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A NOTE ON THE EXPONENTIAL CONVERGENCE
RATE FOR PRODUCTS OF SUMS

Yu Miao and Bin Qian

Abstract. In this paper, we establish an exponential convergence theorem for products of
sums of independent identically distributed positive random variables.

1. Introduction

Let (Xn)n≥1 be a sequence of independent identically distributed (i.i.d.) pos-
itive random variables and define the partial sums Sn =

∑n
i=1 Xi and the product

of sums Tn =
∑n

k=1 Sk for n ≥ 1. In the past decade, there have been many studies
about the asymptotic properties for the products of partial sums Tn.

The study for the product of partial sums was initiated by Arnold and Villaseñr
[1] who considered the limiting properties of the sums of records. In their paper,
the authors obtained the following version of the central limit theorem (CLT) for
a sequence of i.i.d. exponential r.v.’s (Xn)n≥1 with the mean equal to one:

∑n
k=1 log Sk − n log n + n√

2n

L→ N, as n →∞,

where N is a standard normal r.v. Here we think that it is interesting to recall that
the products of i.i.d. positive, square integrable random variables are asymptoti-
cally log-normal. This fact is an immediate consequence of the classical CLT. In
[11], Rempala and Wesolowski have noted that this limit behavior of the product
of partial sums has a universal character and holds for any sequence of square in-
tegrable, positive i.i.d. random variables. Namely, they have proved the following
result.

Theorem RW. Let (Xn)n≥1 be a sequence of i.i.d. positive square integrable
random variables with EX1 = µ, V arX1 = σ2 > 0 and the coefficient of variation
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γ = σ/µ. Then (∏n
k=1 Sk

n!µn

)1/(γ
√

n)
L→ e

√
2N .

Recently, Gonchigdanzan and Rempala [3] obtained the first almost sure cen-
tral limit theorem (ASCLT) for the product of the partial sums of i.i.d. positive
random variables as follows.

Theorem GR. Let (Xn)n≥1 be a sequence of i.i.d. positive square integrable
random variables with EX1 = µ > 0, V arX1 = σ2. Denote by γ = σ/µ the
coefficient of variation. Then for any real x,

lim
N→∞

1
log N

N∑
n=1

1
n

I

((∏n
k=1 Sk

n!µn

)1/(γ
√

n)

≤ x

)
= F (x), a.s.

where F (·) is the distribution function of the r.v. e
√

2N .

For the further discussions of the CLT, the author refers to [5, 10]. In [4], Huang
and Zhang obtained the invariance principle of the product of sums of random
variables. It is perhaps worth to notice that by the strong law of large numbers
and the property of the geometric mean it follows directly that

(∏n
k=1 Sk

n!

)1/n
a.s.→ µ (1.1)

if only existence of the first moment is assumed. Very recently the first author [6,
7] obtained CLT and ASCLT for the product of some general partial sums.

The studies on the products of partial sums are usually concentrated on the
classic limiting theory, such as, CLT, ASCLT, LIL. The main purpose of this short
note is to establish a exponential convergence theorem for the product of sums of
i.i.d. positive random variables.

2. Main results

2.1. A moderate deviation principle for the weighted sums
In this subsection, we establish a moderate deviation principle for the weighted

sums which will play a key role in proving our main result.

Lemma 2.1. Let (Yn)n≥1 be a sequence of i.i.d. positive random variables with
EY1 = 0 and E(Y 2

1 ) = 1. Assume that the sequence of positive numbers (bn) is the
moderate deviation scale satisfying

bn →∞,
bn log n√

n
→ 0, as n →∞.

If we suppose that the following exponential integrability condition holds: there
exists a positive number δ such that

E exp (δ|Y1|) < ∞, (2.1)
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then for any r > 0,

lim
n→∞

1
b2
n

logP
(

1
bn

√
2n

∣∣∣∣
n∑

i=1

bi,nYi

∣∣∣∣ ≥ r

)
= −r2

2
,

where bi,n =
∑n

k=i
1
k , 1 ≤ i ≤ n.

