whenever A is �nitely

colored� there must exist a sequence hxni
�
n�� in NnA such that

f
X
t�F

xt � F � Pf �N� and jF j � �g
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is a monochrome subset of A� �When we refer to a �k�coloring� of a set X we mean
a function � � X � f�� �� 	 	 	 � kg� The assertion that a set B is �monochrome� is
the assertion that � is constant on B��

We concentrate on this simple assertion for the remainder of the paper� While
it is not known whether any set satisfying such a property exists
 we hope to
popularize the search for a set satisfying that property �or the search for a proof
that no such set exists�� We do establish that certain classes of sets do not have
that property�

In Section �
 we show that sets satisfying arbitrary �nite approximations to this
simpler Ramsey Theoretic property do exist�

�� Special Two and Three Element Subsemigroups of �N

Given idempotents r and s in N� 
 one says that r �R s if and only if r � s�r
 r �L s
if and only if r � r� s
 and r � s if and only if r � s� r � r� s� If k � N and one
has distinct idempotents r� � r� � 	 	 	 � rk �which exist by ���
 Theorem 	����

then fr�� r�� 	 	 	 � rkg is a k element subsemigroup of N� � However
 by ���
 Corollary
�����
 the existence of a nontrivial continuous homomorphism from �N to N� is
equivalent to the existence of a �nite subsemigroup of N� whose elements are not
all idempotents
 and also equivalent to the existence of a two element subsemigroup
of N� whose elements are not all idempotents� Such a subsemigroup is necessarily
of the form fp� qg
 where p � p � q � q � q � q � p � p � q� Curiously
 Zelenuk�s
Theorem implies that if p� p � q
 then one of the equations p� q � q
 q � p � q

or q � q � q implies the others�

Lemma ���� Let p and q be elements of N� � If p � p � q and any one of p � q�
q � p� or q � q is equal to q� then p� p � q � q � q � p� q � q � p�

Proof� If p � q
 then the conclusion is trivial
 so assume that p �� q� Note that
q�p � p�p�p � p�q� If q � q�p
 then q�q � q�p�p � q�p � q� So assume
that q � q � q� Then fq� q � pg is a subgroup of N� 
 so by Zelenuk�s Theorem ���

Theorem ����
 q � q � p� �

Next we show that the existence of such a two element subsemigroup of N�

implies the existence of a particular three element subsemigroup of N� 
 exactly two
of whose members are idempotents� The existence of this semigroup yields the sets
with the strong Ramsey Theoretic property that we have discussed� To say that an
idempotent r is �R�maximal means that whenever r �R s
 one also has s �R r��

Theorem ���� Let p and q be distinct elements of N� such that p � p � q �
q � q � p � q � q � p� Then there exist distinct p�� q�� and r� in N� such that

p� � p� � q� � q� � q� � p� � q� � q� � p�� r� � r� � r�� p� � r� � r� � p� � p�� and

q� � r� � r� � q� � q�� Further� the idempotent r� can be chosen to be �R�maximal

in Z� � �ZnZ�

Proof� We observe that it su�ces to produce distinct p�
 q�
 and r� in Z�
 with r�

�R�maximal in Z�
 satisfying the speci�ed equations� To see this notice that by
���
 Exercise �����
 both N� and �N� are left ideals of �Z� Thus
 either p�
 q�
 and
r� are all in N� as desired
 or they are all in �N� � In the latter event
 let p�� � �p�

q�� � �q�
 and r�� � �r�� Then p��
 q��
 and r�� are distinct members of N� and
 by
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���
 Lemma ����
 they satisfy the speci�ed equations� It is easy to verify that r��

is also �R�maximal in Z��
Since q � p � p � p we have that p is not right cancelable in �Z so by ���


Theorem ����
 there is an idempotent r � Z� such that r � p � p� Notice that if s
is any idempotent with r �R s
 then s� p � s� r � p � r � p � p�

