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Harnack Inequalities For Curvature
Flows Depending On Mean Curvature

Knut Smoczyk

Abstract. We prove Harnack inequalities for parabolic flows of compact orientable
hypersurfaces in Rn+1, where the normal velocity is given by a smooth function f
depending only on the mean curvature. We use these estimates to prove longtime
existence of solutions in some highly nonlinear cases. In addition we prove that
compact selfsimilar solutions with constant mean curvature must be spheres and
that compact selfsimilar solutions with nonconstant mean curvature can only occur
in the case, where f = Aαxα with two constants A and α.
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1. Introduction

Assume that Mn is a compact orientable surface, smoothly immersed into Rn+1

by a smooth family of diffeomorphisms Ft : Mn → Rn+1 that satisfy the PDE

∂

∂t
F = −fν ,

where ν denotes the outward pointing unit normal and f is a smooth function
depending only on the mean curvature H of the immersed surface, e.g. for f = H
we get the well-known mean curvature flow (MCF) and for f = − 1

H we obtain the
inverse mean curvature flow. Hamilton [4] proved a beautiful Harnack inequality
for the MCF. In [1] Harnack inequalities were derived for convex hypersurfaces in
cases where f may depend on the full second fundamental form. The case f = − 1

H
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has not been studied yet nor are there results for arbitrary functions f depending
only on H. The aim of this paper is to address the following questions:

I. What conditions on f guarantee that the flow becomes parabolic so that
we have shorttime existence of a solution?

II. For which f do we get nice Harnack inequalities?
III. Since selfsimilar solutions play an important role in the Harnack inequality

for the MCF, we ask: For which f do selfsimilar solutions exist and can we
say something about the nature of these solutions?

An interesting case is the inverse mean curvature flow f = − 1
H since it is im-

portant in General Relativity [6]. There is some hope that one can generalize our
results to other target manifolds Nn+1.

Throughout this paper we will use the standard terminology, i.e., 〈·, ·〉 denotes the
euclidean inner product, gijdxi⊗dxj is the induced metric on Mn, xi coordinates for
Mn and hijdxi⊗dxj = 〈∇iF,∇jν〉dxi⊗dxj denotes the second fundamental form,
∇ the covariant derivative with respect to gij . Double latin indices are summed
from 1 to n and we set

|A|2 := hijh
ij , C := hikh

k
l h

il .

In this paper we will always assume that f : Ω→ R is a smooth function defined
on an open subset in R and we define

Definition. Let F : Mn → Rn+1 be an immersion. F is called admissible, if
H(x) ∈ Ω, ∀x ∈Mn.

The answer to question I is then given by

Proposition I. Let F0 : Mn → Rn+1 be an admissible smooth immersion of a
compact orientable surface Mn and assume that f ′ : Ω → R is strictly positive.
Then the PDE

∂

∂t
F = −fν(?)

F (x, 0) = F0(x), ∀x ∈Mn

has a smooth admissible solution on a maximal time interval [0, T ), T > 0.

Proof. This follows from the fact that the linearization of (?) differs from the lin-
earization for the mean curvature flow only by a factor f ′ which by assumption is
strictly positive. Therefore (?) is a (nonlinear) parabolic equation and the compact-
ness of Mn and the theory for parabolic equations imply shorttime existence. �

In view of Proposition I we will always assume that f ′ > 0. Then the main
theorem can be stated as follows

Theorem 1. Assume that F0 : Mn → Rn+1 is an admissible smooth and convex
immersion of an orientable compact Mn and that f : Ω→ R is a smooth function
such that for all x ∈ Ω we have

f ′ > 0,
f ′′

f ′
x2 ≥ ax, (f ′′

f ′
x
)′ ≤ 0, ff ′′x+ ff ′ − (f ′)2x ≥ 0
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where a ∈ R is a constant. Then we can find a small positive constant d such that

∂

∂t
f + 2〈∇f, V 〉+ hijV

iV j + cf ′H ≥ 0

holds for all tangent vectors V as long as t < T , d + (a + 2)t > 0 and Mt stays
convex, where we have set c(t) := 1

d+(a+2)t

Remark. We do have to make these assumptions on f to avoid negative terms in
the evolution equation for the basic Harnack expression Z (see below). f = αxα

satisfies the assumptions in Theorem 1 on Ω = (0,∞) with a = α−1. The following
Propositions show that almost all functions satisfying the assumptions in Theorem 1
are of this form.

