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This paper is dedicated to professor Veselin Perić
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Abstract. A theorem on the expansion of the derivative f (r1,r2,...,rn), where f ∈ Lp, and
the derivatives of singular integrals into the series of band-limited functions (entire functions of
exponential type), which converges in Lp for 1 ≤ p ≤ q < ∞, is proved. The norms of their items
are estimated by best approximations by “an angle”.

1. Introduction and preliminaries

Theorems which refer to an approximation by an angle from trigonometric
polynomials of 2π-periodic functions are proved in the paper [6]. The main results
of that paper is the converse theorem of approximation by which the modulus of
smoothness ωk(f (r))q of the derivative f (r) is estimated by the best approximation
by the angle Y (f)p of the function f in the norm of the Lp space, 1 ≤ p ≤ q < ∞.

The proof of the converse theorem of approximation is based on the theory of
representation of a derivative of a function. Therefore, the complete proof of the
corresponding theorem of representation of the derivative f (r1,r2,...,rn) into a series
whose terms are entire functions of the exponential type is given in this paper. This
theorem is mentioned in the paper [7] with a short instruction for its proof. Since
the proof of this theorem is complex and long and the theorem has significant uses
in approximation theory, the complete proof is given in this paper.

We also expand into a series the derivatives of singular integrals of a function,
which are formed by the general Fejér’s kernel. This theorem enables us to get new
results which are related to the approximation by an angle and the mixed modulus
of smoothness of the derivative of the function f(x1, . . . , xn) ∈ Lp(Rn). Therefore,
this theorem is important for obtaining new results.

2010 AMS Subject Classification: 42B99.
Keywords and phrases: Approximation by an angle.

235



236 M. Tomić

Approximation by an angle of functions of several variables is a good tool for
examination of classes (spaces) of functions with a dominant mixed modulus of
smoothness, (see [3], [6]).

Results concerning these classes (spaces) have been obtained by M.K. Potapov
in [3] and his other related papers. Book [4] deals with several classes of Besov-
Hardy-Sobolev function spaces on the Euclidean n-space. It also covers spaces in
which properties of dominating mixed smoothness is predominate.

For simplicity, the theorem of representation will be proved for the case n = 2,
i.e. for functions of two variables f(x, y) ∈ Lp(R2), 1 ≤ p < ∞. As usual, we say
that the function f = f(x1, . . . , xn) ∈ Lp(Rn), 1 ≤ p < ∞, if it is measurable on
Rn and if

‖f‖p =
(∫ +∞

−∞
· · ·

∫ +∞

−∞
|f(x1, . . . .xn)|p dx1 . . . dxn

) 1
p

< ∞.

Let gνi(x1, . . . , xn) ∈ Lp(Rn) be an entire function of exponential type νi ≥ 0 with
respect to the variable xi, i = 1, . . . , n, and, in general, it is an ordinary function
with respect to other variables.

In particular, if gνi ∈ Lp, 1 ≤ p < ∞ and νi = 0, then gνi ≡ 0, (see [2]).
The quantity

Yνi1 ,...,νim
(f)p = inf

gνij
∈Lp

∥∥∥f −
m∑

j=1

gνij

∥∥∥
p
, (νij ≥ 0), (1.1)

is called the best approximation by the m-dimensional angle of a function f with
respect to the variables xi1 , . . . , xim , (1 ≤ ij ≤ n, 1 ≤ j ≤ m ≤ n).

We will use the general Fejér integral, which is, for a function f of one variable,
defined by the following equality (see [1])

Kλf = Kλf(x) =
λ

2

∫ ∞

−∞
f(x− t)Φ

(
λt

2

)
dt, λ > 0, (1.2)

where
Φ(u) =

cosu− cos 2u

πu2
, (‖Φ‖1 < ∞). (1.3)

It was proved in [1] that Kλf is an entire function of type λ if f(x)
1+|x| ∈ L(R) or

f(x)
1+|x| ∈ L2(R). Also, it was proved in [1] that Kλf = f if f is an entire function of

type τ ≤ λ
2 , under the condition f(x)

1+|x| ∈ L2(R).

For a function f(x, y) ∈ Lp(R2), 1 ≤ p < ∞, we form the following functions
(see [5]):

Kµ∞f = Kµ∞f(x, y) =
µ

2

∫ ∞

−∞
f(t, y)Φ

[µ

2
(x− t)

]
dt, µ > 0, (1.4)

K∞νf = K∞νf(x, y) =
ν

2

∫ ∞

−∞
f(x, u)Φ

[ν

2
(y − u)

]
du, ν > 0,

(1.5)
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Kµνf = Kµνf(x, y) = Kµ∞K∞νf, ν, µ > 0. (1.6)

The function Kµ∞f is entire of exponential type µ with respect to x, and K∞νf is
entire of type ν with respect to y, if f(x, y) ∈ Lp(R2). The function Kµνf is entire
of type µ with respect to x and of type ν with respect to y.

