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GENERALIZED a-WEYL’S THEOREM FOR DIRECT SUMS

Anuradha Gupta and Neeru Kashyap

Abstract. If T and S are Hilbert space operators obeying generalized a-Weyl’s theorem,
then it does not necessarily imply that the direct sum T ⊕S obeys generalized a-Weyl’s theorem.
In this paper we explore certain conditions on T and S so that the direct sum T ⊕ S obeys
generalized a-Weyl’s theorem.

1. Introduction

Let H be an infinite dimensional separable Hilbert space. Let B(H) be the
algebra of all operators on H (bounded linear transformations of H into itself).
For an operator T ∈ B(H), let σ(T ), σp(T ) and σa(T ) denote the spectrum, point
spectrum and approximate point spectrum of T , respectively. Let α(T ) and β(T )
denote the dimension of the kernel kerT and the codimension of the range R(T ),
respectively. An operator T ∈ B(H) is called an upper semi-Fredholm if α(T ) < ∞
and T (H) is closed, while T ∈ B(H) is called a lower semi-Fredholm if β(T ) < ∞.
However, T is called a semi-Fredholm operator if T is either an upper or a lower
semi-Fredholm and T is said to be a Fredholm operator if it is both an upper and a
lower semi-Fredholm. If T ∈ B(H) is semi-Fredholm, then the index of T is defined
by

ind(T ) = α(T )− β(T ).

The ascent of T is defined by the smallest non-negative integer p := p(T ) such
that N(T p) = N(T p+1). If such an integer does not exist we put p(T ) = ∞.
Analogously, the descent of T , is defined by the smallest nonnegative integer q :=
q(T ) such that R(T q) = R(T q+1) and if such an integer does not exist we put
q(T ) = ∞.

An operator T ∈ B(H) is called a Weyl operator if it is a Fredholm operator
of index 0, while T ∈ B(H) is called a Browder if it is a Fredholm operator of finite
ascent and descent. The essential spectrum σe(T ) and the Weyl spectrum σW (T )
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of T are defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm},
σW (T ) = {λ ∈ C : T − λI is not Weyl}.

For T ∈ B(H), define the set LD(H) by

LD(H) = {T ∈ B(H) : p(T ) < ∞ and R(T p+1) is closed}.
An operator T ∈ B(H) is said to be left Drazin invertible if T ∈ LD(H). We say
that λ ∈ σa(T ) is a left pole of T , if T −λI ∈ LD(H). We denote by πa(T ) the set
of all left poles of T .

We say that Weyl’s theorem holds for T , if

σ(T ) \ σW (T ) = E0(T ),

where E0(T ) is the set of all isolated point of σ(T ) which are eigenvalues of finite
multiplicity.

For a bounded linear operator T and a nonnegative integer n we define Tn to be
the restriction of T to R(Tn) viewed as a map from R(Tn) into itself (in particular
T0 = T ). If for some integer n, the range space R(Tn) is closed and Tn is an upper
(resp., a lower) semi-Fredholm operator, then T is called an upper (resp., a lower)
semi B-Fredholm operator. In this situation, Tm is a semi-Fredholm operator and
ind(Tm) = ind(Tn) for each m ≥ n [3, Proposition 2.1]. It permits us to define the
index of a semi B-Fredholm operator T as the index of the semi-Fredholm operator
Tn where n is any integer such that R(Tn) is closed and Tn is a semi-Fredholm
operator. Moreover if Tn is a Fredholm operator, then T is called a B-Fredholm
operator. A semi B-Fredholm operator is an upper or a lower semi B-Fredholm
operator.

An operator T ∈ B(H) is called a B-Weyl operator if it is a B-Fredholm
operator of index 0. The B-Fredholm spectrum σBF (T ) and the B-Weyl spectrum
σBW (T ) of T are defined as

σBF (T ) = {λ ∈ C : T − λI is not a B-Fredholm operator},
σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

We say that generalized Weyl’s theorem holds for T if

σ(T ) \ σBW (T ) = E(T ),

where E(T ) is the set of isolated eigenvalues of T ([2], Definition 2.13), and that
generalized Browder’s theorem holds for T if σ(T ) \ σBW (T ) = π(T ), where π(T )
is the set of all poles of T .