Proposition IIa. Assume that f : (0, a)→ R , 0 < a ≤ ∞ is a smooth function
that smoothly extends to x = 0 and satisfies all assumptions in Theorem 1. Let us
set if := min{l ≥ 0|f (l)(0) 6= 0} ≤ ∞. If 0 < if < ∞ then f = Aifx

if with a
positive constant A.

Proof. Since f(0) = 0 and f ′(x) > 0 , ∀x ∈ Ω = (0, a) we observe that f(x) >
0 , ∀x ∈ Ω. By de l’Hospital’s rule we obtain

lim
x→0

f ′

f
x = if

and

lim
x→0

f ′′

f ′
x = if − 1

and then
(
f ′′

f ′ x
)′ ≤ 0 and f ′ ≥ 0 imply

(1.1) f ′′x ≤ (if − 1)f ′ , ∀x
Since f|Ω > 0 we have by assumption

ff ′′x+ ff ′ − (f ′)2x = f2
(f ′
f
x
)′ ≥ 0

and then also

(1.2) f ′x ≥ iff , ∀x
But (1.1) and (1.2) imply

0 ≤ ff ′′x+ ff ′ − (f ′)2x ≤ (if − 1)ff ′ + ff ′ − ifff ′ = 0

and therefore (f ′
f
x
)′ = 0

which implies that
f ′

f
x = if

and after integration
f = Aifx

if

with a positive constant A (since f ′ > 0). �
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Proposition IIb. Assume that f : (a,∞) → R , 0 < a < ∞ is a smooth func-
tion that satisfies all assumptions in Theorem 1 and that g(x) := −f( 1

x ) smoothly
extends to x = 0. If 0 < ig <∞ then f = −Aigx−ig with a positive constant A.

Proof. If we set y = 1
x and g(y) = −f(x) then the assumptions for f and x

translate into the same assumptions for g and y and as above we can derive the
desired result. �

Remark. f(x) =
√
x does not satisfy the assumptions in Proposition IIa since

it does not extend smoothly to x = 0. f(x) = x + 1 satisfies all assumptions in
Theorem 1. f(x) = lnx satisfies almost all assumptions in Theorem 1. The only
condition which is violated is that ff ′′x+ ff ′ − (f ′)2x = − 1

x < 0 on Ω = (0,∞).

2. Some relations and evolution equations

By assumption we have

(2.1)
∂

∂t
F = −fν

In [7] we formally derived the evolution equations for various geometric objects on
Mn, these are:

∂

∂t
gij = −2fhij(2.2)

∂

∂t
dµ = −Hfdµ(2.3)

(dµ denotes the volume form)

∂

∂t
ν = ∇f(2.4)

∂

∂t
hij = ∇i∇jf − fh l

i hlj(2.5)

∂

∂t
H = ∆f + f |A|2(2.6)

∂

∂t
|A|2 = 2〈hij ,∇i∇jf〉+ 2fC(2.7)

In addition we have the well-known Gauß-Weingarten-Codazzi-Mainardi equa-
tions

∇i∇jF = −hijν(2.8)

∆F = gij∇i∇jF = −Hν(2.9)

∇ihjk = ∇jhik(2.10)

∇iν = h l
i ∇lF(2.11)

∇i∇jν = ∇lhij∇lF − h l
i hljν(2.12)

∆ν = ∇H − |A|2ν(2.13)
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Note that in these equations we assume that F, ν are sets of n+ 1 functions on
Mn.

We also have the Simons identity

(2.14) ∇i∇jH = ∆hij −Hh l
i hlj + |A|2hij

3. Homothetic solutions

A homothetic solution Ft is a family of diffeomorphisms such that the surfaces
given by the rescaled diffeomorphisms F̃t := ΨF are stationary in Rn+1, where Ψ
denotes a function depending only on time t. The assumption that F̃t represents a
stationary surface means that the normal velocity must be zero. So we have

0 = 〈 ∂
∂t
F̃ , ν̃〉 =

∂

∂t
Ψ〈F, ν〉 − fΨ

Let us define c := − ∂
∂t ln Ψ. Then we have shown that for a homothetic solution

of (?) we have

(H.1) f = −c〈F, ν〉
Taking covariant derivatives of f and using (2.11), (2.10), (2.8) we obtain with