For ν = 0, µ = 0 we put K0∞f = 0, K∞0f = 0, K00f = 0, and Kµ0f = 0,
K0νf = 0, µ > 0, ν > 0.

Denote
χµνf = K2µ∞f + K∞ 2νf −K2µ 2νf. (1.7)

Then (see [5, Lemma 1]):

‖f − χµνf‖p ≤ CYµν(f)p, (1.8)

‖f −K2µ∞f‖p ≤ CYµ(f)p, Yµ = Yµ∞ (1.9)

‖f −K∞ 2νf‖p ≤ CYν(f)p, Yν = Y∞ν (1.10)

for µ ≥ 0, ν ≥ 0, 1 ≤ p < ∞, where C is an absolute constant.
From the entire functions Kµνf and χµνf we form the following entire functions

ξij = ξijf = K2i+12j+1f −K2i+12j f −K2i2j+1f + K2i2j f

= −{χ2i2j f − χ2i[2j−1]f − χ[2i−1]2j f + χ[2i−1][2j−1]f}, (1.11)

where i, j = 0, 1, 2, . . . , n and [2i−1] = 2i−1 for i ≥ 1, [20−1] = 0.
Functions ξij = ξijf are entire of type 2i+1 with respect to x and of type 2j+1

with respect to y. In view of (1.11) and (1.8) we conclude that

‖ξij‖p ≤ CY[2i−1][2j−1](f)p (1.12)

for 1 ≤ p < ∞, i, j = 0, 1, 2, . . . .
We note that Y0(f)p = Y00(f)p = ‖f‖p for f ∈ Lp, 1 ≤ p < ∞.
The symbol a ¿ b, a > 0, b > 0, denotes that a ≤ Cb, where C is a positive

constant.
As usual, the derivative f (r1,r2) of a function f(x, y) is

f (r1,r2) =
∂r1+r2f

∂xr1∂yr2
, ri = 0, 1, 2, . . .

As a consequence of the theorem of representation [5, Theorem 2] we get

Lemma 1. If f(x, y) ∈ Lp(R2), 1 ≤ p < ∞, then the following equality holds
in Lp

f(x, y) = K22f +
∞∑

j=2

T2j +
∞∑

i=2

Ui2 +
∞∑

i=1

∞∑
j=1

ξij (1.13)

where ξij are entire functions of type 2i+1 with respect to x, and of type 2j+1 with
respect to y, given in (1.11); T2j are entire functions of type 2 with respect to x,
and of type 2j with respect to y; Ui2 are entire functions of type 2i with respect to x
and of type 2 with respect to y. We define

T21 = K22f, T2j = K2 2j f −K2 2j−1f, j = 2, 3, . . . ,

Ui2 = K2i 2f −K2i−1 2f, i = 2, 3, . . .
(1.14)
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Proof. For fixed numbers µ and N denote the sum

SµN =
µ∑

i=1

N∑
j=1

ξij =
µ∑

i=1

N∑
j=1

[χ2i−12j − χ2i−12j−1 − (χ2i2j − χ2i2j−1)]

=
µ∑

j=1

[χ2i−12N − χ2i−11 − (χ2i2N − χ2i1)]

=
µ∑

j=1

[(χ2i−12N − χ2i2N ) + (χ2i1 − χ2i−11)] = −(χ2µ2N − χ1 2N ) + χ2µ1 − χ11.

Therefore

SµN = SµNf = −χ2µ2N f + χ12N f + χ2µ1f − χ11f, (1.15)

χ11f + SµNf = −χ2µ2N f + χ12N f + χ2µ1f. (1.16)

We get

f − (χ11f + SµNf) = f − χ1 2N f + f − χ2µ1f + χ2µ2N f − f (1.17)

and then

‖f − (χ11f + SµNf)‖p ¿ Y1 2N (f)p + Y2µ1(f)p + Y2µ2N (f)p. (1.18)

Since Y1 2N → 0, Y2µ1 → 0, Y2µ2N → 0 as µ, N →∞, then from (1.18) we get

f
(p)
= χ11f +

∞∑
i=1

∞∑
j=1

ξijf. (1.19)

We need to represent χ11f into a series of entire functions whose norms (up to
a constant factor) are smaller than the best approximation by the angle Y . From
the equality χ11f = K2∞f + K∞2f −K22 we represent into a series the functions
K2∞f and K∞2f . Denote the sum

SN = SNf =
N∑

j=1

T2jf, (1.20)

T21f = K22f, T2jf = K2 2j f −K2 2j−1f, j = 2, 3, . . .

