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AN INEQUALITY RELATED TO THE UNIFORM CONVEXITY
IN BANACH SPACES

Miroslav Pavlovié

Abstract. We prove an inequality that implies that a 2-concave and p-convex Banach lattice
is “more” uniformly convex than L?.

1. Introduction
In this note we prove the following

THEOREM. Let X be a 2-concave Banach lattice with 2-concavity constant
equal to one, and let 1 < p < 2. Then

v/
I +y[? + |z =y 21 = {lell + Iy D + [l = 7} (1)

for all z,y € X. In particular, inequality (1) holds in an arbitrary L? space with
1<g<2.

For the definition of the expression (|u|?+|v|?)}/? and other notions concerning
abstract Banach lattices we refer to [3], Ch. 1 (especially Theorem 1.d.1). In the
case where X = LP (1 < p < 2) inequality (1) becomes

Iz +ylI” + llz = ylIP > (lzll + lylD? + [zl = llyll]”, 2)

which was used by Hanner [2] to calculate the precise value of the modulus of
convexity of LP. Moreover, it follows from [4] that the validity of (2) in some
normed spaces X implies that X is “more” uniformly convex than LP (where LP?
is at least two-dimensional). An immediate consequence of Theorem is that (1)
holds in a large class (denoted by A(p,2); see Section 2) containing, for example,
L1 for p < g < 2 as well as certain Orlicz and mixed normed Lebesgue spaces. Note
that, in [4], the validity of (2) in L? (p < ¢ < 2) was deduced from the case ¢ = p
by using the fact that L? can be embedded into LP(0,1) isometrically (see [3], pp.
181-182). The proof in the present note is quite elementary and lies on the fact
that (for 1 < p < 2) the function

Fy(&,m) = {(€/2 + /2P + 12 - 2PVP (30,7200 (3)
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is convex. Before proving the result we mention a generalization of F}, that could
be of some independent interest. Let r; (j = 0,1,2,...) denote the Rademacher
functions,

r;(t) = sign(sin(2/7t)) (t real).

Define the functions ®, on the positive cone I of the sequence space I* by

3,(6) = {/

That the definition is correct follows from the well known fact that if (a;)§
12, then the series Y a;r;(t) converges almost everywhere, and from Khintchine’s
inequality [3], Theorem 2.b.3, which says that

o

> ri(t)E”

J=0

P 2/p
€= >0,

Apll€lln < @p(8) < Bpliélle (Ap, By = const > 0).

Starting from the observation that ®(&1,£2,0,0,...) = const Fp(&1,&2) we conjec-
ture that ®, is a convex function on I} (for 1 < p < 2). (We shall also prove that
if p > 2, then F}, is concave, and we conjecture that &, is concave if p > 2).

This would lead to the inequality

®p(21, 72, - - )| Z Sp(llzall; [l22]], - ),

where x1, x2, ... are elements of a Banach lattice whose 2-concavity constant is
eual to one. Further remarks are at the end of the paper.

2. Definitions and examples

We denote by A(p,q), where 1 < p < ¢ < 400, the class of (real) Banach
lattices X such that

1(Jal? + o) 21 < (lull? + [ol?)!/? (4)

and
[[(ul® + ol = (lall® + [lol]?) (5)

for all u,v € X. In other words, X is in A(p, q) if it is p-convex and g-concave and
its p-convexity and g-concavity constants are equal to one. It is clear that A(1, c0)
is just the class of all Banach lattices. And by [3], Proposition 1.d.5, A(p,q) is
contained in A(r,s) for r < p < ¢ < s. In particular, LY € A(r,s) if r < ¢ < s, a
fact which can easily be verified by direct calculations.

It was proved by Figiel [1] (see also [3], pp. 80-81) that if X € A(p, q) with
p>1and g < 400, then X is uniformly convex in the sense that

5X(6)=inf{1— m—;—y

H Nz —yll = & flall = ||y||=1} >0

for ¢ > 0. The function §x is called the modulus of convexity of X. Let 6,
denote the modulus of convexity of L?, dim(L?) > 2. (It follows from [2] that ¢, is
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independent of a particular choice of LP.) As noted in Introduction, the following
fact follows immediately from (1) and (4).

COROLLARY 1. If X € A(p,2) (in particular, X = L9 for 2 > q > p), then
inequality (2) holds.

As noted in Introduction, this implies the following
COROLLARY 2. If X € A(p,2), then dx(e) > dp(e) (¢ > 0).

Mized normed spaces. For technical reasons we define only sequence spaces.
Let 1 < r,s < 2. The space X = I™*® consists of those scalar sequences r =
{2,k }5%=0 such that

lall = {]; P m,m] }I/T <o

It is not hard to show that [™*® € A(p, q), where p = min(r, s) and ¢ = max(r, s).
Hence, by Corollary 2, dx(g) > d,(¢). Since I™* contains an isometric copy of 7,
we conclude that dx = ;.