Ṽi := c〈F,∇iF 〉

∇if = −h l
i Ṽl(H.2)

∇iṼj = cgij + fhij(H.3)

∇i∇jf = −∇lhij Ṽl − chij − fh l
i hlj(H.4)

∆f + f |A|2 = −〈∇H, Ṽ 〉 − cH(H.5)

∆Ṽj = f∇jH + hji∇if(H.6)

4. The Harnack inequality

In the sequel we have to calculate many evolution equations. To avoid too
complicated formulas it is most convenient to work with coordinates associated to
a moving frame. We use similar moving frame coordinates as in [4]. Here the
moving frame {Ea}a=1,...,n evolves according to

(4.1)
∂

∂t
Eia = fhijE

j
a

and we denote the coordinates of a vector V with respect to the moving frame by
yia. The following calculations closely follow the procedure in [4]. As in this paper
we have

∇ba := yia
∂

∂ybi
(4.2)

Da := yia(
∂

∂xi
− Γkijy

j
b

∂

∂ykb
)(4.3)

δab := gac∇cb − gbc∇ca(4.4)
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In addition we define

Dt :=
∂

∂t
+ fh b

a ∇ab(4.5)

Then straightforward computations give the commutator relations

[Da, Db] = Rdeba∇ed(4.6)

[∇ab , Dc] = −IcbDa ; [∇ab , Dc] = IacDb(4.7)

[δbc, Da] = IabDc − IacDb(4.8)

[
∂

∂t
,Da] =

(
Da(fh d

b ) +Db(fh d
a )−Dd(fhab)

)∇bd(4.9)

[Dt, Da] = Db(fh c
a )δbc + fh b

a Db(4.10)

[∆, Da] = Db(Rdlab∇ld) +Rdlab∇ldDb(4.11)

[Dt − f ′∆, Da] = f ′R bcd
a Dbδcd + f ′Dah

bch d
b δcd +

f ′′

f ′
Daf∆(4.12)

+(f − f ′H)h l
a Dl + f ′h n

a h l
n Dl

[Dt,∆] = (
f

f ′
−H)DnfD

n + 2fh b
a DbD

a + 2hanDafDn +Da(Db(fh c
a )δbc)

(4.13)

In the moving frame the evolution equations reduce to

Dtgab = 0 ; gab = Iab(4.14)

Dthab = DaDbf + fh n
a hnb(4.15)

Dtf = f ′(∆f + f |A|2)(4.16)

Let us now define the following tensors, where we assume that Va is an arbitrary
tangent vector on Mn and c a smooth function to be determined later and only
depending on time t.

Xa := Daf + h l
a Vl

Yab := DaVb − fhab − cgab
Z := Dtf + 2〈Df, V 〉+ habV

aV b + cf ′H

Wab := Dthab +DlhabVl + chab

W := Dtf + 〈Df, V 〉+ cf ′H

By (H.1)–(H.6) these tensors vanish on homothetic solutions if we take Va = Ṽa
and the induced c. On the other hand we have

DtṼa =
∂

∂t
(c〈F,DaF 〉) + fh d

c ∇cdṼa

=
∂

∂t
(lnc)Ṽa − c〈F,Da(fν)〉+ fh d

a Ṽd

=
∂

∂t
(lnc)Ṽa − c〈F, ν〉Daf
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and therefore

(Dt − f ′∆)Ṽa =
∂

∂t
(ln c)Ṽa + f ′h b

a h
c
b Ṽc(4.17)

and on a homothetic solution

(Dt − f ′∆)Ṽa =
∂

∂t
(ln c)Ṽa − f ′habDbf(H.7)

In view of (H.7) we define

Ua := (Dt − f ′∆)Va − ∂

∂t
(ln c)Va + f ′habDbf

which also vanishes on a homothetic solution.
We want to calculate (Dt − f ′∆)Z. We do this in several steps. Using (4.12)

and (4.16) we obtain

(Dt − f ′∆)Daf =
f ′′

f ′
Daf∆f + (f − f ′H)h b

a Dbf + f ′h n
a h l

n Dlf +Da(ff ′|A|2)

and therefore

(Dt − f ′∆)Daf =f ′|A|2Daf + 2ff ′hbcDahbc + f ′h n
a h l

n Dlf

(4.18)