It holds that

SN = K22f +
N∑

j=2

(K2 2j −K2 2j−1) = K2 2N f. (1.21)

Therefore
K2∞f − SN = K2∞f −K2 2N f = K2∞(f −K∞2N f), (1.22)

from which we get

‖K2∞f − SN‖p ¿ Y∞2N (f)p = Y2N (f)p. (1.23)

Since Y2N → 0 as N →∞, we conclude that in Lp the following equality holds

K2∞f
(p)
=

∞∑
j=1

T2jf = K22f +
∞∑

j=2

T2j . (1.24)
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Then
‖T21f‖ = ‖K22f‖ ¿ ‖f‖. (1.25)

For T2jf the following holds

T2jf = K2 2j f −K2 2j−1f = K2∞(K∞2j f)−K2∞(K∞2j−1f)

= K2∞(K∞2j f)−K2∞f + K2∞f −K2∞(K∞2j−1f)

= K2∞(K∞2j f − f) + K2∞(f −K∞2j−1f).

From this equality we get

‖T2jf‖ ¿ Y∞2j−1(f)p + Y∞2j−2(f)p ¿ Y∞2j−2(f)p = Y2j−2(f)p, j = 2, 3, . . .
(1.26)

To represent functions K∞2f note the sum

Sµ =
µ∑

i=2

Ui2f, Ui2f = K2i2f −K2i−12f. (1.27)

The following holds

Sµ =
µ∑

i=2

K2i2f −K2i−12f = K2µ2f −K22f. (1.28)

Hence
K∞2f −K22f − Sµ = K∞2f −K2µ2f (1.29)

and ‖K∞2f −K22f − Sµ‖p ¿ ‖K∞2(f −K2µ∞f)‖ and then

‖K∞2f −K22f − Sµ‖p ¿ Y2µ∞(f)p = Y2µ(f)p. (1.30)

When µ →∞ then Y2µ → 0, which means that

K∞2f −K22f
(p)
=

∞∑
i=2

Ui2. (1.31)

From (1.19) and in view of (1.24) and (1.31) we get (1.13). Lemma 1 has been
proved.

Remark 1. Let us emphasize that ‖Ui2‖ is also estimated by the best approx-
imation by one-dimensional angle. We have

Ui2f = K2i2f −K2i−12f = K∞2(K2i∞f)−K∞2(K2i−1∞f)

= K∞2(K2i∞f)−K∞2f + K∞2f −K∞2(K2i−1∞f)

= K∞2(K2i∞f − f) + K∞2(f −K2i−1∞f).

From this equality we get

‖Ui2f‖p ¿ ‖K2i∞f − f‖+ ‖f −K2i−1∞f‖ ¿ Y2i−1∞(f)p + Y2i−2∞(f)p.

Hence
‖Ui2f‖ ¿ Y2i−2∞(f)p = Y2i−2(f)p, i = 2, 3, . . . (1.32)

Remark 2. For the series
∞∑

i=0

∞∑
j=0

gij = g00 +
∞∑

j=1

g0j +
∞∑

j=1

gi0 +
∞∑

i=1

∞∑
j=1

gij (1.33)
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denote
g00 = K22f, g0j = T2(j+1)f, j = 1, 2, . . .

gi0 = U(i+1)2f, i = 1, 2, . . . , gij = ξij , i, j = 1, 2, . . .
(1.34)

Then
∞∑

j=1

g0j =
∞∑

j=1

T2(j+1)f =
∞∑

j=2

T2jf,
∞∑

i=1

gi0 =
∞∑

i=1

U(i+1)2f =
∞∑

i=2

Ui2f (1.35)

and the equality (1.13) from Lemma 1 becomes

f(x, y)
(p)
=

∞∑
i=0

∞∑
j=0

gij , gij = gijf. (1.36)

Therefore, for norms of the terms of this series the following holds

‖g00‖ ¿ ‖f‖, ‖g0j‖ ¿ Y2j−1(f)p, j = 1, 2, . . .

‖gi0‖ ¿ Y2i−1(f)p, i = 1, 2, . . . , ‖gij‖ ¿ Y2i−12j−1(f)p, i, j = 1, 2, . . .

Lemma 2. For the function f(x, y) ∈ Lp(R2), 1 ≤ p < ∞, in the sense of Lp

the following equalities hold

K2µ+1∞f
(p)
=

µ∑
i=0

∞∑
j=0

gijf, µ = 1, 2, . . . (1.37)

K∞2ν+1f
(p)
=

∞∑
i=0

ν∑
j=0

gijf, ν = 1, 2, . . . (1.38)

Proof. For a fixed number µ denote the partial sums of the series (1.36) by

GµN = GµNf =
µ∑

i=0

N∑
j=0

gijf = g00 +
N∑

j=1

g0j +
µ∑

i=1

gi0 +
µ∑

i=1

N∑
j=1

gij . (1.39)

Using the equality (1.34) for GµN we have

GµN = K22 +
N∑

j=1

T2(j+1) +
µ∑

i=1

U(i+1)2 +
µ∑

i=1

N∑
j=1

ξij

= K22 +
N∑

j=1

K22j+1 −K22j +
µ∑

i=1

K2i+12 −K2i2 +
µ∑

i=1

N∑
j=1

ξij

= K22 + K22N+1 −K22 + K2µ+12 −K22 +
µ∑

i=1

N∑
j=1

ξij .