We consider �rst the possibility that there is some �R�maximal idempotent
s �R r in Z� such that p� s � p� Then s� p � p
 s� q � s � p � q � p� q � q

and q� s � q� p� s � q� p � q� Further
 since s� p � p
 s �� p and s �� q� Thus

letting r� � s
 p� � p
 and q� � q
 we are done�

Now assume that for every �R�maximal idempotent s �R r in Z�
 p � s �� p�
Pick by ���
 Theorem ����
 a �R�maximal idempotent r� such that r �R r�� Then

as noted above
 r� � p � p� Let p� � p� r� and let q� � q � r�� Then immediately
p� � r� � p� and q� � r� � q�� Also r� � p� � r� � p � r� � p � r� � p� and
r� � q� � r� � q � r� � r� � p � q � r� � p � q � r� � q � r� � q�� Further
p� � p� � p� r� � p� r� � p� p� r� � q � r� � q� and q� � p� � q � r� � p� r� �
q � p� r� � q � r� � q�� Consequently
 by Lemma ���
 p� � q� � q� � q� � q��

To complete the proof we need to show that p�
 q�
 and r� are all distinct� For
this
 it su�ces to show that p� �� q�� �For then r� � p� � p�
 p� � p� � q�
 and
q� � p� � q� so r� �� q� and r� �� p��� So suppose instead that p� � q�
 that is

p� r� � q � r�� Then by ���
 Theorem 	�� and Lemma 	�� there is an idempotent
s �R r�
 necessarily �R�maximal
 such that either p � q� s or q � p� s� If we had
q� s � p
 then we would have q� p � q� q� s � q� s � p
 a contradiction� Thus
q � p� s and so p� p � p� s�

Now
 by ���
 Corollary ���� there is some x � �Z such that p � x�s or s � x�p�
Suppose �rst that p � x � s� Then p� s � x � s� s � x� s � p
 a contradiction
since s �R r� and we are assuming that for every �R�maximal idempotent s �R r�

p� s �� p� Thus
 s � x� p so
 since r �R s
 p � s� p � x� p� p � x� q and so
p� q � x� q � q � x� q � p
 a contradiction� �

Theorem ���� Let p and q be distinct elements of N� such that p�p � q � q�q �
p� q � q � p� Then p is not a member of any subgroup of �N� In particular� p is

not a member of the smallest ideal K��N� of �N�

Proof� Suppose that p is a member of a subgroup G of N� with identity r� Then
q is an idempotent in G and so q � r and thus q � p � p
 a contradiction� For
the �in particular� conclusion
 recall that the smallest ideal of any compact right
topological semigroup is the union of groups ���
 Theorems ��� and ���� �

We have not been able to show that q 
� K��N�� However
 it is not even known
whether there is any p � �NnK��N� with p � p � K��N�� See �	 for information
about the question of whether K��N� is prime or semiprime�

In ��
 Theorem ��� it was shown that if p � N� and p generated a �nite sub�
semigroup of N� 
 then p could not be distinguished from an idempotent by means
of a continuous homomorphism into a compact topological group� In the current
context we have a stronger
 yet very simple
 result� Notice for example that the
requirement that �every idempotent is a right identity� is satis�ed by any minimal
left ideal ���
 Lemma �����

Lemma ���� Let p and q be distinct elements of N� such that p� p � q � q� q �
p � q � q � p and let �T� 	� be a semigroup in which every idempotent is a left
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identity or every idempotent is a right identity� If � is a homomorphism from any

semigroup containing fp� qg to T � then ��p� � ��q��

Proof� Assume without loss of generality that every idempotent in T is a right
identity of T � Then ��p� � ��p� 	 ��q� � ��p� q� � ��q�� �

�� Ramsey Theoretic Consequences

We show in this section that the existence of a continuous homomorphism from �N
to N� implies the existence of disjoint subsets of N satisfying a strong in�nitary
Ramsey Theoretic property�

De�nitions ���� Let hxni�n�� be a sequence in N
 then

��� FS�hxni�n��� � f
P

n�F xn � F � Pf �N�g�
��� FS���hxni�n��� � f

P
n�F xn � F � Pf �N� and jF j � �g�

��� If k � N
 FSk�hxni�n��� � f
P

n�F xn � F � Pf �N� and jF j � kg�

Similarly
 if hxtimt�� is a �nite sequence
 we shall let

FS���hxti
m
t��� � f

X
t�F

xt � 
 �� F � f�� �� 	 	 	 �mg and jF j � �g	

Recall ���
 Theorem ���� that a set A � N is a member of some idempotent in
�N if and only if there is some sequence hxni�n�� with FS�hxni�n��� � A� Part of
this assertion is imitated in the following theorem�

Theorem ���� Let p� q� and r be elements of N� such that p � p � q � q � q �
q � p � p � q� r � r � r� r � p � p � r � p� and q � r � r � q � q� Let A � q�
B � r� and C � p� Then there exist sequences hxni�n�� and hyni�n�� in N such that

��� FS�hyni�n��� � B�

��� for all n � N and all z � FS�hyni�n��� � f�g� xn � z � C �and in particular

fxn � n � Ng � C �� and
��� for all w � FS���hxni�n��� and all z � FS�hyni�n��� � f�g� w � z � A �and

in particular FS���hxni�n��� � A��

Proof� LetbA � fa � A � �a�A � p � q � rg �bB � fb � B � �b�A � q � �b�B � r
 and � b� C � pg
 andbC � fc � C � �c�A � p � q and � c� C � rg 	

Since q � q � p � q � q � q � r
 we have that bA � q� Since q � r � q
 r � r � r


and p � r� p
 we have that bB � r� Since q � p� p � p� q and p � p� r
 we have

that bC � p� Next we claim that

if a � bA
 then �a� bA � p � r �

if b � bB
 then �b� bC � p and �b� bB � r � and

if c � bC
 then �c� bA � p and �c� bC � r �

We verify the second of these assertions
 the other two being similar�

Let b � bB� Given x � N
 x � �b� bC if and only if b�x � C
 ��b�x��A � p�q

and ��b� x� � C � r� That is

�b� bC � �b� C � fx � �x� ��b�A� � p � qg � fx � �x� ��b� C� � rg 	
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Now �b� C � p� Also
 �b�A � q � p� q � p� p
 so that

fx � �x� ��b�A� � p � qg � p	

And �b� C � p � p� r
 so that fx � �x� ��b� C� � rg � p�

Similarly�b� bB � �b�B�fx � �x���b�A� � qg�fx � �x���b�B� � rg�fx �
�x� ��b� C� � pg� We have that �b� B � r� Also fx � �x� ��b�A� � qg � r
because �b�A � q � r�q� fx � �x���b�B� � rg � r because �b�B � r � r�r�
and fx � �x� ��b� C� � pg � r because �b� C � p � r � p�

We now construct the sequences hxni�n�� and hyni�n��� Choose x� � bC� Then

�x� � bC � r so choose y� � bB � ��x� � bC�� Inductively
 let m � N and assume
that we have chosen hxti

m
t�� and hyti

m
t�� so that

�i� for each n � f�� �� 	 	 	 �mg
 xn � bC 


�ii� for each F � f�� �� 	 	 	 �mg with jF j � �

P

n�F xn � bA

�iii� for 
 �� G � f�� �� 	 	 	 �mg


P
t�G yt � bB


�iv� for each n � f�� �� 	 	 	 �mg and 
 �� G � f�� �� 	 	 	 �mg
 xn �
P

t�G yt � bC 


�v� for 
 �� F�G � f�� �� 	 	 	 �mg with jF j � �

P

t�F xt �
P

t�G yt � bA�
All hypotheses are satis�ed for m � �
 �ii� and �v� vacuously�

Now
 given z � FS�hxtimt��� we have that either z � bC or z � bA
 and so �z� bA �

p� Given w � FS�hytimt���
 w � bB so that �w � bC � p� Given z � FS�hxtimt���

and w � FS�hytimt���
 we have that either z � w � bC or z � w � bA
 and so

��z � w� � bA � p� Thus we may choose

xm�� � bC �
T
z�FS�hxtimt���

��z � bA�
�
T
w�FS�hytimt���

��w � bC�

�
T
z�FS�hxtimt���

T
w�FS�hytimt���

���z � w� � bA� 	
Given n � f�� �� 	 	 	 �m � �g
 we have xn � bC
 and so �xn � bC � r� Given

w � FS�hytimt���
 we have w � bB and so �w � bB � r� Given n � f�� �� 	 	 	 �m� �g

and w � FS�hytimt��� we have that xn � w � bC and so ��xn � w� � bC � r�

Given z � FS���hxti
m��
t�� � and w � FS�hytimt��� we have that z � w � bA and so