+ (f − f ′H)h b
a Dbf +

f ′′

(f ′)2
DafDtf

Further, we use Simons identity to rewrite (4.15)

Dthab = DaDbf + fh n
a hnb

= f ′(∆hab −Hh n
a hnb + |A|2hab) +

f ′′

(f ′)2
DafDbf + fh n

a hnb

This gives

(4.19) (Dt − f ′∆)hab = f ′|A|2hab + (f − f ′H)h n
a hnb +

f ′′

(f ′)2
DafDbf

(4.18), (4.19) and the definition of U give

(Dt − f ′∆)Xa = f ′|A|2Daf + 2ff ′hbcDahbc + f ′h n
a h l

n Dlf + (f − f ′H)h b
a Dbf

+
f ′′

(f ′)2
DafDtf + V b(f ′|A|2hab + (f − f ′H)h n

a hnb +
f ′′

(f ′)2
DafDbf)

+ h b
a (Ub +

∂

∂t
(ln c)Vb − f ′hbcDcf)− 2f ′Dch b

a DcVb

= f ′|A|2Xa + (f − f ′H)h b
a Xb + h b

a Ub − 2f ′Dahbc(Y bc + cgbc)

+
∂

∂t
(ln c)(Xa −Daf) +

f ′′

(f ′)2
Daf(W − cf ′H)
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and finally

(Dt − f ′∆)Xa =f ′|A|2Xa + (f − f ′H)h b
a Xb + h b

a Ub − 2f ′DahbcY
bc

(4.20)

+
∂

∂t
(ln c)Xa +

f ′′

(f ′)2
DafW − (2c+

∂

∂t
(ln c) + c

f ′′

f ′
H)Daf

Next we compute

(Dt − f ′∆)Dtf =[Dt, f
′∆]f +Dt(ff ′|A|2)

=f ′[Dt,∆]f +Dtf
′∆f +Dtf

′f |A|2 + f ′|A|2Dtf + ff ′Dt|A|2
=(f − f ′H)|Df |2 + 2ff ′habDaDbf + 2f ′habDafDbf

+
f ′′

(f ′)2
(Dtf)2 + f ′|A|2Dtf + 2ff ′habDthab

giving

(Dt − f ′∆)Dtf =f ′|A|2Dtf + 4ff ′habDthab − 2f2f ′C +
f ′′

(f ′)2
(Dtf)2

(4.21)

+ (f − f ′H)|Df |2 + 2f ′habDafDbf

Furthermore

(Dt − f ′∆)(cf ′H) =
∂

∂t
(ln c)cf ′H + c

f ′′

f ′
HDtf + cDtf

− cf ′(H(f ′′∆H + f ′′′|DH|2) + f ′∆H + 2f ′′|DH|2)

=
∂

∂t
(ln c)cf ′H + c(f ′′H + f ′)(∆f + f |A|2)

− c(f ′′H + f ′)(f ′∆H)− cf ′(Hf ′′′ + 2f ′′)|DH|2

=
∂

∂t
(ln c)cf ′H + cf(f ′ + f ′′H)|A|2 + c((f ′′)2H − f ′f ′′ − f ′f ′′′H)|DH|2

which gives

(4.22) (Dt − f ′∆)(cf ′H) =
∂

∂t
(ln c)cf ′H + cf(f ′ + f ′′H)|A|2 − c(f ′′

f ′
H
)′|Df |2
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(4.21), (4.22) and (4.18) give

(Dt − f ′∆)W =f ′|A|2Dtf + 4ff ′habDthab − 2f2f ′C +
f ′′

(f ′)2
(Dtf)2 + (f − f ′H)|Df |2

+ 2f ′habDafDbf +
∂

∂t
(ln c)cf ′H + cf(f ′ + f ′′H)|A|2 − c(f ′′

f ′
H
)′|Df |2

+ V a(f ′|A|2Daf + 2ff ′hbcDahbc + f ′h n
a h l

n Dlf

+ (f − f ′H)h b
a Dbf +

f ′′

(f ′)2
DafDtf)