Therefore

GµN = K2µ+12 + K22N+1 −K22 +
µ∑

i=1

N∑
j=1

ξij . (1.40)

Expressing ξ by χ, and then by K, we get (see (1.15))
µ∑

i=1

N∑
j=1

ξij = K2µ+12N+1 −K22N+1 −K2µ+12 + K22. (1.41)
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From (1.40), using (1.41), it follows

GµNf =
µ∑

i=0

N∑
j=0

gij = K2µ+12N+1f. (1.42)

Now in view of (1.42) we get

K2µ+1∞f −GµNf = K2µ+1∞f −K2µ+12N+1f = K2µ+1∞(f −K∞2N+1f) (1.43)

and then
‖K2µ+1∞f −GµNf‖p ¿ Y∞2N (f)p = Y2N (f)p. (1.44)

Since Y2N → 0 as N → ∞, then, based on (1.44), we conclude that (1.37) holds.
Equality (1.38) can be proved in the same way. Lemma 2 has been proved.

Remark 3. By definition of the best approximation by an angle we have

Y0j(f)p = inf
g∈Lp

‖f − (g0∞ + g∞j)‖p = inf
g∈Lp

‖f − g∞j‖p

because g0∞ = 0 (due to the assumption that g ∈ Lp, 1 ≤ p < ∞). Therefore

Y0j(f)p = Y∞j(f)p = Yj(f)p, j = 1, 2, . . .

In the same way

Yi0(f)p = Yi∞(f)p = Yi(f)p, i = 1, 2, . . . , Y00(f)p = ‖f‖p.

2. Representation of the derivative of a function

In this paragraph we will prove a theorem about the representation into a
series of the derivative of singular integrals (1.4) and (1.5) and the derivative of
a function. The terms of the series are entire functions whose norm is estimated
using the best approximation by an angle.

Theorem 2.1. Let f(x, y) ∈ Lp(R2), and let for non-negative integers ri and
numbers

σi = ri +
1
p

+
1
q
, i = 1, 2, 1 ≤ p ≤ q < ∞,

the following inequalities hold
∞∑

i=1

∞∑
j=1

(i + 1)σ1q−1(j + 1)σ2q−1Y q
ij(f)p < ∞

∞∑
i=1

(i + 1)σ1q−1Y q
i (f)p < ∞,

∞∑
j=1

(j + 1)σ2q−1Y q
j (f)p < ∞.

(2.1)

Then the functions K2µ+1∞f , K∞2ν+1f , f(x, y) have derivatives which belong to
the space Lq and in the sense of Lq the following equalities hold

(K2µ+1∞f)(r1,r2) (q)
=

µ∑
i=0

∞∑
j=0

g
(r1,r2)
ij , µ = 1, 2, . . . , (2.2)

(K∞2ν+1f)(r1,r2) (q)
=

∞∑
i=0

ν∑
j=0

g
(r1,r2)
ij , ν = 1, 2, . . . , (2.3)

f (r1,r2) (q)
=

∞∑
i=0

∞∑
j=0

g
(r1,r2)
ij , (2.4)
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where the entire functions gij are given by equalities (1.34), (1, 14) and (1.11).

Proof. We will prove that the equality (1.37) holds in the sense of Lq. Denote

GP
µN = GP

µNf =
µ∑

i=0

P∑
j=N+1

gijf = GµP −GµN , P > N + 1, (2.5)

A = ‖GP
µN‖q

q =
∥∥∥

µ∑
i=0

P∑
j=N+1

gij

∥∥∥
q

q
. (2.6)

In the proof of this theorem we will follow the pattern of the proofs of the corre-
sponding theorem in paper [6] which corresponds to the periodic functions.

For a given number q denote [q] + 1 = m. This means that m ∈ {2, 3, . . . } and
that q

m < 1. Therefore, it follows from (2.6) that

A ≤
∫∫ ( µ∑

i=0

P∑
j=N+1

|gij |q/m
)m

dx dy,
∫

=
∫∞
−∞ . (2.7)

Denote
δij = |gij |q/m. (2.8)

Now we have

A ≤
∫∫ ( µ∑

i=0

P∑
j=N+1

δij

)m

dx dy. (2.9)

Since m is a natural number, it is
( µ∑

i=0

P∑
j=N+1

δij

)m

=
µ∑

i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

m∏
k=1

δikjk
. (2.10)

Now from (2.7), in view of (2.8), (2.9) and (2.10), we get

A ≤
µ∑

i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

∫∫
m∏

k=1

δikjk
dx dy. (2.11)

From the equality
m∏

k=1

Dm−1
k =

m∏
r,s=1
r<s

DrDs (2.12)

we get
m∏

k=1

Dk =
(

m∏
r,s=1
r<s

DrDs

) 1
m−1

. (2.13)