Let SBF (H) be the class of all semi B-Fredholm operators on H, USBF (H)
be the class of all upper semi B-Fredholm operators on H and USBF−(H) be the
class of all T ∈ USBF (H) such that ind(T ) ≤ 0. Also let

σusbf−(T ) = {λ ∈ C : T − λI is not in USBF−(H)}.
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We say T obeys generalized a-Weyl’s theorem if

σa(T ) \ σusbf−(T ) = Ea(T ),

where Ea(T ) is the set of all eigenvalues of T which are isolated in σa(T ) ([2],
Definition 2.13). We know that [2]
generalized a-Weyl’s theorem ⇒ generalized Weyl’s theorem ⇒ Weyl’s theorem.
We say T obeys generalized a-Browder’s theorem if

σusbf−(T ) = σa(T ) \ πa(T ).

An operator is called T polaroid if all isolated points of the spectrum of T are poles
of the resolvent of T and is called isoloid if each λ ∈ σiso(T ) is an eigenvalue of T ,
where σiso(T ) is the set of isolated points of σ(T ). An operator T is called a-isoloid
if every λ ∈ σiso

a (T ) is an eigenvalue of T , where σiso
a (T ) is the set of isolated points

of σa(T ). Every a-isoloid operator is isoloid but the converse is generally not true.

2. Generalized a-Weyl’s theorem for direct sums

Let H and K be nonzero complex Hilbert spaces. Although T ∈ B(H) and
S ∈ B(K) satisfy generalized a-Weyl’s theorem, we do not guarantee that their
orthogonal direct sum T ⊕ S satisfies generalized a-Weyl’s theorem.

Example 2.1. Let us define S for each x ∈ (xi) ∈ l1 by

S(x1, x2, x3, . . . , xk . . . ) = (0, α1x1, α2x2, . . . , αk−1xk−1, . . . )

where (αi) is a sequence of complex numbers such that 0 < |αi| ≤ 1 and
∑∞

i=1 |αi| <
∞. σ(S) = σa(S) = {0}. It can be proved that R(Sn) 6= R(Sn) for any n = 1, 2, . . .
Thus, σusbf−(S) = {0}. Since Ea(S) = φ, it follows that S satisfies generalized a-
Weyl’s theorem. Define T on X = l1⊕l1 by T = S⊕0. Now N(T ) = {0}⊕l1, σ(T ) =
σa(T ) = {0}, Ea(T ) = {0}. As R(Tn) = R(Sn)⊕ {0}, R(Tn) is not closed for any
n ∈ N. So T 6∈ USBF− and σusbf−(T ) = {0}. Thus, σa(T ) \ σusbf−(T ) 6= Ea(T ).
Hence T does not satisfy generalized a-Weyl’s theorem.

In this section we discuss certain conditions on T and S to ensure that
generalized a-Weyl’s theorem holds for T ⊕ S. W.Y. Lee [6] proved that if
T ∈ B(H) and S ∈ B(K) are isoloid and satisfy Weyl’s theorem such that
σW (T ⊕ S) = σW (T ) ∪ σW (S) then Weyl’s theorem holds for T ⊕ S. We now
prove the result for generalized a-Weyl’s theorem:

Theorem 2.2. Suppose that generalized a-Weyl’s theorem holds for T ∈ B(H)
and S ∈ B(K). If T and S are a-isoloid and σusbf−(T ⊕ S) = σusbf−(T ) ∪
σusbf−(S), then generalized a-Weyl’s theorem holds for T ⊕ S.

Proof. We know σa(T ⊕ S) = σa(T ) ∪ σa(S) for any pair of operators. If T
and S are a-isoloid, then

Ea(T ⊕ S) = [Ea(T ) ∩ ρa(S)] ∪ [ρa(T ) ∩ Ea(S)] ∪ [Ea(T ) ∩ Ea(S)]

where ρa(.) = C \ σa(.).
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If generalized a-Weyl’s theorem holds for T and S, then

[σa(T ) ∪ σa(S)] \ [σusbf−(T ) ∪ σusbf−(S)]

= [Ea(T ) ∩ ρa(S)] ∪ [ρa(T ) ∩ Ea(S)] ∪ [Ea(T ) ∩ Ea(S)].

