GENERALIZED a-WEYL'S THEOREM FOR DIRECT SUMS

Anuradha Gupta and Neeru Kashyap

Abstract. If T and S are Hilbert space operators obeying generalized a-Weyl's theorem, then it does not necessarily imply that the direct sum $T \oplus S$ obeys generalized a-Weyl's theorem. In this paper we explore certain conditions on T and S so that the direct sum $T \oplus S$ obeys generalized a-Weyl's theorem.

1. Introduction

Let H be an infinite dimensional separable Hilbert space. Let B(H) be the algebra of all operators on H (bounded linear transformations of H into itself). For an operator $T \in B(H)$, let $\sigma(T)$, $\sigma_p(T)$ and $\sigma_a(T)$ denote the spectrum, point spectrum and approximate point spectrum of T, respectively. Let $\alpha(T)$ and $\beta(T)$ denote the dimension of the kernel ker T and the codimension of the range R(T), respectively. An operator $T \in B(H)$ is called an upper semi-Fredholm if $\alpha(T) < \infty$ and T(H) is closed, while $T \in B(H)$ is called a lower semi-Fredholm if $\beta(T) < \infty$. However, T is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm. If $T \in B(H)$ is semi-Fredholm, then the index of T is defined by

$$\operatorname{ind}(T) = \alpha(T) - \beta(T).$$

The ascent of T is defined by the smallest non-negative integer p := p(T) such that $N(T^p) = N(T^{p+1})$. If such an integer does not exist we put $p(T) = \infty$. Analogously, the descent of T, is defined by the smallest nonnegative integer q := q(T) such that $R(T^q) = R(T^{q+1})$ and if such an integer does not exist we put $q(T) = \infty$.

An operator $T \in B(H)$ is called a Weyl operator if it is a Fredholm operator of index 0, while $T \in B(H)$ is called a Browder if it is a Fredholm operator of finite ascent and descent. The essential spectrum $\sigma_e(T)$ and the Weyl spectrum $\sigma_W(T)$

²⁰¹⁰ AMS Subject Classification: 47A10, 47A11, 47A53.

 $Keywords\ and\ phrases:$ Direct sums, generalized Weyl's theorem, generalized a-Weyl's theorem, generalized a-Browder's theorem.

²⁶⁵

of T are defined by

$$\sigma_e(T) = \{\lambda \in \mathbf{C} : T - \lambda I \text{ is not Fredholm}\}\$$

$$\sigma_W(T) = \{\lambda \in \mathbf{C} : T - \lambda I \text{ is not Weyl}\}.$$

For $T \in B(H)$, define the set LD(H) by

$$LD(H) = \{T \in B(H) : p(T) < \infty \text{ and } R(T^{p+1}) \text{ is closed}\}.$$

An operator $T \in B(H)$ is said to be left Drazin invertible if $T \in LD(H)$. We say that $\lambda \in \sigma_a(T)$ is a left pole of T, if $T - \lambda I \in LD(H)$. We denote by $\pi^a(T)$ the set of all left poles of T.

We say that Weyl's theorem holds for T, if

$$\sigma(T) \setminus \sigma_W(T) = E_0(T),$$

where $E_0(T)$ is the set of all isolated point of $\sigma(T)$ which are eigenvalues of finite multiplicity.

For a bounded linear operator T and a nonnegative integer n we define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into itself (in particular $T_0 = T$). If for some integer n, the range space $R(T^n)$ is closed and T_n is an upper (resp., a lower) semi-Fredholm operator, then T is called an upper (resp., a lower) semi B-Fredholm operator. In this situation, T_m is a semi-Fredholm operator and $\operatorname{ind}(T_m) = \operatorname{ind}(T_n)$ for each $m \ge n$ [3, Proposition 2.1]. It permits us to define the index of a semi B-Fredholm operator T as the index of the semi-Fredholm operator T_n where n is any integer such that $R(T^n)$ is closed and T_n is a semi-Fredholm operator. Moreover if T_n is a Fredholm operator, then T is called a B-Fredholm operator. A semi B-Fredholm operator is an upper or a lower semi B-Fredholm operator.