Denoting Dk = δikjk
, from (2.11), using (2.13), we get

A ≤
µ∑

i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

∫∫ (
m∏

r,s=1
r<s

δirjrδisjs

) 1
m−1

dx dy. (2.14)
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We apply the Hölder integral inequality to the product of γ = m(m−1)
2 factors of

power 1
γ , based on which we get

∫∫ (
m∏

r,s=1
r<s

δirjr
δisjs

) 1
m−1

dx dy ≤
m∏

r,s=1
r<s

[∫∫
(δirjrδisjs)

m
2 dx dy

] 2
m(m−1)

. (2.15)

Denote
Γrs =

∫∫
(δirjr

δisjs
)

m
2 dx dy. (2.16)

Now from (2.14), in view of (2.15) and (2.16), it follows that

A ≤
µ∑

i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

m∏
r,s=1
r<s

(Γrs)
2

m(m−1) . (2.17)

We will now estimate numbers Γrs. For numbers α = p+q
p , α′ = p+q

q the
equality 1

α + 1
α′ = 1 holds. Therefore we can apply the Hölder inequality based on

which we get

Γrs ≤ (‖girjr
‖αq/2)

q
2 (‖gisjs‖α′q/2)

q
2 . (2.18)

Functions gij = gijf are entire of exponential type 2i with respect to x and 2j

with respect to y. Therefore, based on the inequality of S.M. Nikol’skĭı [2, 3.3.5]
we conclude that the following holds

(‖girjr‖αq/2)
q
2 ¿ 2

(ir + jr)( q
2p − 1

α )
(‖girjr‖p)

q
2 , (2.19)

(‖gisjs‖α′q/2)
q
2 ¿ 2

(is + js)( q
2p − 1

α′ )(‖gisjs‖p)
q
2 . (2.20)

Using the equality

q

2p
− 1

β
=

q

2

(
1
p
− 1

q

)
+

1
2
− 1

β
, β ∈ {α, α′}, (2.21)

from (2.18), based on (2.19) and (2.20), we get

Γrs ¿ 2
(ir + jr)( 1

2 − 1
α )

2
(is + js)( 1

2 − 1
α′ )

{
2
(ir + jr)q( 1

p − 1
q ) ×

× Y q
[2ir−1][2jr−1](f)p2

(is + js)q( 1
p − 1

q )
Y q

[2is−1][2js−1](f)p

} 1
2

. (2.22)

Denote

Hij = 2
(i + j)q( 1

p − 1
q )

Y q
[2i−1][2j−1](f)p, (2.23)

Since

(ir + jr)
(

1
2
− 1

α

)
+(is + js)

(
1
2
− 1

α′

)
= [−(is− ir)− (js− jr)]

(
1
2
− 1

α

)
(2.24)
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then from (2.22), using (2.23) and (2.24), we get

Γrs ¿ 2
−(is − ir)( 1

2 − 1
α )

2
−(js − jr)( 1

2 − 1
α )

H
1
2
irjr

H
1
2
isjs

. (2.25)

If we apply the Hölder inequality (taking exponent α′ with respect to the first term,
and α to the second), then we can conclude in the same way that the following
inequality holds

Γrs ¿ 2
−(ir − is)( 1

2 − 1
α )

2
−(jr − js)( 1

2 − 1
α )

H
1
2
irjr

H
1
2
isjs

. (2.26)

From inequalities (2.25) and (2.26) it follows that

Γrs ¿ 2
−|is − ir|( 1

2 − 1
α )

2
−|js − jr|( 1

2 − 1
α )

H
1
2
irjr

H
1
2
isjs

. (2.27)

Denote

a(is, ir) = 2
−|is − ir|( 1

2 − 1
α )

, b(js, jr) = 2
−|js − jr|( 1

2 − 1
α )

, (2.28)

Q =
m∏

r,s=1
r<s

{
a(is, ir)b(js, jr)H

1
2
irjr

H
1
2
isjs

} 2
m(m−1)

. (2.29)

From (2.17), based on (2.27), (2.28), (2.29), we get

A ¿
µ∑

i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

Q. (2.30)

We will estimate the product Q. Using (2.13) we get

m∏
r,s=1
r<s

{
H

1
2
irjr

H
1
2
isjs

} 1
m−1

=
m∏

k=1

H
1
2
ikjk

. (2.31)

Now from (2.29), in view of (2.31), we get

Q =
m∏

k=1

H
1
m
ikjk

m∏
r,s=1
r<s

{a(is, ir)}
2

m(m−1)
m∏

r,s=1
r<s

{b(js, jr)}
2

m(m−1) . (2.32)

Since a(is, ir) = a(ir, is) and a(ir, ir) = 1, then
m∏

r,s=1
r<s

a(ir, is) =
m∏

r=1

m∏
s=1

a
1
2 (ir, is). (2.33)

Also it is
m∏

r,s=1
r<s

b(jr, js) =
m∏

r=1

m∏
s=1

b
1
2 (jr, js). (2.34)

The product Q, in view of (2.32), (2.33) and (2.34), can be written as

Q =
m∏

r=1
H

1
2
irjr

{ m∏
s=1

[a(ir, is)b(jr, js)]
1

m−1
} 1

m
. (2.35)
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Now from (2.30) based on (2.35) it follows that

A ¿
µ∑

i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

m∏
r=1

H
1
2
irjr

{ m∏
s=1

[a(ir, is)b(jr, js)]
1

m−1
} 1

m
.