Thus, Ea(T ⊕ S) = [σa(T ) ∪ σa(S)] \ [σusbf−(T ) ∪ σusbf−(S)].
If σusbf−(T ⊕ S) = σusbf−(T ) ∪ σusbf−(S), then Ea(T ⊕ S) = σa(T ⊕ S) \

σusbf−(T ⊕ S). Hence generalized a-Weyl’s theorem holds for T ⊕ S.

Theorem 2.3. Suppose T ∈ B(H) has no isolated point in its approximate
spectrum and S ∈ B(K) satisfies generalized a-Weyl’s theorem. If σusbf−(T ⊕ S)
= σa(T ) ∪ σusbf−(S), then generalized a-Weyl’s theorem holds for T ⊕ S.

Proof. As σa(T ⊕ S) = σa(T ) ∪ σa(S) for any pair of operators, we have

σa(T ⊕ S) \ σusbf−(T ⊕ S) = [σa(T ) ∪ σa(S)] \ [σa(T ) ∪ σusbf−(S)]

= σa(S) \ [σa(T ) ∪ σusbf−(S)]

= [σa(S) \ σusbf−(S)] \ σa(T )

= Ea(S) ∩ ρa(T )

where ρa(T ) = C \ σa(T ).
Let σiso

a (T ) be the set of isolated points of σa(T ) and σiso
a (T ⊕ S) be the set

of isolated points of σa(T ⊕ S) = σa(T ) ∪ σa(S). If σiso
a (T ) = φ it implies that

σa(T ) = σacc
a (T ), where σacc

a (T ) = σa(T ) \ σiso
a (T ) is the set of all accumulation

points of σa(T ). Thus we have

σiso
a (T ⊕ S) = [σiso

a (T ) ∪ σiso
a (S)] \ [(σiso

a (T ) ∩ σacc
a (S)) ∪ (σacc

a (T ) ∩ σiso
a (S))]

= (σiso
a (T ) \ σacc

a (S)) ∪ (σiso
a (S) \ σacc

a (T ))

= σiso
a (S) \ σa(T )

= σiso
a (S) ∩ ρa(T ).

We have that σp(T ⊕ S) = σp(T ) ∪ σp(S) for every pair of operators, therefore

Ea(T ⊕ S) = σiso
a (T ⊕ S) ∩ σp(T ⊕ S)

= σiso
a (S) ∩ ρa(T ) ∩ σp(S)

= Ea(S) ∩ ρa(T ).

Thus, σa(T ⊕ S) \ σusbf−(T ⊕ S) = Ea(T ⊕ S). Hence T ⊕ S satisfies generalized
a-Weyl’s theorem.

Let σ1(T ) denote the compliment of σusbf−(T ) in σa(T ) i.e. σ1(T ) = σa(T ) \
σusbf−(T ). A straight forward application of Theorem 2.3 leads to the following
corollaries.

Corollary 2.4. Suppose T ∈ B(H) is such that σiso
a (T ) = φ and S ∈ B(K)

satisfies generalized a-Weyl’s theorem with σiso
a (S)∩σp(S) = φ and σ1(T ⊕S) = φ,

then T ⊕ S satisfies generalized a-Weyl’s theorem.
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Proof. Since S satisfies generalized a-Weyl’s theorem, therefore given condition
σiso

a (S) ∩ σp(S) = φ implies that σa(S) = σusbf−(S). Now σ1(T ⊕ S) = φ gives
that σusbf−(T ⊕S) = σa(T ⊕S) = σa(T )∪σusbf−(S). Thus from Theorem 2.3, we
have that T ⊕ S satisfies generalized a-Weyl’s theorem.

Corollary 2.5. Suppose T ∈ B(H) is such that σ1(T ) ∪ σiso
a (T ) = φ and

S ∈ B(K) satisfies generalized a-Weyl’s theorem. If σusbf−(T ⊕ S) = σusbf−(T ) ∪
σusbf−(S), then generalized a-Weyl’s theorem holds for T ⊕ S.