+Daf(Ua +
∂

∂t
(ln c)Va − f ′habDbf)− 2f ′DaV bDaDbf

=f ′|A|2W − c((f ′)2H − ff ′ − ff ′′H)|A|2 +
∂

∂t
(ln c)W − ∂

∂t
(ln c)Dtf

+
f ′′

(f ′)2
DtfW − cf

′′

f ′
HDtf + (f − f ′H)〈X,Df〉

+ f ′(4fhab − 2DaV b)Dthab + 2ff ′DaV bh n
a hnb − 2f2f ′C

− c(f ′′
f ′
H
)′|Df |2 + 2ff ′V aDahbch

bc + 〈Df,U〉+ f ′habXaDbf

=f ′|A|2W − c((f ′)2H − ff ′ − ff ′′H)|A|2 +
∂

∂t
(ln c)W

− (c
f ′′

f ′
H +

∂

∂t
(ln c))Dtf +

f ′′

(f ′)2
DtfW + (f − f ′H)〈X,Df〉

+ f ′(4fhab − 2DaV b)Wab − f ′(4fhab − 2DaV b)(DlhabVl + chab)

+ 2ff ′DaV bh n
a hnb − 2f2f ′C − c(f ′′

f ′
H
)′|Df |2

+ 2ff ′V aDahbch
bc + f ′〈hab, DafXb〉+ 〈Df,U〉

and after rearranging terms we conclude

(Dt − f ′∆)W =f ′|A|2W + f ′(4fhab − 2DaV b)Wab + f ′habXaDbf + 〈Df,U〉
(4.23)

+ 2f ′(fh n
a hnb +DlhabVl)Y ab + (2c+

∂

∂t
(ln c))W

− c((f ′)2H − ff ′ − ff ′′H)|A|2 − (c
f ′′

f ′
H +

∂

∂t
(ln c) + 2c)Dtf

+
f ′′

(f ′)2
DtfW + (f − f ′H)〈X,Df〉 − c(f ′′

f ′
H
)′|Df |2 + 2cf ′habY ab

Eventually the evolution equation for Z is given by
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(Dt − f ′∆)Z =f ′|A|2W + f ′(4fhab − 2DaV b)Wab + f ′habXaDbf + 〈Df,U〉
+ 2f ′(fh n

a hnb +DlhabVl)Y ab + (2c+
∂

∂t
(ln c))W

− c((f ′)2H − ff ′ − ff ′′H)|A|2 − (c
f ′′

f ′
H +

∂

∂t
(ln c) + 2c)Dtf

+
f ′′

(f ′)2
DtfW + (f − f ′H)〈X,Df〉 − c(f ′′

f ′
H
)′|Df |2 + 2cf ′habY ab

+ V a(f ′|A|2Xa + (f − f ′H)h b
a Xb + h b

a Ub − 2f ′DahbcY
bc

+
∂

∂t
(ln c)Xa +

f ′′

(f ′)2
DafW − (2c+

∂

∂t
(ln c) + c

f ′′

f ′
H)Daf)

+Xa(Ua +
∂

∂t
(ln c)Va − f ′habDbf)− 2f ′DaVb(W ab + hanY b

n )

=f ′|A|2Z + 2〈X,U〉 − 4f ′(Y ab + cgab)Wab − 2f ′hanY b
n (Yab + cgab)

+ (f − f ′H)|X|2 +
f ′′

(f ′)2
W (Dtf + 〈V,Df〉)− (c

f ′′

f ′
H +

∂

∂t
(ln c) + 2c)(Dtf + 〈Df, V 〉)

+ 2
∂

∂t
(ln c)〈X,V 〉+ (2c+

∂

∂t
(ln c))W − c((f ′)2H − ff ′ − ff ′′H)|A|2

− c(f ′′
f ′
H
)′|Df |2 + 2cf ′habY ab

=f ′|A|2Z + 2〈X,U〉 − 2f ′h n
a YnbY

ab − 4f ′WabY
ab − 4cW

+ (f − f ′H)|X|2 +
f ′′

(f ′)2
W (W − cf ′H)− (c

f ′′

f ′
H +

∂

∂t
(ln c) + 2c)(W − cf ′H)

+ 2
∂

∂t
(ln c)〈X,V 〉+ (2c+

∂

∂t
(ln c))W − c((f ′)2H − ff ′ − ff ′′H)|A|2 − c(f ′′

f ′
H
)′|Df |2

So we finally arrive at

(Dt−f ′∆)Z =
(
f ′|A|2 +

f ′′

(f ′)2
(Z − 2〈X,V 〉)− 2(c

f ′′

f ′
H + 2c)

