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A NOTE ON A SUPPORT OF A LINEAR MAPPING
Lj. Cukié

Abstract. In this note a notion of the support of a linear mapping from C,(7T') into a locally
convex space is introduced. Some of its properties are established.

Introduction

If E is a locally convex space and P C E' is a weakly-x-bounded set, then P is
equicontinuous iff the linear mapping f from E into the Banach space Cy(P), de-
fined by f(e)(p) = p(e) (p € P, e € E) is continuous. For the case E = (Cy(T), fr),
as we will see, some information concerning the continuity of the mapping f is
provided by its support.

Preliminaries

All topological spaces considered here are assumed to be completely regular
Hausdorff. If T is such a spce, then Cy(T) (resp. C(T)) denotes the space of
bounded (resp. all) real-valued continuous functions on T.. AT is the Stone-Cech
compactification of T'. For each z € Cy(T) its continuous extension to ST is denoted
by . If x € C(BT) and if A C BT, then z|A denotes the restriction of z to A.
clx A is the closure of A C X.

We denote by || || supremum norm on Cy(T'), and by B the unit ball {z €
Co(T) : ||z|| < 1}. M(T) is the Banach space dual to (Cy(T),|| ||). If H C Co(T)
(or if H C M(T)), then H* denotes the set {h € H : h > 0}. For such H, if
h € H, then h™ = sup{h,0}, h~ = sup{—h,0}, |h| =hT + h~.

Let t., be the compact-open topology on Cy(T), i.e. t., is the locally convex
topology on Cy(T') defined by the family of seminorms pK(:c) = sup{ |z(t)| : t €
K}, K runs through the compact subsets of T. Then, the strict topology §; on
Cy(T) is the finest locally convex topology on Cy(T) coinciding with t., on the
unit ball B ([2],[6]). From definition of §; immediately follows that if f is a linear
mapping from Cy(T') into an LCS (a locally convex Hausdorff space) then f is §;-
continuous iff its restriction f|B is t., - continuous. M;(T') denotes the continuous
dual of (Cy(T), Bt)-
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Results

A well-known theorem of Nachbin (see [5], II.1.2) says that if FF C C(T) is
absolutely convex and if eB C F for some £ > 0, then there is a minimal compact
set K C BT with the property: if z € C(T) and if °|K = 0, then z € F. We
prove the following variant of Nachbin’s theorm.

THEOREM 1. If F' # {0} is a non-empty norm-closed absolutely convex subset
of Cp(T), then there is a minimal compact set S(F) C BT with the property: if
z € Cy(T) and if z°|S(F) =0, thenx € F.

Proof. Let £L = {L C BT : L is compact such that (Vo € Cy(T))2z°|L =0 =
€ F}andlet Mg = {2 € Cy(T) : there exists an open G D K with °|G =0},
for compact K C BT. Then: (1) L € L iff My C F; (2) if Ly, Ly € L, then
LinLy € £; (3) S(F) =N{L : L € L}. Proofs of (2) and (3) are the same
as in [5], pp. 63-64. One half of (1) is trivial. To obtain the other half, suppose
that My C F and x € Cy(T), z°|L = 0. Let y,(t) = 2°(t) if |2°(t)| < 1/n and
yn(t) = 28(t)/(n|2P (t)|) if |2°(t)| = 1/n. Then y, € C(BT) and (2 — y,)|Gr = 0,
for G, = {t € BT : |2°(t)| < 1/n}. From L C G,, it follows that (z° —y,)|T € F
for eachn =1,2,... . Then z € F, because F is closed and ||y,|T|| < 1/n.m

REMARK 2. If F'is as in theorem 1 and if F' is norm-bounded, then S(F') = gT.
In fact, if t € BT \ S(F), then there is x € Cy(T) with z°(t) = 1, 2°|S(F) = 0.
Hence nz € F, because nz®|S(F) =0 (n=1,2,... ), ie. F is not norm-bounded.

DEFINITION 3. Let f # 0 be a norm-continuous linear mapping from Cy(T)
into an LCS E. The big support of f is bsupp f = S(f~1(0)) and the support of f
is supp f = bsupp f NT.

