SOME DISCUSSIONS RELATED TO DISJOINT BER'S SUBPLANES

Milan Janić

Abstract. A projective plane \mathcal{P}_m is a Ber's subplane of a finite projective plane \mathcal{P}_n if every point and line of $\mathcal{P}_n \setminus \mathcal{P}_m$ is incident to some line and some point, respectively, of \mathcal{P}_n . It is known that the order of the plane \mathcal{P}_n and its Ber's subplane \mathcal{P}_m satisfy the equation $n=m^2$. In this article we prove some properties of finite projective planes \mathcal{P}_n having disjoint Ber's subplanes covering it.

Let \mathcal{P}_n , $n=m^2$, $n\in \mathbf{N}$ be a projective plane. Since the number of points of \mathcal{P}_n equals $n^2+n+1=(m^2+m+1)(m^2-m+1)$, then, as long as the number of points is concerned, every such a projective plane \mathcal{P}_n could be covered by m^2-m+1 disjoint Ber's subplanes. We shall give an example (Theorem 1) of such a covering of the projective plane \mathcal{P}_4 , but it is still an open problem whether every projective plane of order $n=m^2$, $m\in \mathbf{N}$ has a covering by its disjoint Ber's subplanes.

THEOREM 1. The plane \mathcal{P}_4 has a covering by its disjoint Ber's subplanes.

Proof. Since $4=2^2$ and $2^2-2+1=3$, Ber's subplanes of \mathcal{P}_4 are of order 2 and if disjoint Ber's subplanes cover \mathcal{P}_4 , their number is 3. Let p_i^j and P_i^j , $i=1,2,\ldots,7$, j=1,2,3 be the lines and the points of \mathcal{P}_4 with the incidences given by:

```
\begin{split} p_1^1 &= \{P_2^1, P_3^1, P_5^1, P_1^2, P_1^3\}, \ p_1^2 &= \{P_2^2, P_3^2, P_5^2, P_1^1, P_1^3\}, \ p_1^3 &= \{P_2^3, P_3^3, P_5^3, P_1^1, P_1^2\}, \\ p_2^1 &= \{P_1^1, P_4^1, P_5^1, P_6^2, P_6^3\}, \ p_2^2 &= \{P_1^2, P_4^2, P_5^2, P_6^1, P_6^3\}, \ p_2^3 &= \{P_1^3, P_4^3, P_5^3, P_6^1, P_6^6\}, \\ p_3^1 &= \{P_1^1, P_3^1, P_6^1, P_7^2, P_7^3\}, \ p_3^2 &= \{P_1^1, P_1^2, P_3^2, P_6^2, P_7^3\}, \ p_3^3 &= \{P_1^1, P_7^2, P_1^3, P_3^3, P_6^3\}, \\ p_4^1 &= \{P_2^1, P_4^1, P_6^1, P_3^2, P_3^3\}, \ p_4^2 &= \{P_3^1, P_2^2, P_4^2, P_6^2, P_3^3\}, \ p_4^3 &= \{P_3^1, P_3^2, P_2^3, P_4^3, P_6^3\}, \\ p_5^1 &= \{P_1^1, P_2^1, P_7^1, P_4^2, P_4^3\}, \ p_5^2 &= \{P_4^1, P_1^2, P_2^2, P_7^2, P_4^3\}, \ p_5^3 &= \{P_4^1, P_4^2, P_1^3, P_2^3, P_7^3\}, \\ p_6^1 &= \{P_3^1, P_4^1, P_7^1, P_5^2, P_5^3\}, \ p_6^2 &= \{P_5^1, P_3^2, P_4^2, P_7^2, P_5^3\}, \ p_6^3 &= \{P_5^1, P_5^2, P_3^3, P_4^3, P_7^3\}, \\ p_7^1 &= \{P_5^1, P_6^1, P_7^1, P_2^2, P_2^3\}, \ p_7^2 &= \{P_2^1, P_5^2, P_6^2, P_7^2, P_2^3\}, \ p_7^3 &= \{P_2^1, P_2^2, P_5^3, P_6^3, P_7^3\}. \end{split}
```

It is easy to check that $\mathcal{P}_2^1 = \{P_1^1, \dots, P_7^1\}$, $\mathcal{P}_2^2 = \{P_1^2, \dots, P_7^2\}$ and $\mathcal{P}_2^3 = \{P_1^3, \dots, P_7^3\}$ are disjoint Ber's subplanes which cover \mathcal{P}_4 . The incidences are probably more transparent in the figure 1.