(2.36)
The terms in the sum (2.36) are products of m factors L

1/m
r where

Lr = H
1
m
irjr

m∏
s=1

[a(ir, is)b(jr, js)]
1

m−1 , Q =
m∏

r=1
L

1
m
r .

Therefore we can apply Hölder’s inequality with the power 1
m and get the inequality

A ¿
m∏

r=1

{ µ∑
i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

Hirjr

m∏
s=1

[a(ir, is)b(jr, js)]
1

m−1
} 1

m

which can be written as

A ¿
m∏

r=1

{ µ∑
i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

Hirjr

m∏
s=1

[a(ir, is)]
1

m−1
m∏

t=1
[b(jr, jt)]

1
m−1

} 1
m

.

(2.37)
Denote

Mr =
µ∑

i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

Hirjr

m∏
s=1

[a(ir, is)]
1

m−1
m∏

t=1
[b(jr, jt)]

1
m−1 ,

(2.38)
r = 1, 2, . . . , m. Since ir = 0, 1, . . . , µ, jr = N + 1, N + 2, . . . , P for every r =
1, 2, . . . ,m, it is

M1 = M2 = · · · = Mm = M. (2.39)
For example, we will calculate M = M1. Since a(i1, i1) = 1, b(j1, j1) = 1, it is

M = M1 =
µ∑

i1=0

· · ·
µ∑

im=0

P∑
j1=N+1

· · ·
P∑

jm=N+1

Hi1j1

m∏
s=2

[a(i1, is)]
1

m−1
m∏

t=2
[b(j1, jt)]

1
m−1 ,

(2.40)
We have

M =
µ∑

i1=0

P∑
j1=N+1

Hi1j1

µ∑
i2=0

[a(i1, i2)]
1

m−1 · · ·
µ∑

im=0

[a(i1, im)]
1

m−1×

×
P∑

j2=N+1

[b(j1, j2)]
1

m−1 · · ·
P∑

jm=N+1

[b(j1, jm)]
1

m−1 . (2.41)

For the sums
∑

a and
∑

b from equalities (2.41), based on (2.27) and (2.28), it
holds

µ∑
ir=0

[a(i1, ir)]
1

m−1 6 C(p, q),
P∑

jt=N+1

[b(j1, jt)]
1

m−1 6 C(p, q) (2.42)

for r, t = 2, 3, . . . , m. The constant C depends only on p and q.
From (2.41), based on (2.39) and (2.40), we get

M ¿
µ∑

i=0

P∑
j=N+1

Hij . (2.43)
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Now from (2.37), in view of (2.38), (2.39), (2.43) and (2.23), it follows that

A ¿
µ∑

i=0

P∑
j=N+1

2
(i + j)q( 1

p − 1
q )

Y q
[2i−1][2j−1](f)p. (2.44)

Using (2.5), (2.6) and (2.44) we deduce that

‖GµP −GµN‖q ¿
{ µ∑

i=0

P∑
j=N+1

2
(i + j)q( 1

p − 1
q )

Y q
[2i−1][2j−1](f)p

} 1
q
. (2.45)

Based on the inequality (2.45) and the condition (2.1) we deduce that the sequence
GµN , N = 0, 1, 2, . . . is a Cauchy sequence in the space Lq. Since Lq is complete,
then there exists a function h(x, y) ∈ Lq such that limN→∞ ‖GµN − h(x, y)‖q = 0,
i.e.

h(x, y)
(q)
=

µ∑
i=0

∞∑
j=0

gij . (2.46)

In view of the equality (1.37), Lemma 2, and equality (2.46) we deduce that (see
[2, 1.3.9]) it holds that

K2µ+1∞f
(q)
=

µ∑
i=0

∞∑
j=0

gij . (2.47)

Using the equality (2.47) in the next step we will prove equality (2.2).
For the sequence GµN the following equality holds

G
(r1,r2)
µN =

µ∑
i=0

N∑
j=0

g
(r1,r2)
ij . (2.48)

It follows that

‖G(r1,r2)
µP −G

(r1,r2)
µN ‖q =

∥∥∥
µ∑

i=0

P∑
j=N+1

g
(r1,r2)
ij

∥∥∥
q
. (2.49)

Denote

B =
∥∥∥

µ∑
i=0

P∑
j=N+1

g
(r1,r2)
ij

∥∥∥
q

q
=

∥∥∥
µ∑

i=0

P∑
j=N+1

ϕij

∥∥∥
q

q
(2.50)

where ϕij = g
(r1,r2)
ij . The function ϕij is an entire function of the same type as gij .

Therefore, we can use the same method we used to estimate quantity A.
Denote

δij(ϕ) = |ϕij |
q
m . (2.51)

The corresponding quantity Γ is

Γrs(B) =
∫∫

[δirjr (ϕ)δisjs(ϕ)]
m
2 dx dy =

∫∫
|g(r1,r2)

irjr
(ϕ)|

q
2 |g(r1,r2)

isjs
(ϕ)|

q
2 dx dy.