��z � w� � bA � r� Thus we may choose

ym�� � bB �
Tm��
n�� ��xn � bC� �

T
w�FS�hytimt���

��w � bB�

�
Tm��
n��

T
w�FS�hytimt���

���xn � w� � bC�

�
T
z�FS���hxti

m��

t��
�

T
w�FS�hytimt���

���z � w� � bA� 	
All induction hypotheses can be easily veri�ed� �

The following is the strong Ramsey Theoretic property which we have discussed�

Corollary ���� Assume that there is a continuous homomorphism from �N to N� �

Then there exist disjoint subsets A� B� and C of N such that� whenever F is a �nite

partition of A� G is a �nite partition of B� and H is a �nite partition of C� there

exist F � F � G � G� and H � H� and sequences hxni
�
n�� and hyni

�
n�� in N such

that

��� FS�hyni�n��� � G�
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��� for all n � N and all z � FS�hyni�n��� � f�g� xn � z � H �and in particular

fxn � n � Ng � H�� and
��� for all w � FS���hxni�n��� and all z � FS�hyni�n��� � f�g� w � z � F �and

in particular FS���hxni�n��� � F ��

Proof� Assume that there is a continuous homomorphism from �N to N� � Then
by ���
 Corollary ����� and Theorem ���
 we may pick distinct p
 q
 and r in N�

such that p � p � q � q � q � q � p � p � q
 r � r � r
 r � p � p � r � p
 and
q � r � r � q � q� Pick pairwise disjoint A � q
 B � r
 and C � p� Let F be a
�nite partition of A
 let G be a �nite partition of B
 and let H be a �nite partition
of C� Pick F � F 
 G � G
 and H � H such that F � q
 G � r
 and H � p� Apply
Theorem ���� �

We now consider a much simpler consequence of the statement in Corollary ����

De�nitions ���� For A � N
 let ��A� be the statement� �For each k � N
 when�
ever A is k�colored
 there exists an increasing sequence hxni�n�� in NnA such that
FS���hxni�n��� is monochrome��

Notice that any set A satisfying � is automatically an IP set� That is
 there is
a sequence hyni�n�� such that FS�hyni�n��� � A� To see this note that
 given any
sequence hxni�n��
 if yn � x�n � x�n��
 then FS�hyni�n��� � FS���hxni�n����

Corollary ���� If there exist distinct p and q in N� such that q � p� p � p� q �
q � p � q � q� then there is a set A � N such that ��A��

Proof� This is an immediate consequence of Corollary ��� and ���
 Corollary ������
�

One could de�ne a statement ��A� to be the statement� �For each k � N

whenever A and NnA are k�colored
 there exists a monochrome increasing sequence
hxni

�
n�� in NnA such that FS���hxni

�
n��� is monochrome�� The existence of a set

A satisfying � also follows immediately from Corollary ���� However
 this is not
really a stronger conclusion
 because ��A� follows trivially from ��A� by applying
the pigeon hole principle�

We have already noted that a point p � N� is an idempotent if and only if there
is a sequence hxni�n�� such that FS�hxni�n��� � p� We doubt that the existence of
a set A satisfying � can be shown to imply that there exist p� q � �N such that
A � q
 NnA � p
 and p � p � q � q � q � p � q � q � p in any way short of
proving that no such set A exists� We do have the following partial converse to
Corollary ����

Lemma ��	� Let A � N� If ��A�� then there exists r � A with the property that

for every B � r� there exist p � N�nA and q � q� q � B such that� whenever k � �
and u�� u�� 	 	 	 � uk � fp� qg� one has u� � u� � 	 	 	� uk � B�

Proof� Let B � fB � A � there is an increasing sequence hxni�n�� in NnA such that
FS���hxni

�
n��� � Bg� Since ��A�
 we have that whenever F is a �nite partition

of A
 one must have F � B �� 
� Thus
 by ���
 Theorem ���
 there exists r � A
with B � r� Let B � r and pick an increasing sequence hxni�n�� in NnA such that
FS���hxni�n��� � Bg�
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By ���
 Theorem ����

T�
m�� FS���hxni

�
n�m� is a subsemigroup of �N so pick

by ���
 Theorem ��� an idempotent q �
T�
m�� FS���hxni

�
n�m�� Pick p � N� with

fxn � n � Ng � p�
To complete the proof it su�ces to show

��� FS���hxni�n��� � p� p and
��� if u � �N and FS���hxni�n��� � u
 then FS���hxni�n��� � u � p and

FS���hxni�n��� � u� q�

To establish ���
 we show that

fxn � n � Ng � fy � N � �y � FS���hxni
�
n��� � pg	

Let m � N� Then fxn � n � N and n � mg � �y � FS���hxni�n����
To establish ���
 assume that FS���hxni

�
n��� � u� We show that

FS���hxni�n��� � fy � N � �y � FS���hxni�n��� � pg and
FS���hxni�n��� � fy � N � �y � FS���hxni�n��� � qg 	

So let y � FS���hxni�n��� and pick F � Pf �N� with jF j � � such that y �P
n�F xn� Let m � maxF � Then fxn � n � N and n � mg � �y�FS���hxni�n���

and FS���hxni
�
n�m��� � �y � FS���hxni

�
n���� �

Some of us would conjecture strongly that no set A � N satisfying ��A� exists�
�At least one author disagrees�� In fact
 we shall introduce a property � weaker
than �� We do not even know of a set A � N for which � holds� We shall give
several examples of sets A for which � fails� These are
 of course
 examples for
which � fails as well�

De�nitions ��
� For each A � N
 ��A� is the statement� �For every �nite coloring
of A
 there exists an in�nite sequence hxni�n�� in NnA such that FS��hxni�n��� �
FS��hxni�n��� is monochrome��

Theorem ���� Let hani�n�� be an increasing sequence in N such that lim
n��

�an���

an� � and let A � Nnfan � n � Ng� Then ���A�� �In fact there is a counterex�

ample using two colors��

Proof� Let B � fam � an � m � n and an�� � an � amg and let C � far �
as � at � r � s � t � as�� � as � ar
 and at�� � at � ar � asg� We claim that
B�C � 
� To see this
 suppose that am�an � ar�as�at
 where an���an � am

as�� � as � ar and at�� � at � ar � as� Then an � at
 because n � t implies that
an�at � at���at � ar�as
 and t � n implies that at�an � an���an � am� So
am � ar�as and thus m � s� Therefore am�as � as���as � ar
 a contradiction�

In a similar fashion
 one can show that �B � C� � A� Suppose that one has an
in�nite sequence hxni�n�� in NnA such that either FS��hxni�n����FS��hxni

�
n��� �

B or FS��hxni�n��� � FS��hxni�n��� � AnB� Since FS��hxni�n��� � B �� 
 and
FS��hxni�n��� � C �� 

 we have a contradiction� �

In the following theorem
 we give another simple example of a family of sets A
for which ��A� fails�

Theorem ���� Let B � N be an in�nite set with the property that� for some k � N�
either kN � B is �nite or kNnB is �nite� If A � NnB� then ��A� fails�
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Proof� For each i � f�� �� �� 	 	 	 � k� �g
 let Ai � fa � A � a � i�mod k�g� Suppose
that there is an in�nite sequence hxni�n�� in B and i � f�� �� �� 	 	 	 � k � �g for
which FS��hxni�n��� � FS��hxni�n��� � Ai� We may suppose that there exists
j � f�� �� �� 	 	 	 � k��g such that xn � j�mod k� for every n � N
 because this could
be achieved by replacing hxni�n�� by a subsequence� Note that j �� �� �If j � �

then fxn � n � Ng � kN and FS��hxni�n��� � kN�� Then FS��hxni�n��� � fa �
A � a � �j�mod k�g and FS��hxni�n��� � fa � A � a � �j�mod k�g� This is a
contradiction
 because �j �� �j�mod k�� �

Another natural candidate for a set satisfying � is based on spectra of numbers �
These are sets of the form fbn�� c � n � Ng
 where � is a positive real number

usually irrational
 and � �  � �� These sets have been much studied� See for
example ��
 �
 �
 �
 ��
 ���

For large irrational �
 the set Nnfbn�c � n � Ng seems as though it might satisfy
the statement �� If � �  � �
 it is immediate that Nnfbn�� c � n � Ng does not
satisfy �� In fact
 fbn�� c � n � Ng is an IP� set ���
 Theorem ��� or see ���

Theorem ������� That is
 for any sequence hxni�n��
 FS�hxni

�
n��� � fbn�� c �

n � Ng �� 
� On the other hand ��
 Theorem ���
 for irrational � � �
 the sets
fbn�c � n � Ng and fbn�� �c � n � Ng are disjoint and each contain sets of the
form FS�hxni�n��� so neither is an IP� set� �In fact
 both of these sets are central�
For a description of some of the properties of central sets see ���
 Chapter ����

Theorem ���� Let � be a positive real number and either let A � Nnfbn�c � n �
Ng or let A � Nnfbn�� �c � n � Ng� Then ���A��

Proof� We do the proof for the case A � Nnfbn�c � n � Ng� �The other case can
be done in a similar way by using the mapping m �� m�maxfn� � n � � and n� �
mg�� Notice that if � � �
 then A � 
 so we may assume that � � ��

For each m � N
 let f�m� � minfn� � n � N and n� � mg �m� Notice that
m � A if and only if f�m� � ��

Let � � min
�
�
� �

���
�

�
� Since ��� � is covered by a �nite number of intervals

of length �
 ��A� implies that there is an interval I of length � and an in�nite
sequence hxni�n�� in NnA such that FS��hxni�n��� � FS��hxni�n��� � f���I  � A�
Choose � � I �

We may suppose that hf�xn�i�n�� converges to a limit  and that jf�xn��j � �
for every n � N
 because we can achieve this by replacing hxni�n�� by a subsequence�
Note that  � � since each xn 
� A�

For any m�n� r � N
 with m � n � r
 each of xm � 
 xn � xr � � and
xm�xn�xr�� is within � of a number in N�� It follows that j�t�j � �� for some
t � Z� If t � �
 then �t� � � � �� If t � �
 we have jt��j � t�� � ��� � ���
Thus t � � and hence jj � ���

Thus we have xm � k� � xm��� � xm��� and xn � l� � xn��� � xn���
for some k� l � N� So xm � xn � �k � l�� � xm � xn � �� � xm � xn � � and thus
xm � xn 
� A
 a contradiction� �

�� A Finitary Ramsey Theoretic Approximation

We have seen that the existence of distinct p and q in N� satisfying the equations
p � p � q � q � q � p � q � q � p �equivalently the existence of a nontrivial
continuous homomorphism from �N into N� � implies the existence of a set A � N
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such that whenever A is �nitely colored
 there must exist an increasing sequence
hxni�n�� in NnA such that FS���hxni�n��� is monochrome� We have not been able
to show that no such set exists
 and certainly have not been able to produce one�

In this section we produce a set C satisfying the weaker conclusion that when�
ever it is �nitely colored
 there exist arbitrarily large �nite sequences in NnC with
all sums of the form

P
t�F xt with jF j � � monochrome� We remark that the

existence of such a set follows from Pr omel�s Induced Graham�Rothschild theorem
���� However
 the proof of Pr omel�s result is rather long and di�cult
 so we include
here a relatively short proof of our result�

We shall use the Hales�Jewett Theorem� Given a �nite alphabet A
 a variable

word is a word over the alphabet A�fvg in which v occurs
 where v is a �variable�
which is not a member of A� Given a variable word w and a letter a � A
 the word
w�a� is the result of replacing each occurrence of v by a�

Theorem ��� �Hales�Jewett�� Let k�m � N� There exists some d � N such that�

whenever A is an alphabet with m letters and the length d words over A are k�
colored� there exists a variable word w of length d such that fw�a� � a � Ag is

monochrome�

Proof� ��� Or see ��
 Section ��� or ���
 Section ����� �

Corollary ���� Let k�m � Nnf�g� There is some d � N such that� whenever A is

an alphabet with m letters and the length d words over A are k�colored� there exists

a variable word w � l	l� 	 	 	 ld�� with each li � A � fvg so that�

��� there exist i �� j such that li� lj � A and li �� lj and

��� fw�a� � a � Ag is monochrome�

Proof� Pick d as guaranteed by the Hales�Jewett Theorem for an alphabet of size
m and k�m colors� Assume without loss of generality that A � f�� �� 	 	 	 �mg� Let
� � Ad � f�� �� 	 	 	 � kg and de�ne  � Ad � f�� �� 	 	 	 � k�mg by �w� � ��w� unless
w is constant and �ii 	 	 	 i� � k� i� Pick a variable word w such that  is constant
on fw�i� � i � Ag� �

We let k � N be �xed throughout the remainder of this section� We inductively
de�ne for each m � N numbers dm and em and sets Am
 Bm
 and Cm as follows�

d� � e� � �
 A� � B� � f�g
 C� � 
 �or anything else ! C� is not used��
d� � e� � �
 A� � f�� �� �g
 and B� � C� � f�g� �Or
 thinking in binary

as is appropriate
 A� � f��� ��� ��g and B� � C� � f��g��

Inductively
 assume m � � and we have de�ned numbers dm�� and em�� and
sets Am��
 Bm��
 and Cm��� Pick by Corollary ���
 a number dm so that whenever
the length dm words over the alphabet Am�� are k�colored there is a variable word
w�v� � l	l� 	 	 	 ldm�� �where each li � Am�� � fvg� such that

��� there exist i� j � f�� �� 	 	 	 � dm � �g with li� lj � Am�� and li �� lj and
��� fw�a� � a � Am��g is monochrome�

Let em � dm 	 em�� and let

Am � f�� �� 	 	 	 � �em � �g ��
�P

t�F �t � 
 �� F � f�� �� 	 	 	 � em � �g
�
� 	
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Let

Bm � f
Pdm��

i�	 ai 	 �i�em�� � each ai � Am��g

� f
P

t�F �t � F � f�� �� 	 	 	 � em � �g and for each i � f�� �� 	 	 	 � dm � �g�

F � fi 	 em��� i 	 em�� � �� 	 	 	 � �i� �� 	 em�� � �g �� 
g	

Let

Cm � Bm �
�
w 	
P

i�F �i�em�� � w � Cm�� and 
 �� F � f�� �� 	 	 	 � dm � �g
�
	

For su�ciently large m
 the set Cm will be our desired set
 so let us describe
how we can recognize members of Cm� We do this by induction
 so we assume that
when a number is written in binary
 you can recognize the members of Cm��� Let
a number x be given� Since Cm � Am
 if x 
� Am we know x 
� Cm� Thus assume
that x � Am so x �

P
t�F �t for some F � f�� �� 	 	 	 � em � �g� That is the length

of the binary expansion of x is at most em which we view as dm blocks of length
em��� If there is a � in each such block
 that is if for each i � f�� �� 	 	 	 � dm � �g


F � fi 	 em��� i 	 em�� � �� 	 	 	 � �i� �� 	 em�� � �g �� 
 �

then x � Bm so x � Cm� So assume at least one such block has all ��s� On the
other hand
 x �� � so at least one such block has a �� If two non�zero blocks look
di"erent
 then we know x 
� Cm� So assume all non�zero blocks are the same and
let G be the set of non�zero blocks� Then there is some w � Am�� such that
x � w 	

P
i�G �i�em�� � If w � Cm��
 then x � Cm and if w 
� Cm��
 then x 
� Cm�

Lemma ���� Let m � N with m � � and let � � Cm � f�� �� 	 	 	 � kg� Then

there exist x�� x�� 	 	 	 � xm in AmnCm and � � f�� �� 	 	 	 �mg � f�� �� 	 	 	 � kg such

that whenever G � f�� �� 	 	 	 �mg and jGj � �� one has
P

t�G xt � Cm and

��
P

t�G xt� � ��maxG��

Proof� We proceed by induction
 so �rst assume m � �� Let x� � �
 x� � �
 and
let ���� � �����

Now assume m � � and the lemma is valid for m� �� Let

� � Cm � f�� �� 	 	 	 � kg 	

De�ne a k�coloring  of the length dm words over Am�� as follows� Given u �

l	l� 	 	 	 ldm�� with each li � Am��
 let �u� � ��
Pdm��

i�	 li 	 �i�em����
By the choice of dm
 pick a variable wordw�v� � l	l� 	 	 	 ldm�� and r � f�� �� 	 	 	 � kg

such that there exist i� j � f�� �� 	 	 	 � dm � �g with li� lj � Am�� and li �� lj and for
each a � Am��
 