Proof. For any λ ∈ R, considering the following logarithmic moment generating
function

Λn(λ) := logE exp
(

λ

bn

√
2n

n∑

i=1

bi,nYi

)

by the Gärtner-Ellis theorem [2, 12], we need to calculate the following limit,

Λ(λ) := lim
n→∞

1
b2
n

Λn(b2
nλ).

From the independence, Taylor formula and the condition (2.1), for all n large
enough, we obtain

1
b2
n

Λn(b2
nλ) =

1
b2
n

logE exp
(

λbn√
2n

n∑

i=1

bi,nYi

)

=
1
b2
n

n∑

i=1

logE exp
(

λbn√
2n

bi,nYi

)

=
1
b2
n

n∑

i=1

log
(

1 +
λbn√
2n

bi,nEYi +
λ2b2

n

4n
b2
i,nEY 2

i + o

(
b2
nb2

i,n

n

))
.

Since EYi = 0, EY 2
i = 1, and the following fact

n∑

i=1

b2
i,n = b1,n + 2

n∑

k=2

k−1∑

i=1

1
k

= b1,n + 2
n∑

k=2

k − 1
k

= 2n− b1,n = 2n−
n∑

i=1

1
i
,

we have

lim
n→∞

1
b2
n

Λn(b2
nλ) = lim

n→∞
λ2

4n

n∑

i=1

b2
i,n = lim

n→∞
λ2

4n

(
2n−

n∑

i=1

1
i

)
=

λ2

2
.

By the Gärtner-Ellis theorem, the desired result can be obtained.

2.2. Moderate deviation principle for the product of sums

Theorem 2.2. Let (Xn)n≥1 be a sequence of i.i.d. positive random variables.
Denote µ = E(X1) > 0, the coefficient of variation γ = σ/µ, where σ2 = V ar(X1),
and Sk = X1 + · · · + Xk, k = 1, 2, . . . In addition, assume that the sequence of
positive numbers (bn) is the moderate deviation scale satisfying

bn →∞,
bn log n√

n
→ 0, as n →∞.
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If there exists a sequence of positive real numbers (αn) such that

αn →∞,
αn

bn
√

n
→∞,

αn

n
→ 0,

√
n log n

αnbn
→ 0 (2.2)

and for all t > 0

lim
n→∞

1
b2
n

logP
(

1
bn
√

n

∣∣∣∣
αn∑

i=1

log
Sk

k

∣∣∣∣ ≥ t

)
= −∞, (2.3)

then we have for any r ≥ 1,

lim
n→∞

1
b2
n

logP
((∏n

k=1 Sk

n!µn

) 1
γbn

√
2n ≥ r

)
= − (log r)2

2
; (2.4)

and for any 0 < r < 1,

lim
n→∞

1
b2
n

logP
((∏n

k=1 Sk

n!µn

) 1
γbn

√
2n ≤ r

)
= − (log r)2

2
. (2.5)

Proof. Without loss of generality, let µ = 1, σ2 = 1, then γ = 1. Let Ck =
Sk/k, k = 1, 2 · · · . For any r > 0, 0 < ε < 1/2, it follows that

P
(

1
bn

√
2n

n∑

k=1

log(Ck) ≥ r

)

= P
(

1
bn

√
2n

n∑

k=1

log(Ck) ≥ r, max
αn≤k≤n

|Ck − 1| ≥ ε

)

+ P
(

1
bn

√
2n

n∑

k=1

log(Ck) ≥ r, max
αn≤k≤n

|Ck − 1| < ε

)

=: An + Bn. (2.6)

By the comparison inequality in [8, Corollary 4], for any ε > 0, it is obvious that

P
(

max
αn≤k≤n

∣∣∣∣
Sk

k
− 1

∣∣∣∣ ≥ ε

)
≤ P

(
max

αn≤k≤n

∣∣∣∣
k∑

i=1

(Xi − 1)
∣∣∣∣ ≥ αnε

)

≤ cP
(∣∣∣∣

n∑

i=1

(Xi − 1)
∣∣∣∣ ≥ αnε/c

)