)
Z

(4.24)

+ 2〈X,U〉+ (f − f ′H)|X|2 +
f ′′

(f ′)2
〈X,V 〉2 + 2(c

f ′′

f ′
H +

∂

∂t
(ln c) + 2c)〈X,V 〉

− 2f ′h n
a YnbY

ab − 4f ′WabY
ab + (c

f ′′

f ′
H +

∂

∂t
(ln c) + 2c)cf ′H

+ c(ff ′′H + ff ′ − (f ′)2H)|A|2 − c(f ′′
f ′
H
)′|Df |2

Now we are able to prove Theorem 1.

Proof of Theorem 1. From (4.24) and the assumptions in Theorem 1 we con-
clude, with c := 1

d+(a+2)t

(Dt − f ′∆)Z ≥(f ′|A|2 +
f ′′

(f ′)2
(Z − 2〈X,V 〉)− 2(c

f ′′

f ′
H + 2c)

)
Z − 2f ′h n

a YnbY
ab − 4f ′WabY

ab

+ 2〈X,U〉+ (f − f ′H)|X|2 +
f ′′

(f ′)2
〈X,V 〉2 + 2(c

f ′′

f ′
H +

∂

∂t
(ln c) + 2c)〈X,V 〉
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Now choose d so small such that Z > ε > 0 for t = 0 and for all tangent vectors V .
This is possible since the initial surface is convex. On any compact time interval
[0, t0] with t0 < T we can therefore estimate

(Dt−f ′∆)Z ≥ −bZ − 2f ′h n
a YnbY

ab − 4f ′WabY
ab

+ 2〈X,U〉+ (f − f ′H)|X|2 +
f ′′

(f ′)2
〈X,V 〉2 + 2(c

f ′′

f ′
H +

∂

∂t
(ln c) + 2c)〈X,V 〉

with a large constant b depending on t0. Additionally for t > 0 and an arbitrary
positive constant δ

(Dt − f ′∆)(ebtZ + δt) >ebt
(−2f ′h n

a YnbY
ab − 4f ′WabY

ab + 2〈X,U〉+ (f − f ′H)|X|2

+
f ′′

(f ′)2
〈X,V 〉2 + 2(c

f ′′

f ′
H +

∂

∂t
(ln c) + 2c)〈X,V 〉)

If t1 ≤ t0 would be the first time where ebtZ + δt would become zero at some point
x ∈ Mn and for some tangent vector V then we must have Xa = 0 since it is the
first variation with respect to V and we can also extend V in spacetime such that
Yab = 0. This implies a contradiction and therefore ebtZ + δt > 0, ∀t ≤ t0. Since δ
and t0 are arbitrary we conclude Z ≥ 0 whenever t < T and d+ (a+ 2)t > 0. �

Now we want to answer the question for which f one can expect selfsimilar
solutions of (?). First we remark that if x ∈ Ω and x > 0, then the sphere of
constant radius n

x and with constant mean curvature H = x gives always rise to a
selfsimilar solution for a short time.

For any subset A ⊂Mn let us define

H(A) := {x ∈ Ω|∃p ∈ A : H(p) = x}
and

Pt := {p ∈Mn
t |∇H 6= 0}

The answer to question III is then given by

Proposition IIIa. If P0 6= ∅ and Ft : Mn → Rn+1 is a selfsimilar solution of
(?) for a compact connected Mn, then we have f = Aαxα , ∀x ∈ H(Mt) with
nonvanishing constants A and α.

Proof. Since Ft is selfsimilar we have Pt = P0 , ∀t ∈ [0, T ). Since Xa,W vanish on
selfsimilar solutions so must their time derivatives. From (4.20) we conclude that
on H(Pt) and by continuity also on H(Pt) we must have c f

′′

f ′ x+ 2c+ ∂
∂t (ln c) = 0.