(2.52)
Therefore we get (see (2.18))

Γrs(B) 6 (‖ϕirjr‖αq/2)
q
2 (‖ϕisjs‖α′q/2)

q
2 . (2.53)
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By applying another metrics inequality of S.M. Nikol’skĭı [2, 3.3.5] we get

(‖ϕirjr‖αq/2)
q
2 ¿ 2(ir+jr)(

q
2p−

1
α )(‖ϕirjr

‖p)
q
2 , (2.54)

(‖ϕisjs‖α′q/2)
q
2 ¿ 2(is+js)(

q
2p−

1
α′ )(‖ϕisjs‖p)

q
2 , (2.55)

Applying an inequality of Bernstein type [2, 3.2.2] we get

‖ϕij‖p = ‖g(r1,r2)
ij ‖p ¿ 2ir1+jr2‖gij‖p. (2.56)

From (2.54) based on (2.56) we get

(‖ϕirjr
‖αq/2)

q
2 ¿ 2ir(r1

q
2+

q
2p−

1
α )2jr(r2

q
2+

q
2p−

1
α )

Y

q
2

[2ir−1][2jr−1](f)p. (2.57)

In the same way we deduce

(‖ϕisjs‖α′q/2)
q
2 ¿ 2is(r1

q
2+

q
2p−

1
α′ )2js(r2

q
2+

q
2p−

1
α′ )Y

q
2

[2is−1][2js−1](f)p. (2.58)

The equality σi = ri + 1
p − 1

q is equivalent to the equality

qri

2
+

q

2p
− 1

β
=

qσi

2
+

1
2
− 1

β
, β ∈ {α, α′}. (2.59)

Therefore the inequalities (2.57) and (2.58) can be written as

(‖ϕirjr‖αq/2)
q
2 ¿ 2ir(

q
2σ1+

1
2−

1
α )2jr(

q
2σ2+

1
2−

1
α )Y

q
2

[2ir−1][2jr−1](f)p,
(2.60)

(‖ϕisjs‖α′q/2)
q
2 ¿ 2is(

q
2σ1+

1
2−

1
α′ )2js(

q
2σ2+

1
2−

1
α′ )Y

q
2

[2is−1][2js−1](f)p.
(2.61)

From (2.53), based on (2.60) and (2.61), it follows that

Γrs ¿ 2(ir+jr)(
1
2−

1
α )2(is+js)(

1
2−

1
α′ )×

× {2irqσ12jrqσ2Y q
[2ir−1][2jr−1](f)p2isqσ12jsqσ2Y q

[2is−1][2js−1](f)p}
1
2 . (2.62)

If we denote
Hij(B) = 2iqσ12jqσ2Y q

[2i−1][2j−1](f)p (2.63)

then it follows from (2.62) that

Γrs(B) ¿ 2(ir+jr)(
1
2−

1
α )2(is+js)(

1
2−

1
α′ )H

1
2
irjr

(B)H
1
2
isjs

(B).

Expressing α′ using α and applying the same method as for Γrs(A), we deduce

Γrs(B) ¿ 2−|is−ir|( 1
2−

1
α )2−|js−jr|( 1

2−
1
α )H

1
2
irjr

(B)H
1
2
isjs

(B). (2.64)

Repeating the same method for which from (2.27) we obtained (2.44), we deduce
that the following holds

B ¿
µ∑

j=0

P∑
j=N+1

2iqσ12jqσ2Y q
[2i−1][2j−1](f)p. (2.65)
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Based on (2.49), (2.50) and (2.65) we deduce that

‖G(r1,r2)
µP −G

(r1,r2)
µN ‖q ¿

{ µ∑
j=0

P∑
j=N+1

2iqσ12jqσ2Y q
[2i−1][2j−1](f)p

} 1
q
. (2.66)

The condition (2.1) of the theorem and the inequality (2.66) mean that the sequence
G

(r1,r2)
µN , N = 0, 1, 2, . . . is a Cauchy sequence in Lq. Since Lq is complete, there

exists a function ψ(x, y) ∈ Lq such that limn→∞ ‖G(r1,r2)
µN − ψ(x, y)‖q = 0, i.e.

ψ(x, y)
(q)
=

µ∑
i=0

∞∑
j=0

g
(r1,r2)
ij . (2.67)

In view of the equalities (2.47) and (2.67) we deduce that the following holds (see
[2, 4.4.7])

(K2µ∞f)(r1,r2) = ψ(x, y). (2.68)
Hence, the equality (2.2) has been proved.