REMARK 4. If f is a norm-continuous linear functional on Cy(T), then f
can be identified, via Alexandroff representation theorem ([6], 5.1) with the unique
Baire measure p on the minimal algebra which contains all zero sets from T'. It is
not difficult to see that supp f and supp p coincide.

In the light of the preceeding remark, next result is not new, but we give a
proof which is independent from the measure theory.

PROPOSITION 5. Let f € M*(T) and f #0. Then:
(o) If z € C’;‘(T) and f(z) =0, then $B| bsupp f = 0.

(b) The space bsupp f with the induced topology satisfies the countable chain
condition.

Proof. (a) Let 2°(s) > 0 for some s € bsupp f. Then there exist an open set
G C BT and r > 0 with 28(¢t) > r for all t € G. We will prove that bsupp f is
contained in ST \ G, which is impossible because s € bsupp f N G. Let y € Cy(T),
y?|BT \ G = 0 and ||y|| < k. From z8(t) > r(y*)?(t)/k for all t € BT and from
non-negativity of f it follows that f(y*) = 0. Then f(y) = f(y*) — f(y~) = 0.
Hence bsupp f C ST \ G, by the minimality of bsupp.



A note on a support of a linear mapping 51

(b) Let S = bsupp f and let the functional go on C; (S) be defined by go(z) =
f(z), where Z is any non-negative continuous extension of z € C; (S) on BT. The
functional gq is well-defined because each two such extensions coincide on S. It is
trivial to see that go is a non-negative additive functional, and by [1, Chap.II, §2,
Prop.2] there is a non-negative linear functional g on Cy(S) that extends go. By
[4, V.5.5], g € MT(S).

Let { Gy : a € A} be a family of non-empty pairwise disjoint open subsets of
S and let t, € Go. Then there are z, € C;f (9), o < 1, such that z4(t,) =1 and
za|S\Ga =0. From 0 < ) 4 zo < 1 0on S it follows that 0 < >4 g(za) < g(1) for
all finite ® C A. Then the set {a € A : g(z4) > g(1)/n } is finite for each n € N.
Countability of A then follows from the inequality g(z,) > 0 (by (a)). m

THEOREM 6. Let E be a metrizable LCS, let (U,) be its neighborhood basis
of origin consisting of absolutely conver sets with 2U,411 C Uy, and let f # 0 be
a norm-continuous linear mapping from Cy(T) into E. Then f is B¢-continuous
if and only if there are compact sets L, C T (n € N) with the property that
f(z) € Uy, whenever x € BY and z|L, = 0. Moreover, L,’s may be chosen such
that supp f = clr(Us—; Ln)-

Proof. = The restriction f|B is t,,-continuous. Then there are an increasing
sequence of compact sets K,, C T and a decreasing sequence ¢,, of positive numbers
with the property: if x € B and Py (z) < ep, then f(z) € U,. We will first prove

that |2 ; K, Nbsupp f # 0. Suppose the contrary. Then, there are z, € Bt
such that z,|K, = 0, z,|bsupp f = 1. There is u € B such that f(u) # 0. From
(uzp)®| Ky, = 0, (uzy,)?| bsupp f = u?|bsupp f it follows that f(u) = f(uz,) € U,
for all n, which is in contradiction with f(u) # 0.

Hence, there is £ € N such that K,, Nbsupp f is non-empty for all n > k. Let
L, = Knir,Nbsupp f, 8, = éntx and let x € BT, x|L, = 0. If K,y C Gy ={t €
BT : zP(t) < 6, } then f(x) € Upy C Up. If Kyyk ¢ G, then from L, C G, it
follows that there is y € Bt with y®| K, N (T \ G,) = 0, y°|bsupp f = 1. Since
Knik = (Ln U (Kntk \ (T'\ Gn))) U (Kntk N (G \ Ly)), then pKn+k (zy) < On.
From this and from the fact that 2 and (2y)? coincide on bsupp f it follows that
f(x) = f(zy) € Untr C Up.