An operator $T \in B(H)$ is called a *B*-Weyl operator if it is a *B*-Fredholm operator of index 0. The *B*-Fredholm spectrum $\sigma_{BF}(T)$ and the *B*-Weyl spectrum $\sigma_{BW}(T)$ of *T* are defined as

$$\sigma_{BF}(T) = \{\lambda \in \mathbf{C} : T - \lambda I \text{ is not a } B\text{-Fredholm operator}\},\$$

$$\sigma_{BW}(T) = \{\lambda \in \mathbf{C} : T - \lambda I \text{ is not a } B\text{-Weyl operator}\}.$$

We say that generalized Weyl's theorem holds for T if

$$\sigma(T) \setminus \sigma_{BW}(T) = E(T),$$

where E(T) is the set of isolated eigenvalues of T ([2], Definition 2.13), and that generalized Browder's theorem holds for T if $\sigma(T) \setminus \sigma_{BW}(T) = \pi(T)$, where $\pi(T)$ is the set of all poles of T.

Let SBF(H) be the class of all semi *B*-Fredholm operators on *H*, USBF(H) be the class of all upper semi *B*-Fredholm operators on *H* and $USBF^{-}(H)$ be the class of all $T \in USBF(H)$ such that $ind(T) \leq 0$. Also let

$$\sigma_{usbf^{-}}(T) = \{\lambda \in \mathbf{C} : T - \lambda I \text{ is not in } USBF^{-}(\mathbf{H})\}.$$

266

We say T obeys generalized a-Weyl's theorem if

$$\sigma_a(T) \setminus \sigma_{usbf^-}(T) = E^a(T),$$

where $E^{a}(T)$ is the set of all eigenvalues of T which are isolated in $\sigma_{a}(T)$ ([2], Definition 2.13). We know that [2]

generalized a-Weyl's theorem \Rightarrow generalized Weyl's theorem \Rightarrow Weyl's theorem. We say T obeys generalized a-Browder's theorem if

$$\sigma_{usbf^{-}}(T) = \sigma_a(T) \setminus \pi^a(T)$$

An operator is called T polaroid if all isolated points of the spectrum of T are poles of the resolvent of T and is called isoloid if each $\lambda \in \sigma_{iso}(T)$ is an eigenvalue of T, where $\sigma_{iso}(T)$ is the set of isolated points of $\sigma(T)$. An operator T is called a-isoloid if every $\lambda \in \sigma_a^{iso}(T)$ is an eigenvalue of T, where $\sigma_a^{iso}(T)$ is the set of isolated points of $\sigma_a(T)$. Every a-isoloid operator is isoloid but the converse is generally not true.

2. Generalized a-Weyl's theorem for direct sums

Let H and K be nonzero complex Hilbert spaces. Although $T \in B(H)$ and $S \in B(K)$ satisfy generalized a-Weyl's theorem, we do not guarantee that their orthogonal direct sum $T \oplus S$ satisfies generalized a-Weyl's theorem.

EXAMPLE 2.1. Let us define S for each $x \in (x_i) \in l^1$ by

$$S(x_1, x_2, x_3, \dots, x_k \dots) = (0, \alpha_1 x_1, \alpha_2 x_2, \dots, \alpha_{k-1} x_{k-1}, \dots)$$

where (α_i) is a sequence of complex numbers such that $0 < |\alpha_i| \le 1$ and $\sum_{i=1}^{\infty} |\alpha_i| < \infty$. $\sigma(S) = \sigma_a(S) = \{0\}$. It can be proved that $\overline{R(S^n)} \neq R(S^n)$ for any n = 1, 2, ...Thus, $\sigma_{usbf^-}(S) = \{0\}$. Since $E^a(S) = \phi$, it follows that S satisfies generalized a-Weyl's theorem. Define T on $X = l^1 \oplus l^1$ by $T = S \oplus 0$. Now $N(T) = \{0\} \oplus l^1, \sigma(T) = \sigma_a(T) = \{0\}, E^a(T) = \{0\}$. As $R(T^n) = R(S^n) \oplus \{0\}, R(T^n)$ is not closed for any $n \in \mathbb{N}$. So $T \notin USBF^-$ and $\sigma_{usbf^-}(T) = \{0\}$. Thus, $\sigma_a(T) \setminus \sigma_{usbf^-}(T) \neq E^a(T)$. Hence T does not satisfy generalized a-Weyl's theorem.