68 M. Janić

Figure 1. A covering of \mathcal{P}_4 by disjoint Ber's subplanes

Now we are going to prove some properties of a covering of \mathcal{P}_n by disjoint Ber's subplanes. We say that a line p is incident to some subset \mathcal{P} of \mathcal{P}_n if the set \mathcal{P} is incident to at least two points of p.

Theorem 2. Let \mathcal{P}_m^i , $i=1,\ldots,s$ be disjoint Ber's subplanes of a projective plane \mathcal{P}_n . We denote by \mathcal{P}^s the set $\bigcup_{i=1}^s \mathcal{P}_m^i$ and by \mathcal{Q}^s the set $\mathcal{P}_n \setminus \mathcal{P}^s$. Each point of \mathcal{P}^s is incident to exactly m+s lines of the Ber's subplanes \mathcal{P}_m^i , $i=1,\ldots,s$. Each point of \mathcal{Q}^s is incident to exactly s lines of the Ber's subplanes \mathcal{P}_m^i , $i=1,\ldots,s$.

Proof. Every point of \mathcal{P}_n is incident to at least one line of each subplane \mathcal{P}_m^i , $i\leqslant s$ by the definition of a Ber's subplane. If $P\in\mathcal{P}_m^i$, then P is incident to m+1 lines of \mathcal{P}_m^i and to a single line of each \mathcal{P}_m^j , $j\neq i$. (If a point is incident to two lines of a subplane it is incident to that subplane.) Therefore, if P is a point of \mathcal{P}^s , it is incident to m+1+s-1=m+s lines of the subplanes \mathcal{P}_m^i , $i\leqslant s$. On the other hand, the points of \mathcal{Q}^s are incident only to a single line of each subplane \mathcal{P}_m^i , $i\leqslant s$, which proves the theorem. \blacksquare

We shall call the property given by the previous theorem the homogenity of finite projective planes. Let us prove one more property of disjoint Ber's subplanes.

Theorem 3. If a plane \mathcal{P}_n , $n=m^2$, $m\in \mathbb{N}$ contains m^2-m disjoint Ber's subplanes \mathcal{P}_m^i , $i=1,\ldots,m^2-m$, of order m, then $\mathcal{Q}=\mathcal{P}_n\setminus\bigcup_{i=1}^{m^2-m}\mathcal{P}_m^i$ is a Ber's subplane.

Proof. Since every line p is incident to a single point or to m+1 points of each \mathcal{P}_m^i , $i\leqslant m^2-m$, then it has $k(m+1)+(m^2-m-k)+l=m^2+1$ points, where k is the number of the subplanes \mathcal{P}_m^i , $i\leqslant m^2-m$ to which it is incident and l the number of the points of $p\cap Q$. Hence, k>1 is impossible, k=1 implies l=1, and k=0 implies l=m+1, which proves that a line intersects Q in a single point if it is not incident to Q, and in m+1 points otherwise.

Every point of \mathcal{P}_n is incident to a single line of each Ber's subplane to which it does not belong and to m+1 lines of the subplane to which it belongs. This implies that every point P of \mathcal{Q} is incident to m^2-m lines of the subplanes \mathcal{P}_m^i , $i\leqslant m^2-m$ and $m^2+1-(m^2-m)=m+1$ lines not incident to the subplanes \mathcal{P}_m^i , $i\leqslant m^2-m$. Hence, every point P of \mathcal{Q} is incident to m+1 lines of \mathcal{Q} . By the Theorem 2, every point of $\mathcal{P}_n\setminus\mathcal{Q}$ is incident to $m+(m^2-m)$ lines of the subplanes \mathcal{P}_m^i , $i\leqslant m^2-m$, and therefore, to a single line of \mathcal{Q} .

Since $\mathcal Q$ contains $m^2+m+1=(n^2+n+1)-(m^2+m+1)(m^2-m)$ points lying on lines with m+1 such points (points of $\mathcal Q$), and since each point of $\mathcal Q$ is incident to m+1 such lines, as it is well known, $\mathcal Q$ is a projective subplane of order m. Finally, $\mathcal Q$ is a Ber's subplane according to the properties proved above.

REFERENCES

- [1] D. R. Hugbes and F. C. Piper, Projective planes, Berlin 1972
- $[\mathbf{2}]\ \Phi.$ Картеси, Введение в конечные геометрии, Наука, Москва 1980
- [3] M. Hall Jr., The theory of groups, Mac Millan, New York 1960
- [4] M. Hall Jr., Projective planes, Trans. Math. 80, 1955

 $({\it received}\ 22.02.1993,\ {\it in}\ {\it revised}\ {\it form}\ 23.10.1994.)$