= cP
(

1
bn
√

n

∣∣∣∣
n∑

i=1

(Xi − 1)
∣∣∣∣ ≥

αnε

bn
√

nc

)
,

(2.7)

where c > 0 is a constant. From the assumption αn

bn
√

n
→ ∞ (n → ∞) and the

classic moderate deviation principle (cf. [2, 12]), it follows that for any ε > 0,

lim
n→∞

1
b2
n

logP
(

max
αn≤k≤n

∣∣∣∣
Sk

k
− 1

∣∣∣∣ ≥ ε

)
= −∞. (2.8)
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From this we know that the term An in (2.6) is negligible in the sense of the mod-
erate deviation principle. To estimate the term Bn, we will expand the logarithm:
log(1 + x) = x − x2

(1+θx)2 , where θ ∈ (0, 1) depends on x ∈ (−1/2, 1/2). Let En

denote the event {maxαn≤k≤n |Ck − 1| < ε}, thus

Bn = P
( 1

bn

√
2n

n∑
k=1

log(Ck) ≥ r,maxαn≤k≤n |Ck − 1| < ε
)

= P
( 1

bn

√
2n

( αn∑
k=1

log(Ck) +
n∑

k=αn+1

(Ck − 1)−
n∑

k=αn+1

(Ck − 1)2

(1 + θk(Ck − 1))2
)
≥ r, En

)

= P
( 1

bn

√
2n

( αn∑
k=1

log(Ck) +
n∑

k=αn+1

(Ck − 1)−
[ n∑

k=αn+1

(Ck − 1)2

(1 + θk(Ck − 1))2
]
IEn

)
≥ r

)

− P
( 1

bn

√
2n

( αn∑
k=1

log
(
Ck

)
+

n∑
k=αn+1

(Ck − 1)
)
≥ r, Ec

n

)

=: Dn − Fn.

By the same reason as for the term An, we know that the term Fn is also negligible
in the sense of the moderate deviation principle. Furthermore, by the condition
(2.3), the term 1

bn

√
2n

∣∣∑αn

k=1 log
(
Ck

)∣∣ is negligible with respect to the moderate
deviation principle. Similarly as for (2.7), we know that 1

bn

√
2n

∣∣∑αn

k=1(Ck − 1)
∣∣ can

be neglected in the sense of the moderate deviation principle, so, from Lemma 2.1,
we have

lim
n→∞

1
b2
n

logP
(

1
bn

√
2n

n∑

k=αn+1

(Ck − 1) ≥ r

)
= −r2

2
.

Next if we can prove the claim: for any ε > 0,

lim
n→∞

1
b2
n

logP
(

1
bn
√

n

[ n∑

k=αn+1

(Ck − 1)2

(1 + θk(Ck − 1))2

]
IEn ≥ ε

)
= −∞, (2.9)

then the desired results can be obtained. Note that for |x| < 1/2 and any θk ∈ (0, 1),
it follows that x2

(1+θkx)2 ≤ 4x2. Therefore we have

P
(

1
bn
√

n

[ n∑

k=αn+1

(Ck − 1)2

(1 + θk(Ck − 1))2

]
IEn ≥ 4ε

)
≤ P

(
1

bn
√

n

n∑

k=αn+1

(Ck−1)2 ≥ ε

)
.

By Theorem 15 and Lemma 5 in [9, Chapter III], for all n sufficiently large, it
follows that

P
(

1
bn
√

n

n∑

k=αn+1

(Ck − 1)2 ≥ ε

)
≤

n∑

k=αn+1

P
(∣∣∣∣

1
k

k∑

i=1

Xi − 1
∣∣∣∣ ≥

√
εbn√

n

)

≤ 2
n∑

k=αn

exp
(
−c

kbn√
n

)
≤

(
1− e

−c bn√
n

)−1

exp
{
−c

αnbn√
n

}

≤ 4

c bn√
n
− 1

2

(
c bn√

n

)2 exp
{
−c

αnbn√
n

}
≤ 8n

cbn
exp

{
−c

αnbn√
n

}
,
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where c is a positive constant. Therefore we have

1
b2
n

logP
(

1
bn
√

n

n∑

k=αn+1

(Ck − 1)2 ≥ ε

)
≤ −c

αn

bn
√

n
+

1
b2
n

log
(

4n

cbn

)
→ −∞.