Orlicz spaces. Let M be a convex, strictly increasing function on the interval
[0, 00) with M (0) = 0. The space I consists of the scalar sequnces z = {z;}° for
which

||:1:||=||w||M=inf{)\>0: ZM<@) <1} < 0.
7=0

One can prove that I € A(p,q) provided that the function M (t'/7) is convex
and the function M (t'/9) is concave. Therefore, inequality (1) holds in ™ if the
function M (t'/7) is concave. Estimates for the moduli of convexity of Orlicz spaces
can be found in [1].

3. Proofs
Our proof is based on the following lemma.

LEMMA. Let F, be defined by (3). Then, if 1 < p < 2, the function F, is
convez, and if p > 2, it is concave. In all the cases F,(&,n) increases with £ and 1.

Before proving the lemma we use it to prove the theorem. Let z,y € X, where
X € A(1,2),and 1 < p < 2. Then

1
(le+yl + e —yP)'/? = (2] + )P + ||=| - [y][") """

(this is deduced from the case where z, y are real scalars, by using Theorem 1.d.1
of [3]) and we may assume that z > 0, y > 0. Assuming thls we have

(|2 +yI? + o — y|")/? = Fp(a®,y*)"/?
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(see [3], Theorem 1.d.1). Since F}, is convex, homogeneous and “increasing”, there
isaset AC {(a,) :a>0,8 >0} such that

FP(&”?) = Sup{ Oéé-—f— ﬂn : (Oé,ﬂ) € A}7
whence F,(22,y%)'/? > (az? + By?)'/?, (o, B) € A, and hence, by (5) with ¢ = 2,
15 (2%, 9) 21 > (allz)l” + BllylI*)/?
for all (o, 8) € A. Taking the supremum over («, 8) € A we obtain
1Fp(2?,5%) 1 = Fp(ll=ll?, llyl1*)' 72,
which concludes the proof. m

Proof of Lemma. Let 1 < p < 2. (The case p = 1 is similar.) Since
Ey(X&, An) = AEp(€,m) for A > 0, the convexity of F}, will follow from the con-
vexity of the function f(t) = F,(1,¢), t > 0. To prove that f is convex observe first
that f(t) = tf(1/t), whence f"(t) = t=3f"(1/t) for t # 1. And since f'(1) exists,
it remains to prove that f"(t) > 0 for 0 < t < 1. To prove this write f as

F@) =g /)P, gt =1+t + (1t  (0<t<1)
We have

_ _ 2 o
2f" (1) =t 2/3g(t1/2)(2/p) 2 [(1_) _ 1) g'(tl/z)ztl/Z

+ g(t1/2)g”(t1/2)t1/2 _ g(t1/2)gl(t1/2):| .
Hence, f"(t) > 0 if and only if A(t) > 0, where

a0 =11 (2-1) g wre+ g - atrg'0)|

4p— D1 — P2 — [(1+ )72 — (1 —1)**72).

If 3/2 < p < 2, the function ¢(t) = (1+¢)2P~2 — (1—1)2P~2 is concave and therefore
p(t) < p(0) +¢'(0)t = 4(p — 1)t < 4(p — E(1 — £*)P7%,
which implies A(¢) > 0. If 1 < p < 3/2, then
A =4(p-1)Q - P31+ (3 -2p)t] — 2(p — D[(1 + )% 7% + (1 — £)**7).

Since 0 < 3 — 2p < 1, the function ¢ — t372P is concave, hence
1 3—2p 1 3—2p
() ()

Az 4p—-1D)A -3+ (3—2p)t* — 1] > 0.

(1 + t)2p—3 + (1 _ t)2p—3
2

1
9

Hence
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This implies A(t) > A(0) = 0, which concludes the proof in the case 1 < p < 2. If
p > 2, proving that F), is concave reduces to proving that A(t) <0 (0<¢t<1). In
this case the function ¢ is convex which implies that

p(t) > ¢(0) + ¢’ (0)t = 4(p — 1)t > 4(p — (1 - 12)P72,
and this completes the proof. m

Remark. The discussion of the case 1 < p < 2 can be made simplier. Namely,
it is easy to see that the function g(¢'/?) is convex (0 < t < 1), which implies that
f(t) = g(t'/?)?/? is convex (since 2/p > 1). This trick can also be used if 2 < p < 3,
because then the function g(¢'/?) is concave. However, if p > 3, g(t'/?) is convex.

4. Dual results

Using the case p > 2 of Lemma one proves that if z,y € X, where X € A(2,00)
(which means that X satisfies (4) with p = 2), then there holds the reverse of (1).
A consequence is that the reverse of (2) is valid in every lattice of class A(2,p)
(p > 2) and, in particular, in L? for 2 < ¢ < p. (The latter was proved in [4]
by using the Riesz-Thorin interpolation theorem.) Combining this with Hanner’s
results we see that if X € A(2,p), then X is “more” uniformly convex than L?
(dimension > 2) in the sense that px(7) < pp(7), where

e+ ol + llz = ]
px(r) = sun | : 1l =1, gl =1},

and p, = prr. The function px is called the modulus of smoothness of X (see [3],
Ch. 1, for further information).
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