The equality (2.3) follows from the equality (2.2) when x and y are swapped.
The equality (2.4) can essentially be proved in the same way. We use Lemma

1, i.e.. the equality (1.36). In the following step we will prove that the equality
(1.36) holds in Lq. The equality (1.36) can be written as

f −GMN =
∞∑

i=M+1

N∑
j=0

gij +
M∑
i=0

∞∑
j=N+1

gij +
∞∑

i=M+1

∞∑
j=N+1

gij

and then

‖f −GMN‖q ≤
∥∥∥

∞∑
i=M+1

N∑
j=0

gij

∥∥∥
q
+

∥∥∥
M∑
i=0

∞∑
j=N+1

gij

∥∥∥
q
+

∥∥∥
∞∑

i=M+1

∞∑
j=N+1

gij

∥∥∥
q

= Σ1 + Σ2 + Σ3. (2.69)

For the sums Σi it holds that Σi ¿ Σi(σ), i = 1, 2, 3, where Σi(σ) is the corre-
sponding remainder of the series (2.1) for r1 = 0, r2 = 0 (the sum of the series (2.1)
can be expressed in terms of one series, see Remark 3 from Section 1). Therefore
‖f −GMN‖q → 0 as M,N →∞. This means that the equality (1.36) holds in Lq,
i.e. the following holds

f(x, y)
(q)
=

∞∑
i=0

∞∑
j=0

gij . (2.70)

In view of the equality (2.70) and the condition (2.1), and using the method which
established the equality (2.2), we deduce that the sequence ξM =

∑M
i=0

∑∞
j=0 g

(r1)
ij

converges in Lq and that (see [2, 4.4.5 and 4.4.7])

f (r1) (q)
=

∞∑
i=0

∞∑
j=0

g
(r1)
ij . (2.71)

Again, in the same way, we deduce that the following sequence converges in Lq

ηN =
∞∑

i=0

N∑
j=0

[g(r1)
ij ](r2) =

∞∑
i=0

N∑
j=0

g
(r1,r2)
ij



On respresentation of derivatives of functions in Lp 249

and that based on (2.71) the equality (2.4) holds. Theorem 2.1 has been proved.
Corollary 1. In view of (2.4), (2.50) and (2.65) we conclude that under the

conditions of Theorem 2.1 the following inequality holds

‖f (r1,r2)‖q ¿
{ ∞∑

i=0

∞∑
j=0

(i + 1)σ1q−1(j + 1)σ2q−1Y q
ij(f)p

} 1
q
. (2.72)

If q = p then σi = ri, i = 1, 2, 1 ≤ p < ∞ and we get the corresponding inequality
for the norm in the Lp space.

Corollary 2. In the same way for q = p the condition (2.1) becomes weaker
and the equalities (2.2), (2.3) and (2.4) hold in Lp.

3. The consequences of the theorem of representation

Apart from the above given corollaries of the theorem of representation we also
give the following important corollary as a theorem.

Theorem 3.1. Let the conditions of Theorem 2.1 hold for a function f(x, y).
Then

(K2µ+1∞f)(r1,r2) = K2µ+1∞f (r1,r2), (K∞2ν+1f)(r1,r2) = K∞2ν+1f (r1,r2),(3.1)

(χ2µ2ν f)(r1,r2) = χ2µ2ν f (r1,r2), µ, ν = 1, 2, . . . (3.2)

Proof. Denote h(x, y) = f (r1,r2), h ∈ Lq. Then based on Lemma 1 (the equality
(1.36)), the following equality holds

f (r1,r2) (q)
=

∞∑
i=0

∞∑
j=0

gijf
(r1,r2), (3.3)

and in view of Lemma 2, the equalities (1.37) and (1.38), and Theorem 2.1 the
following equalities hold

K2µ+1∞f (r1,r2) (q)
=

µ∑
i=0

∞∑
j=0

gijf
(r1,r2), µ = 1, 2, . . . , (3.4)

K∞2ν+1f (r1,r2) (q)
=

∞∑
i=0

ν∑
j=0

gijf
(r1,r2), ν = 1, 2, . . . (3.5)

Since gijf
(r1,r2) is expressed by Kf (r1,r2) (see equalities (1.34) and (1.11)), and

since for the entire functions Kµνf the equality (Kµνf)(r1,r2) = Kµνf (r1,r2) holds
(see Lemma 1.4 in [7]), it is

gijf
(r1,r2) = (gijf)(r1,r2) = g

(r1,r2)
ij f. (3.6)

Now from equalities (2.2), (2.3), (2.4) and equalities (3.3), (3.4), (3.5) and in view
of the equality (3.6), equalities (3.1) follow. The equality (3.2) is a consequence of
the equalities (3.1) and (1.7). Theorem 3.1 has been proved.

Remark 4. The theorems we have proved enable us to prove the inequalities
by which the best approximation by an angle and the mixed modulus of smoothness
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in the norm of the space Lq are estimated by the best approximation by an angle in
the norm of the space Lp, 1 ≤ p ≤ q < ∞ (the converse theorem of approximation
by an angle). The results can be used further to examine the space (the classes)
of functions which are defined by the mixed modulus of smoothness (spaces SH of
Nikol’skĭı type and spaces SB of Besov type).
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