Thus the claim (2.9) holds.

Remark 2.3. If the sequence (bn) satisfies b2n
log n → ∞, then there exists

affirmatively a sequence (αn) with the properties (2.2).
Remark 2.4. By the Jensen’s inequality, we have

1
αn

αn∑

k=1

log
Sk

k
≤ log

(
1

αn

αn∑

k=1

Sk

k

)
, log

Sk

k
≥ 1

k

k∑

i=1

log Xi, a.e.

Hence, in order to make the condition (2.3) hold, it is sufficient to show the following
relations: for any t > 0,

1
b2
n

logP
(

1
αn

αn∑

i=1

Sk

k
≥ e

bn
√

nt
αn

)
=

1
b2
n

logP
(

1
αn

αn∑

i=1

bi,αnXi ≥ e
bn
√

nt
αn

)
→ −∞,

and

1
b2
n

logP
(
−

αn∑

k=1

1
k

k∑

i=1

(log Xi) ≥ tbn

√
n

)

=
1
b2
n

logP
(
−

αn∑

i=1

bi,αn(log Xi) ≥ tbn

√
n

)
→ −∞,

where bi,αn =
∑αn

k=i
1
k .

Example 2.5. (Bounded random variables) Let (Xn) be a sequence of i.i.d.
bounded random variables with a < X1 < b, where 0 < a < b < ∞. If log n

b2n
→ 0

then the assumption (2.3) holds.
Noting E log X1 ≤ logEX1 = 0, for any t > 0, let tn = tbn

√
n/(4|E log X1|),

then by the Hoeffding’s inequality and the facts
∑tn

i=1 bi,tn = tn,
∑tn

i=1 b2
i,tn

∼ 2tn,
there exists a constant c > 0 such that

P
(

1
bn
√

n

tn∑

i=1

log
Sk

k
≤ −t

)
≤ P

(
−

tn∑

k=1

1
k

k∑

i=1

(log Xi) ≥ tbn
√

n

2

)

= P
(
−

tn∑

i=1

bi,tn(log Xi − E log Xi) ≥ tbn
√

n

4

)
≤ e−cbn

√
n (2.10)

and, by the inequality e−x ≤ 1− x + 1
2x2, x > 0, for all n large enough

P
(

1
bn
√

n

αn∑

i=tn+1

log
Sk

k
≤ −t

)
≤

αn∑

k=tn+1

P
(
− log

Sk

k
≥ tbn

√
n

2αn

)
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=
αn∑

k=tn+1

P
(

1− Sk

k
≥ 1− e−

tbn
√

n
2αn

)

≤
αn∑

k=tn+1

P
(

1− Sk

k
≥ tbn

√
n

4αn

)
≤ αne

−ctn
b2nn

α2
n .
(2.11)

Hence if we take αn = bn
√

n(log n)1/2, then

lim
n→∞

1
b2
n

logP
(

1
bn
√

n

tn∑

i=1

log
Sk

k
≤ −t

)
= −∞. (2.12)

Moreover, by the inequality 1 + x ≤ ex, x ≥ 0, then

1
b2
n

logP
(

1
αn

αn∑

i=1

bi,αn
Xi ≥ e

bn
√

nt
αn

)

≤ 1
b2
n

logP
(

1
αn

αn∑

i=1

bi,αn(Xi − 1) ≥ bn
√

nt

αn

)
→ −∞

by the Hoeffiding’s inequality again. So from the above discussions, the condition
(2.3) holds.

Example 2.6. (Exponential random variable) Let (Xn) be a sequence of i.i.d.
exponential random variables with density function f(x) = e−x, x > 0. If log n

b2n
→ 0,

by using the exponential inequalities in [9, Chapter III], it is not difficult to get
the inequalities (2.10)-(2.12), which yields the condition (2.3). So we omit these
proofs.
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