For the equality supp f = clz(U,—; Ln), only inclusion bsupp f C
clgr(Us, Ly) needs a proof. If z € Cy(T) and 2°|clgr(U;—; Ly) = 0, then
(2%/1z]]) € Bt and (2% /||2]|)|Ln = 0. It follows that f(z%) € ||2]|U, for all n, i..
f(2) = 0. By the minimality of bsupp f, the proof is finished.

<= Since f is norm-continuous, we may choose positive numbers a, < 1 so
that 4f(a,B) C Up41 for each n. We will show that f(V;, N B) C U,, where V,, is
the set {z € Cy(T) : P, (z) < ap}. Let z € VN B and let

n+2
zt(t), if zT(t) < an, _ z=(t), ifz7(t) < an,
v = { o v = o
an, if 7(t) > an, Qn, ifz=(t) > an.

Then z* — y* € Bt, y* € a,B, (¢ — y*)|L,42 = 0, and so f(z* — y*t) € Uy
and 4f(y*) € Upy1. From this it follows that f(z) = f(zt) — f(z7) = (f(zt —
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y) + flyM) = (f(e= —y7)+ f(y7)) € 2Uny2+ 2Unq1 C Uy, which completes the
proof of the theorem. m

REMARK 7. If E is a non-metrizable LCS, then supp f need not be the closure
of a g-compact subset of T', as the following example shows. Let T be the discrete
space, cardT = ¢. Then T is a realcomplete ([3,11.D.(a)]) metrizable space. By
[5,111.3.5 and I11.4.3] E = (C(T),tc) is a bornological barrellled complete LCS.
The inclusion mapping i from Cy(T") into E is B;-continuous and from remark 2 it
follows that supp i = T. Each compact subset of T is finite, hence clp (U, Ln) =
Upey Lyp # T for all compact Ly’s.

REMARK 8. In the proof of theorem 6 we showed also that clr ;- Ly is
dense in bsupp f. Hence, supp f is dense in bsupp f.

The next lemma, is well-known and we omit the proof.

LEMMA 9. Let f, € M; (T), ||full < 1 and let f = Y00 27" f,. Then
f e M), Il <1 and supp f = clr(UnZ, supp fr)-

THEOREM 10. Let f # 0 be a weakly continuous linear mapping from
(Co(T), Bt) into an LCS E. Then:

(a) If F C E' is weakly-x-dense in E', then supp f = clr(lJ,,cp supp(wf)).

(b) supp f is dense in bsupp f.

(c) If E' is weakly-x-separable, then there is p € M;'(T), ||p|| < 1 such that

supp f = supp p.
(d) If E' is weakly-+-separable, then supp f satisfies the countable chain con-
dition.

Proof. (a) From f=1(0) C (wf)~'(0) and the theorem 1 it follows that
bsupp(wf) C bsupp f for each w € F. On the other hand, if
28| clgr (Uper supp(wf)) = 0, then by the remark 8, z°|bsupp(wf) = 0. This
gives that wf(z) =0 for all w € F. Hence f(z) = 0. From the theorem 1 it follows
that bsupp f C clgr (U, cpsupp(wf)).

(b) Immediately follows from (a).

(c) Let {wy, : n € N} be weakly-#-dense in E’'. Then supp f =
clr(UpZy supp(wnf)), by (a). If p =32, cn, 27 "(lwnfI/Ilwnfl]), where Ny = {n :
wnf # 0}, then p € M;F(T) and supp f = supp u, by the lemma 9.

(d) From (b) and (c) it follows that supp f is dense in bsupp u. Then, by the

proposition 5, from [3, 2.J.(d)] it follows that supp f satisfies the countable chain
condition. m

REMARK 11. Assertions in (c), (d) are not true if we omit the separability
condition, even if E is a Banach space. For example, let T" be the compact space
BN\ N and let f be the identity mapping on (C(T),|| ||)- Then supp f = T', but
T does not satisfy the countable chain condition [3, 3.6.Example 2].

Applications of our results will be given in a subsequent paper.
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