Since P0 6= ∅ and Mn is connected we have H(Mn) ⊂ H(Pt) and we derive

c
f ′′

f ′
x+ 2c+

∂

∂t
(ln c) = 0

for all x ∈ H(Mn
t ). Since f ′ > 0 there can be at most one point x ∈ Ω such that

f(x) = 0. At all other points we have

ff ′′x+ ff ′ − (f ′)2x = f2
(f ′
f
x
)′
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Then (4.23) implies that also (f ′
f
x
)′ = 0

in all points x ∈ H(Mt) where f(x) 6= 0. But after integration we obtain that at
these points

f = Aαxα

with constants A,α (nonvanishing since we must have f ′ > 0) and again by conti-
nuity this also holds on all of H(Mt). �

We observe that by (2.9)

∆|F |2 = 2(n−H〈F, ν〉)
and with (H.1) we obtain on a homothetic solution

(H.8) ∆|F |2 = 2(n− fH

c
)

This implies

Proposition IIIb. If P0 = ∅ and Mn is a compact orientable selfsimilar solution
of (?), then Mt is a sphere of radius n

H . If f = − 1
H , then any compact orientable

homothetic solution is a sphere of radius n
H .

Proof. P0 = ∅ and (H.8) imply ∆|F |2 = const. By the assumptions on Mn this
constant must be zero and then consequently |F |2 = const. This implies that Mt

is a sphere. �

5. Longtime existence for some highly nonlinear flows

In this paragraph we are going to show that one can use the Harnack inequality
to prove longtime existence of solutions for some highly nonlinear flows. To be
precise

Theorem 2. Assume that f : (0,∞) → R is a smooth negative function that
satisfies the assumptions in Theorem 1 with a > −2 and that limx→0 f(x) = −∞
and F0 : M2 → R3 is a smooth convex immersion of an orientable compact surface
M2. Then (?) has a smooth immortal solution and we have

lim
t→∞H = 0 , lim

t→∞ |Ft|
2 =∞

Remark. The functions f = αxα with −1 < α < 0 satisfy the assumptions in
Theorem 2 on Ω = (0,∞). These speed functions are not homogenous of degree
one and are not included in the class of functions considered in [2]

To prove Theorem 2 we need some lemmas that are interesting on their own.

Lemma 1. Assume f ′ > 0 and that F0 : Mn → Rn+1 is a smooth immersion of an
orientable compact surface and that on M0 = F0(Mn) we have f2 ≥ minM0 f

2 > 0.
Then this is also true on the maximal time interval [0, T ) where a smooth solution
of (?) exists.
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Proof. The evolution equation for f2 is given by

(Dt − f ′∆)f2 = f ′
(−2|∇f |2 + 2f2|A|2)

and the result follows from the parabolic maximum principle. �

Corollary 1. With the assumptions in Lemma 1 we have that for negative f

H ≤ max
M0

H

and for positive f
H ≥ min

M0
H

We can do even better

Lemma 2. Assume Ω = (0,∞) , f < 0 , f ′ > 0 and that F0 : Mn → Rn+1 is an
admissible immersion of an orientable compact manifold Mn. Then we can find a
positive ε such that on [0, T )

max
Mt

H ≤ maxM0 H

1 + εtmaxM0 H

Proof. Since Ft is admissible on [0, T ) we must always have H > 0. At a point
where maxMt

H is attained we have ∆H ≤ 0 and ∇H = 0. The evolution equation
for H (2.6), Lemma 1 and the fact that |A|2 ≥ H2

n give us

∂

∂t
max
Mt

H ≤ −ε(max
Mt

H)2

with ε = −maxM0 f

n and after integration we obtain the result. �

(2.7) and Simons identity give

(5.1) (Dt − f ′∆)|A|2 = −2f ′|∇A|2 + 2f ′|A|4 + 2(f − f ′H)C + 2f ′′hij∇iH∇jH

Let R = H2 − |A|2 be the Scalar curvature of Mt. Now we turn our attention
to the case where n = 2. In this case we can decompose C into

C =
H

2
(3|A|2 −H2)

Then (5.1) and (2.6) imply that for n = 2

(Dt − f ′∆)R =2f ′(|∇A|2 − |∇H|2) + 2f ′′(H|∇H|2 − hij∇iH∇jH)
(5.2)

− (2f ′|A|2 + (f − f ′H)H)R
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Lemma 3. Under the assumptions in Theorem 2 we have

R > 0, ∀t ∈ [0, T )

Proof. Let t0 ≤ T be the maximal time such that R > 0 on all of Mt for t ∈ [0, t0),
i.e., the maximal time for which Mt stays convex. If t0 = T we are done. So assume
that t0 < T . Since Mt is admissible for t ∈ [0, t0] we must have H > 0 on [0, t0].
By definition of t0 we also have R > 0 on [0, t0) and R ≥ 0 on [0, t0]. Since M and
[0, t0] are both compact and R ≥ 0 we can find a constant c such that

