A FIXED POINT THEOREM IN BANACH SPACES OVER TOPOLOGICAL SEMIFIELDS

Slobodan Č. Nešić

Abstract. Let X be a Banach space over a topological semifield and $T_1, T_2: X \to X$ two maps satisfying the condition (1). Then T_1 and T_2 have a common fixed point.

1. Introduction

The notion of topological semifield has been introduced by M. Antonovskiĭ, V. Boltyanskiĭ and T. Sarymsakov in [1]. Let E be a topological semifield and K the set of all its positive elements. Take any two elements x, y in E. If y-x is in \overline{K} (in K), this is denoted by $x \ll y$ (x < y). As proved in [1], every topological semifield E contains a subsemifield, so called the axis of E, isomorphic to the field $\mathbf R$ of real numbers. Consequently by identifying the axis and $\mathbf R$, each topological semifield can be regarded as a topological linear space over the field $\mathbf R$.

The ordered triple (X, d, E) is called a metric space over the topological semi-field if there exists a mapping $d: X \times X \to E$ satisfying the usual axioms for a metric (see [1], [2] and [4]).

Linear spaces considered in this paper are defined on the field **R**. Let X be a linear space. The ordered triple (X, || ||, E) is called a feeble normed space over the topological semifield if there exists a mapping $|| || : X \to E$ satisfying the usual axioms for a norm (see [1] and [3]).

2. Main result

We shall use the following definition.

DEFINITION 1. Let $(X, || \cdot ||, E)$ be a feeble normed space over a topological semifield E and let d(x, y) = ||x - y|| for all x, y in X. A space $(X, || \cdot ||, E)$ is said to be a Banach space over the topological semifield E if (X, d, E) is sequentially complete metric space over the topological semifield E.

 $[\]textit{Key words}\colon \text{Banach space over a topological semifield, common fixed point, Cauchy sequence, sequentially complete metric space.}$

78 S. Nešić

Now we shall prove the following result.

Theorem 1. Let X be a Banach space over a topological semifield E and T_1 , $T_2 \colon X \to X$ two maps satisfying the condition

$$||x - T_1 x||^m + ||y - T_2 y||^m \ll p||x - y||^m$$
(1)

for all x, y in X, where p, t are in \mathbf{R} , 0 < t < 1, $1 \le pt^m < 2$ and $m = 1, 2, \ldots$. Then the sequence $\{x_n\}_{n=0}^{\infty}$, the members of which are

$$x_{2n+1} = (1-t)x_{2n} + tT_1x_{2n}, \quad x_{2n+2} = (1-t)x_{2n+1} + tT_2x_{2n+1}, \quad x_0 \in X, \quad (2)$$

converges to the common fixed point of T_1 and T_2 in X.

Proof. Let x_0 in X be an arbitrary point. From (2) we get

$$||x_{2n+1} - x_{2n}|| = t||T_1x_{2n} - x_{2n}||, \quad ||x_{2n+2} - x_{2n+1}|| = t||T_2x_{2n+1} - x_{2n+1}||.$$
 (3)

If in (1) we put $x = x_{2n}$ and $y = x_{2n+1}$, then by (3) we have

$$t^{-m}(\|x_{2n+1} - x_{2n}\|^m + \|x_{2n+2} - x_{2n+1}\|^m) \ll p\|x_{2n} - x_{2n+1}\|^m$$

and hence

$$||x_{2n+2} - x_{2n+1}|| \ll (pt^m - 1)^{1/m} ||x_{2n} - x_{2n+1}||$$
(4)

for all n. Now, if we put in (1) $x = x_{2n+2}$ and $y = x_{2n+1}$, and use (3), we get

$$t^{-m}(\|x_{2n+3} - x_{2n+2}\|^m + \|x_{2n+2} - x_{2n+1}\|^m) \ll p\|x_{2n+2} - x_{2n+1}\|^m$$

and hence

$$||x_{2n+3} - x_{2n+2}|| \ll (pt^m - 1)^{1/m} ||x_{2n+2} - x_{2n+1}||$$
 (5)

for all n. From (4) and (5) we then obtain

$$||x_n - x_{n+1}|| \ll (pt^m - 1)^{1/m} ||x_{n-1} - x_n||$$

which implies

$$||x_n - x_{n+1}|| \ll (pt^m - 1)^{1/m} ||x_0 - x_1||$$

Since $0 \le pt^m - 1 < 1$, it follows that $\{x_n\}$ is a Cauchy sequence in X. As X is a Banach space over the topological semifield E, we deduce that $\{x_n\}$ converges to a point u in X.

Now putting x = u and $y = x_{2n+1}$ in (1) we have

$$||u - T_1 u||^m + ||x_{2n+1} - T_2 x_{2n+1}||^m \ll p||u - x_{2n+1}||^m$$

i.e.

$$||u - T_1 u||^m + t^{-m} ||x_{2n+2} - x_{2n+1}||^m \ll p ||u - x_{2n+1}||^m.$$

If now n tends to infinity one has $||u - T_1 u||^m \ll 0$, which implies $T_1 u = u$. Hence, u is a fixed point for T_1 . Similarly, $T_2 u = u$. So u is a common fixed point of T_1 and T_2 . This completes the proof.

REFERENCES

- [1] Antonovskiĭ, M., Boltyanskiĭ, V. and Sarymsakov, T., Topological semifields, Tashkent 1960.
- [2] Antonovskiĭ, M., Boltyanskiĭ, V. and Sarymsakov, T., Metric spaces over semifields, Tashkent 1961.
- [3] Kasahara, S., On formulations of topological linear spaces by topological semifields, Math. Seminar Notes, Vol. 1 (1973), 11–29
- [4] Mamuzić, Z., Some remarks on abstract distance in general topology, $E\Lambda EY\Theta EPIA$ 2 (1979), 433–446, Athens, Greece

(received 14.06.1994.)

Studentska 14, 11000 Belgrade, Yugoslavia