In this section we discuss certain conditions on T and S to ensure that generalized a-Weyl's theorem holds for $T \oplus S$. W.Y. Lee [6] proved that if $T \in B(H)$ and $S \in B(K)$ are isoloid and satisfy Weyl's theorem such that $\sigma_W(T \oplus S) = \sigma_W(T) \cup \sigma_W(S)$ then Weyl's theorem holds for $T \oplus S$. We now prove the result for generalized a-Weyl's theorem:

THEOREM 2.2. Suppose that generalized a-Weyl's theorem holds for $T \in B(H)$ and $S \in B(K)$. If T and S are a-isoloid and $\sigma_{usbf^-}(T \oplus S) = \sigma_{usbf^-}(T) \cup \sigma_{usbf^-}(S)$, then generalized a-Weyl's theorem holds for $T \oplus S$.

Proof. We know $\sigma_a(T \oplus S) = \sigma_a(T) \cup \sigma_a(S)$ for any pair of operators. If T and S are a-isoloid, then

 $E^{a}(T \oplus S) = [E^{a}(T) \cap \rho_{a}(S)] \cup [\rho_{a}(T) \cap E^{a}(S)] \cup [E^{a}(T) \cap E^{a}(S)]$

where $\rho_a(.) = \mathbf{C} \setminus \sigma_a(.)$.

A. Gupta, N. Kashyap

If generalized a-Weyl's theorem holds for T and S, then

$$\begin{aligned} [\sigma_a(T) \cup \sigma_a(S)] \setminus [\sigma_{usbf^-}(T) \cup \sigma_{usbf^-}(S)] \\ &= [E^a(T) \cap \rho_a(S)] \cup [\rho_a(T) \cap E^a(S)] \cup [E^a(T) \cap E^a(S)]. \end{aligned}$$

Thus, $E^a(T \oplus S) = [\sigma_a(T) \cup \sigma_a(S)] \setminus [\sigma_{usbf^-}(T) \cup \sigma_{usbf^-}(S)].$

If $\sigma_{usbf^-}(T \oplus S) = \sigma_{usbf^-}(T) \cup \sigma_{usbf^-}(S)$, then $E^a(T \oplus S) = \sigma_a(T \oplus S) \setminus \sigma_{usbf^-}(T \oplus S)$. Hence generalized a-Weyl's theorem holds for $T \oplus S$.

THEOREM 2.3. Suppose $T \in B(H)$ has no isolated point in its approximate spectrum and $S \in B(K)$ satisfies generalized a-Weyl's theorem. If $\sigma_{usbf^-}(T \oplus S)$ $= \sigma_a(T) \cup \sigma_{usbf^-}(S)$, then generalized a-Weyl's theorem holds for $T \oplus S$.

Proof. As $\sigma_a(T \oplus S) = \sigma_a(T) \cup \sigma_a(S)$ for any pair of operators, we have

$$\sigma_a(T \oplus S) \setminus \sigma_{usbf^-}(T \oplus S) = [\sigma_a(T) \cup \sigma_a(S)] \setminus [\sigma_a(T) \cup \sigma_{usbf^-}(S)]$$
$$= \sigma_a(S) \setminus [\sigma_a(T) \cup \sigma_{usbf^-}(S)]$$
$$= [\sigma_a(S) \setminus \sigma_{usbf^-}(S)] \setminus \sigma_a(T)$$
$$= E^a(S) \cap \rho_a(T)$$

where $\rho_a(T) = \mathbf{C} \setminus \sigma_a(T)$.

Let $\sigma_a^{iso}(T)$ be the set of isolated points of $\sigma_a(T)$ and $\sigma_a^{iso}(T \oplus S)$ be the set of isolated points of $\sigma_a(T \oplus S) = \sigma_a(T) \cup \sigma_a(S)$. If $\sigma_a^{iso}(T) = \phi$ it implies that $\sigma_a(T) = \sigma_a^{acc}(T)$, where $\sigma_a^{acc}(T) = \sigma_a(T) \setminus \sigma_a^{iso}(T)$ is the set of all accumulation points of $\sigma_a(T)$. Thus we have

$$\sigma_a^{iso}(T \oplus S) = [\sigma_a^{iso}(T) \cup \sigma_a^{iso}(S)] \setminus [(\sigma_a^{iso}(T) \cap \sigma_a^{acc}(S)) \cup (\sigma_a^{acc}(T) \cap \sigma_a^{iso}(S))]$$

$$= (\sigma_a^{iso}(T) \setminus \sigma_a^{acc}(S)) \cup (\sigma_a^{iso}(S) \setminus \sigma_a^{acc}(T))$$

$$= \sigma_a^{iso}(S) \setminus \sigma_a(T)$$

$$= \sigma_a^{iso}(S) \cap \rho_a(T).$$

We have that $\sigma_p(T \oplus S) = \sigma_p(T) \cup \sigma_p(S)$ for every pair of operators, therefore

$$E^{a}(T \oplus S) = \sigma_{a}^{iso}(T \oplus S) \cap \sigma_{p}(T \oplus S)$$
$$= \sigma_{a}^{iso}(S) \cap \rho_{a}(T) \cap \sigma_{p}(S)$$
$$= E^{a}(S) \cap \rho_{a}(T).$$