�
w�a�

�
� r� De�ne ��m� � r�

Let F � fi � f�� �� 	 	 	 � dm � �g � li � vg� Let xm be the member of Am

corresponding to w���� That is
 xm �
P

i�f	�������dm��gnF
li 	 �i�em�� � We claim

that xm 
� Cm� Indeed pick i� j � f�� �� 	 	 	 � dm � �g with li� lj � Am�� and li �� lj �
Since xm has some blocks of ��s �corresponding to elements of F � we have xm 
�
Bm� Since li �� lj 
 we have xm �� b 	

P
i�G �i�em�� for any b � Cm�� and any

G � f�� �� 	 	 	 � dm � �g�
Now de�ne a k�coloring � of Cm�� by letting ��y� � ��y 	

P
i�F �i�em���� By

the induction hypothesis
 pick y�� y�� 	 	 	 � ym�� � Am��nCm�� and

� � f�� �� 	 	 	 �m� �g � f�� �� 	 	 	 � kg
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such that whenever G � f�� �� 	 	 	 �m � �g and jGj � �

P

t�G yt � Cm�� and
��
P

t�G yt� � ��maxG�� For t � f�� �� 	 	 	 �m � �g
 let ��t� � ��t�� For t �
f�� �� 	 	 	 �m� �g
 let xt � yt 	

P
i�F �i�em�� �

We claim that for each t � f�� �� 	 	 	 �m � �g
 xt 
� Cm� Indeed
 since F ��
f�� �� 	 	 	 � dm � �g we have xt 
� Bm and since yt 
� Cm��
 we have xt �� b 	P

i�G �i�em�� for any b � Cm�� and any G � f�� �� 	 	 	 � dm � �g�
Now let G � f�� �� 	 	 	 �mg with jGj � � and let p � maxG� Assume �rst

that p � m� Then we have that
P

t�G yt � Cm�� and ��
P

t�G yt� � ��p� �

��p�� Thus �
P

t�G yt� 	�
P

i�F �i�em��� � Cm and �
�
�
P

t�G yt� 	�
P

i�F �i�em���
�
�

��
P

t�G yt� � ��p�� Since

�
X
t�G

yt� 	 �
X
i�F

�i�em��� �
X
t�G

�yt 	
X
i�F

�i�em���

�
X
t�G

xt �

we have ��
P

t�G xt� � ��p� as required�
Finally
 assume maxG � m� Let H � Gnfmg� Let z �

P
t�H yt and note that

z � Am��� �This is immediate if jH j � � and if jH j � �
 then z � Cm�� � Am����
Now X

t�G

xt � xm �
X
t�H

xt

� xm �
X
t�H

�yt 	
X
i�F

�i�em���

� xm � �
X
t�H

yt� 	 �
X
i�F

�i�em���

� xm � z 	
X
i�F

�i�em�� 	

Let w�z� � u	u� 	 	 	 udm��
 where
 recall
 w�v� � l	l� 	 	 	 ldm��� Then

ui �

�
li if i 
� F

z if i � F 	

So


�
w�z�

�
� ��

dm��X
i�	

ui 	 �
i�em���

� ��
X

i�f	�������dm��gnF

li 	 �
i�em�� �

X
i�F

z 	 �i�em���

� ��xm � z 	
X
i�F

�i�em���

� ��
X
t�G

xt� 	

Thus ��
P

t�G xt� � 
�
w�z�

�
� ��m�� �
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Theorem ���� For each n � N there exists m � N such that whenever Cm is

k�colored� there exist z�� z�� 	 	 	 � zn in NnCm such that

f
X
t�F

zt � F � f�� �� 	 	 	 � ng and jF j � �g

is contained in Cm and is monochrome�

Proof� Letm � �n���	k��� Given a k�coloring � of Cm pick x�� x�� 	 	 	 � xm and �
as guaranteed by Lemma ���� By the pigeon hole principle
 pick G � f�� �� 	 	 	 �mg
with jGj � n� � and ��i� � ��j� for all i� j � G� Let z� � x� and let z�� z�� 	 	 	 � zn
enumerate fxi � i � Gg� �
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