(5.3) (Dt − f ′∆)R ≥ 2f ′(|∇A|2 − |∇H|2) + 2f ′′(H|∇H|2 − hij∇iH∇jH)− cR

Now assume that x is any point on Mt where the minimum of R is attained.
At this point we must have f ′∆R ≥ 0 and ∇R = 0. Let α and β denote the two
principal curvatures in a neighborhood of x. We have

0 = ∇R = 2α∇β + 2β∇α

Since H > 0 and α, β ≥ 0 we must either have α > 0 or β > 0. Let us assume that
α > 0. First we compute that

H|∇H|2 − hij∇iH∇jH = α|∇2H|2 + β|∇1H|2 ≥ 0,

where we choose normal coordinates such that hij = diag(α, β). Since f ′′x ≥ af ′

and H > 0, a > −2 we can estimate

2f ′′(H|∇H|2 − hij∇iH∇jH) ≥ −4
f ′

H
(α|∇2H|2 + β|∇1H|2)

On the other hand Codazzi’s equation gives us that

|∇A|2 = |∇1α|2 + |∇2β|2 + 3|∇2α|2 + 3|∇1β|2

Combining the last two statements we see that at a point where ∇R = 0 we must
always have

2f ′(|∇A|2 − |∇H|2) + 2f ′′(H|∇H|2 − hij∇iH∇jH) ≥ 0

and consequently at any point where the minimum of R is attained

DtR ≥ −cR

which implies that

min
Mt

R ≥ (min
M0

R)e−ct > 0, ∀t ∈ [0, t0]

This proves that t0 = T . �

We come to the proof of Theorem 2
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Proof of Theorem 2. On [0, T ) we must have H > 0: Otherwise (?) is not
well-defined, i.e., the surfaces would not be admissible. If T is finite, then this can
only happen for two reasons. Either the solutions converge to a surface that is no
longer admissible, i.e., the mean curvature would vanish somewhere, or the surfaces
must develop a singularity. Since Mt is convex on [0, T ) we can apply Theorem 1
with V = 0 to obtain

∂

∂t
H ≥ − 1

d+ (a+ 2)t
H

and since by assumption a > −2 we can estimate

∂

∂t
H ≥ −1

d
H

which implies that
H ≥ e−1

d t min
M0

H

So H cannot become zero in finite time. This estimate and Corollary 1 imply
that the surfaces stay admissible in finite time. Therefore we conclude that if T
is finite the surfaces must develop a singularity. It is well-known that the sec-
ond fundamental form |A|2 must then blow up for t → T (compare [2] and [5]).
By Lemma 3 we conclude that in the case where T < ∞, H must also blow up
which, in view of Corollary 1, proves that T = ∞. By Lemma 2 we conclude that
limt→∞(maxMt H) = 0. It remains to prove that |Ft| → ∞. An easy calculation
gives the following evolution equation

(Dt − f ′∆)(
〈F, ν〉
f

+ (2 + a)t) = 2
f ′

f
〈∇(
〈F, ν〉
f

+ (2 + a)t),∇f〉+ a+ 1− f ′H
f

The assumptions on f imply that limx→0
f ′′x
f ′ exists and that limx→0

f ′′x
f ′ ≥ a.

Since limx→0 f = −∞ we can apply de l’Hospital’s rule and get limx→0
f ′x
f =

1 + limx→0
f ′′x
f ′ ≥ a+ 1. On the other hand the assumption that

(
f ′x
f

)′ ≥ 0 implies
for any x ∈ Ω

a+ 1− f ′x
f
≤ 0

This gives

(Dt − f ′∆)(
〈F, ν〉
f

+ (2 + a)t) ≤ 2
f ′

f
〈∇(
〈F, ν〉
f

+ (2 + a)t),∇f〉

and with the maximum principle we conclude

〈F, ν〉
f
≤ c− (2 + a)t

for a constant c. Using Schwarz’ inequality we have proven that

|F |
|f | ≥ (2 + a)t− c

and since limt→∞ |f | → ∞ and 2+a > 0, this can only hold when limt→∞ |F | =∞,
proving the rest of Theorem 2. �
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