Thus, $\sigma_a(T \oplus S) \setminus \sigma_{usbf^-}(T \oplus S) = E^a(T \oplus S)$. Hence $T \oplus S$ satisfies generalized a-Weyl's theorem.

Let $\sigma_1(T)$ denote the compliment of $\sigma_{usbf^-}(T)$ in $\sigma_a(T)$ i.e. $\sigma_1(T) = \sigma_a(T) \setminus \sigma_{usbf^-}(T)$. A straight forward application of Theorem 2.3 leads to the following corollaries.

COROLLARY 2.4. Suppose $T \in B(H)$ is such that $\sigma_a^{iso}(T) = \phi$ and $S \in B(K)$ satisfies generalized a-Weyl's theorem with $\sigma_a^{iso}(S) \cap \sigma_p(S) = \phi$ and $\sigma_1(T \oplus S) = \phi$, then $T \oplus S$ satisfies generalized a-Weyl's theorem.

268

Proof. Since S satisfies generalized a-Weyl's theorem, therefore given condition $\sigma_a^{iso}(S) \cap \sigma_p(S) = \phi$ implies that $\sigma_a(S) = \sigma_{usbf^-}(S)$. Now $\sigma_1(T \oplus S) = \phi$ gives that $\sigma_{usbf^-}(T \oplus S) = \sigma_a(T \oplus S) = \sigma_a(T) \cup \sigma_{usbf^-}(S)$. Thus from Theorem 2.3, we have that $T \oplus S$ satisfies generalized a-Weyl's theorem.

COROLLARY 2.5. Suppose $T \in B(H)$ is such that $\sigma_1(T) \cup \sigma_a^{iso}(T) = \phi$ and $S \in B(K)$ satisfies generalized a-Weyl's theorem. If $\sigma_{usbf^-}(T \oplus S) = \sigma_{usbf^-}(T) \cup \sigma_{usbf^-}(S)$, then generalized a-Weyl's theorem holds for $T \oplus S$.

DEFINITION 2.6. An operator $T \in B(H)$ is called left-polaroid if every isolated point of the spectrum of $\sigma_a(T)$ is left pole of T.

THEOREM 2.7. Suppose generalized a-Browder's theorem holds for $T \in B(H)$ and $S \in B(K)$. Suppose T and S are left-polaroid and $\sigma_{usbf^-}(T \oplus S) = \sigma_{usbf^-}(T) \cup \sigma_{usbf^-}(S)$, then generalized a-Browder's theorem holds for $T \oplus S$.

Proof. If T and S are left -polaroid , then

$$\pi^{a}(T \oplus S) = [\pi^{a}(T) \cap \rho_{a}(S)] \cup [\rho_{a}(T) \cap \pi^{a}(S)] \cup [\pi^{a}(T) \cap \pi^{a}(S)]$$

where $\rho_a(.) = \mathbf{C} \setminus \sigma_a(.)$.

Since generalized a-Browder's theorem holds for T and S, we have

$$\begin{aligned} [\sigma_a(T) \cup \sigma_a(S)] \setminus [\sigma_{usbf^-}(T) \cup \sigma_{usbf^-}(S)] \\ &= [\pi^a(T) \cap \rho_a(S)] \cup [\rho_a(T) \cap \pi^a(S)] \cup [\pi^a(T) \cap \pi^a(S)] \end{aligned}$$

Thus, $\pi^a(T \oplus S) = [\sigma_a(T) \cup \sigma_a(S)] \setminus [\sigma_{usbf^-}(T) \cup \sigma_{usbf^-}(S)].$

If $\sigma_{usbf^-}(T \oplus S) = \sigma_{usbf^-}(T) \cup \sigma_{usbf^-}(S)$, then $\pi^a(T \oplus S) = \sigma_a(T \oplus S) \setminus \sigma_{usbf^-}(T \oplus S)$. Hence, generalized a-Browder's theorem holds for $T \oplus S$.

