ABSTRACT. We consider the Dirichlet problem for the quasilinear elliptic system

$$\begin{split} -\operatorname{div} \sigma(x, u(x), Du(x)) &= f & \quad \text{on } \Omega \\ u(x) &= 0 & \quad \text{on } \partial \Omega \end{split}$$

for a function $u: \Omega \to \mathbb{R}^m$, where Ω is a bounded open domain in \mathbb{R}^n . For arbitrary right hand side $f \in W^{-1,p'}(\Omega)$ we prove existence of a weak solution under classical regularity, growth and coercivity conditions, but with only very mild monotonicity assumptions.