Definition 2.6. An operator T ∈ B(H) is called left-polaroid if every isolated
point of the spectrum of σa(T ) is left pole of T .

Theorem 2.7. Suppose generalized a-Browder’s theorem holds for T ∈ B(H)
and S ∈ B(K). Suppose T and S are left-polaroid and σusbf−(T⊕S) = σusbf−(T )∪
σusbf−(S), then generalized a-Browder’s theorem holds for T ⊕ S.

Proof. If T and S are left -polaroid , then

πa(T ⊕ S) = [πa(T ) ∩ ρa(S)] ∪ [ρa(T ) ∩ πa(S)] ∪ [πa(T ) ∩ πa(S)]

where ρa(.) = C \ σa(.).
Since generalized a-Browder’s theorem holds for T and S, we have

[σa(T ) ∪ σa(S)] \ [σusbf−(T ) ∪ σusbf−(S)]

= [πa(T ) ∩ ρa(S)] ∪ [ρa(T ) ∩ πa(S)] ∪ [πa(T ) ∩ πa(S)].

Thus, πa(T ⊕ S) = [σa(T ) ∪ σa(S)] \ [σusbf−(T ) ∪ σusbf−(S)].
If σusbf−(T ⊕ S) = σusbf−(T ) ∪ σusbf−(S), then πa(T ⊕ S) = σa(T ⊕ S) \

σusbf−(T ⊕ S). Hence, generalized a-Browder’s theorem holds for T ⊕ S.

3. Generalized Weyl’s theorem for direct sums

We know that generalized a-Weyl’s theorem ⇒ generalized Weyl’s theorem [2].
Thus we have the following similar results of generalized Weyl’s theorem for direct
sum of operators:

Theorem 3.1. Suppose that generalized Weyl’s theorem holds for T ∈ B(H)
and S ∈ B(K). If T and S are isoloid and σBW (T ⊕S) = σBW (T )∪σBW (S), then
generalized Weyl’s theorem holds for T ⊕ S.

A straight forward application of Theorem 3.1 leads to the following corollary.

Corollary 3.2. Suppose T ∈ B(H) is an isoloid operator that satisfies gen-
eralized Weyl’s theorem, then T ⊕ S satisfies generalized Weyl’s theorem whenever
S ∈ B(K) is a normal operator.

Proof. It is shown in [4] that if K is a Hilbert space and an operator S ∈ B(K)
satisfies σBF (S) = σBW (S), then σBW (T ⊕ S) = σBW (T ) ∪ σBW (S) for every
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Hilbert space H and T ∈ B(H). As S ∈ B(K) is a normal operator we have
σBW (T ⊕ S) = σBW (T )∪ σBW (S). Since every normal operator is isoloid and sat-
isfies generalized Weyl’s theorem [1], therefore S is isoloid and satisfies generalized
Weyl’s theorem. Hence the required result follows from the Theorem 3.1.

Theorem 3.3. Suppose T ∈ B(H) has no isolated point in its spectrum and
S ∈ B(K) satisfies generalized Weyl’s theorem. Suppose σBW (T ⊕ S) = σ(T ) ∪
σBW (S), then generalized Weyl’s theorem holds for T ⊕ S.

We denote by σ0(T ) the complement of σBW (T ) in σ(T ). We have the following
consequences of the above result.

Corollary 3.4. Suppose T ∈ B(H) is such that σiso(T ) = φ and S ∈ B(K)
satisfies generalized Weyl’s theorem with σiso(S) ∩ σp(S) = φ and σ0(T ⊕ S) = φ,
then T ⊕ S satisfies generalized Weyl’s theorem.

Corollary 3.5. Suppose T ∈ B(H) is such that σ0(T ) ∪ σiso(T ) = φ and
S ∈ B(K) satisfies generalized Weyl’s theorem. If σBW (T⊕S) = σBW (T )∪σBW (S),
then generalized Weyl’s theorem holds for T ⊕ S.

Theorem 3.6. Suppose generalized Browder’s theorem holds for T ∈ B(H)
and S ∈ B(K). Suppose T and S are polaroid and σBW (T ⊕ S) =
σBW (T ) ∪ σBW (S), then generalized Browder’s theorem holds for T ⊕ S.
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