3. Generalized Weyl's theorem for direct sums

We know that generalized a-Weyl's theorem \Rightarrow generalized Weyl's theorem [2]. Thus we have the following similar results of generalized Weyl's theorem for direct sum of operators:

THEOREM 3.1. Suppose that generalized Weyl's theorem holds for $T \in B(H)$ and $S \in B(K)$. If T and S are isoloid and $\sigma_{BW}(T \oplus S) = \sigma_{BW}(T) \cup \sigma_{BW}(S)$, then generalized Weyl's theorem holds for $T \oplus S$.

A straight forward application of Theorem 3.1 leads to the following corollary.

COROLLARY 3.2. Suppose $T \in B(H)$ is an isoloid operator that satisfies generalized Weyl's theorem, then $T \oplus S$ satisfies generalized Weyl's theorem whenever $S \in B(K)$ is a normal operator.

Proof. It is shown in [4] that if K is a Hilbert space and an operator $S \in B(K)$ satisfies $\sigma_{BF}(S) = \sigma_{BW}(S)$, then $\sigma_{BW}(T \oplus S) = \sigma_{BW}(T) \cup \sigma_{BW}(S)$ for every

Hilbert space H and $T \in B(H)$. As $S \in B(K)$ is a normal operator we have $\sigma_{BW}(T \oplus S) = \sigma_{BW}(T) \cup \sigma_{BW}(S)$. Since every normal operator is isoloid and satisfies generalized Weyl's theorem [1], therefore S is isoloid and satisfies generalized Weyl's theorem. Hence the required result follows from the Theorem 3.1.

THEOREM 3.3. Suppose $T \in B(H)$ has no isolated point in its spectrum and $S \in B(K)$ satisfies generalized Weyl's theorem. Suppose $\sigma_{BW}(T \oplus S) = \sigma(T) \cup \sigma_{BW}(S)$, then generalized Weyl's theorem holds for $T \oplus S$.

We denote by $\sigma_0(T)$ the complement of $\sigma_{BW}(T)$ in $\sigma(T)$. We have the following consequences of the above result.

COROLLARY 3.4. Suppose $T \in B(H)$ is such that $\sigma_{iso}(T) = \phi$ and $S \in B(K)$ satisfies generalized Weyl's theorem with $\sigma_{iso}(S) \cap \sigma_p(S) = \phi$ and $\sigma_0(T \oplus S) = \phi$, then $T \oplus S$ satisfies generalized Weyl's theorem.

COROLLARY 3.5. Suppose $T \in B(H)$ is such that $\sigma_0(T) \cup \sigma_{iso}(T) = \phi$ and $S \in B(K)$ satisfies generalized Weyl's theorem. If $\sigma_{BW}(T \oplus S) = \sigma_{BW}(T) \cup \sigma_{BW}(S)$, then generalized Weyl's theorem holds for $T \oplus S$.

THEOREM 3.6. Suppose generalized Browder's theorem holds for $T \in B(H)$ and $S \in B(K)$. Suppose T and S are polaroid and $\sigma_{BW}(T \oplus S) = \sigma_{BW}(T) \cup \sigma_{BW}(S)$, then generalized Browder's theorem holds for $T \oplus S$.

ACKNOWLEDGEMENTS. The authors are grateful to Prof. S.C. Arora for his valuable suggestions concerning the paper.

REFERENCES

- M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717–1723.
- [2] M. Berkani, J.J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376.
- [3] M. Berkani, M. Sarih, On semi-B-Fredholm operators, Glasgow Math. J. 43 (2001), 457–465.
- [4] R.E. Curto, Y.M. Han, Generalized Browder's theorem and Weyl's theorem for Banach space operators, J. Math. Anal. Appl. 336 (2007), 1424–1442.
- [5] B.P. Duggal, C.S. Kubrusly, Weyl's theorem for direct sums, Studia Sci. Math. Hungar. 44 (2007), 275–290.
- [6] W.Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), 131–138.

(received 18.07.2009; in revised form 20.12.2009)

Anuradha Gupta, Department of Mathematics, Delhi College of Arts and Commerce, University of Delhi, Netaji Nagar, New Delhi - 110023, India

E-mail: sanuashu@yahoo.com

Neeru Kashyap, Department of Mathematics, Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi - 110075, India

E-mail: neerusharma4569@yahoo.co.in