CERTAIN CLASSES OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS AND n-STARLIKE WITH RESPECT TO CERTAIN POINTS

M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb

Abstract

In this paper we introduce three subclasses of $T ; S_{s, n}^{\star} T(\alpha, \beta), S_{c, n}^{\star} T(\alpha, \beta)$ and $S_{s c, n}^{\star} T(\alpha, \beta)$ consisting of analytic functions with negative coefficients defined by using Salagean operator and are, respectively, n-starlike with respect to symmetric points, n-starlike with respect to conjugate points and n-starlike with respect to symmetric conjugate points. Several properties like, coefficient bounds, growth and distortion theorems, radii of starlikeness, convexity and close-to-convexity are investigated.

1. Introduction

Let S denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the open unit disk $U=\{z:|z|<1\}$. For a function $f(z) \in S$, we define

$$
\begin{gather*}
D^{0} f(z)=f(z) \tag{1.2}\\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in N=\{1,2, \ldots\}) \tag{1.4}
\end{equation*}
$$

The differential operator D^{n} was introduced by Salagean [8]. Let S^{\star} be the subclass of S consisting of starlike functions in U. It is well known that

$$
\begin{equation*}
f \in S^{\star} \quad \text { if and only if } \quad \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad(z \in U) \tag{1.5}
\end{equation*}
$$

Keywords and phrases: Analytic; univalent; starlike; symmetric; conjugate.

Let S_{s}^{\star} be the subclass of S consisting of functions of the form (1.1) satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0 \quad(z \in U) \tag{1.6}
\end{equation*}
$$

These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi [7] (see also Robertson [6], Stankiewicz [10], Wu [12] and Owa et al. [5]). In [2], El-Ashwah and Thomas, introduced and studied two other classes namely the class S_{c}^{\star} consisting of functions starlike with respect to conjugate points and $S_{s c}^{\star}$ consisting of functions starlike with respect to symmetric conjugate points.

In [11], Sudharsan et al. introduced the class $S_{s}^{\star}(\alpha, \beta)$ of functions $f(z) \in S$ and satisfying the following condition (see also [9]):

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)-f(-z)}-1\right|<\beta\left|\alpha \frac{z f^{\prime}(z)}{f(z)-f(-z)}+1\right| \tag{1.7}
\end{equation*}
$$

for some $0 \leq \alpha \leq 1,0<\beta \leq 1$ and $z \in U$.
Let T denote the subclass of S consisting of functions of the form:

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right) \tag{1.8}
\end{equation*}
$$

Definition 1. Let the function $f(z)$ be defined by (1.8). Then $f(z)$ is said to be n-starlike with respect to symmetric points if it satisfies the following condition:

$$
\begin{equation*}
\left|\frac{D^{n+1} f(z)}{D^{n} f(z)-D^{n} f(-z)}-1\right|<\beta\left|\alpha \frac{D^{n+1} f(z)}{D^{n} f(z)-D^{n} f(-z)}+1\right|, \tag{1.9}
\end{equation*}
$$

where $n \in N_{0}=N \cup\{0\}, 0 \leq \alpha \leq 1,0<\beta \leq 1,0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1$ and $z \in U$. We denote the class of n-starlike with respect to symmetric points by $S_{s, n}^{\star} T(\alpha, \beta)$.

Definition 2. Let the function $f(z)$ be defined by (1.8). Then $f(z)$ is said to be n-starlike with respect to conjugate points if it satisfies the following condition:

$$
\begin{equation*}
\left|\frac{D^{n+1} f(z)}{D^{n} f(z)+\overline{D^{n} f(\bar{z})}}-1\right|<\beta\left|\alpha \frac{D^{n+1} f(z)}{D^{n} f(z)+\overline{D^{n} f(\bar{z})}}+1\right| \tag{1.10}
\end{equation*}
$$

where $n \in N_{0}, 0 \leq \alpha \leq 1,0<\beta \leq 1,0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1$ and $z \in U$. We denote the class of n-starlike with respect to conjugate points by $S_{c, n}^{\star} T(\alpha, \beta)$.

Definition 3. Let the function $f(z)$ be defined by (1.8). Then $f(z)$ is said to be n-starlike with respect to symmetric conjugate points if it satisfies the following condition:

$$
\begin{equation*}
\left|\frac{D^{n+1} f(z)}{D^{n} f(z)-\overline{D^{n} f(-\bar{z})}}-1\right|<\beta\left|\alpha \frac{D^{n+1} f(z)}{D^{n} f(z)-\overline{D^{n} f(-\bar{z})}}+1\right|, \tag{1.11}
\end{equation*}
$$

where $n \in N_{0}, 0 \leq \alpha \leq 1,0<\beta \leq 1,0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1$ and $z \in U$. We denote the class of n-starlike with respect to symmetric conjugate points by $S_{s c, n}^{\star} T(\alpha, \beta)$.

We note that the classes $S_{s, 0}^{\star} T(\alpha, \beta)=S_{s}^{\star} T(\alpha, \beta), S_{c, 0}^{\star} T(\alpha, \beta)=S_{c}^{\star} T(\alpha, \beta)$ and $S_{s c, 0}^{\star} T(\alpha, \beta)=S_{s c}^{\star} T(\alpha, \beta)$ were studied by Halim et al. [4] with $0 \leq \alpha \leq 1$, $0<\beta \leq 1$ and $0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1$. Also Halim et al. [3] studied these mentioned classes.

2. Coefficient estimates

Unless otherwise mentioned, we assume in the reminder of this paper that $n \in N_{0}, 0 \leq \alpha \leq 1,0<\beta \leq 1,0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1$ and $z \in U$. We shall use the technique of Dziok [1] to prove the following theorems.

THEOREM 1. Let the function $f(z)$ be defined by (1.8) and $D^{n} f(z)-$ $D^{n} f(-z) \neq 0$ for $z \neq 0$. Then $f(z) \in S_{s, n}^{\star} T(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\} a_{k} \leq \beta(2+\alpha)-1 \tag{2.1}
\end{equation*}
$$

Proof. Let $|z|=1$. Then we have

$$
\begin{aligned}
& \left|D^{n+1} f(z)-D^{n} f(z)+D^{n} f(-z)\right|-\beta\left|\alpha D^{n+1} f(z)+D^{n} f(z)-D^{n} f(-z)\right| \\
& =\left|z+\sum_{k=2}^{\infty} k^{n}\left[k-1+(-1)^{k}\right] a_{k} z^{k}\right|-\beta\left|(\alpha+2) z-\sum_{k=2}^{\infty} k^{n}\left[\alpha k+1-(-1)^{k}\right] a_{k} z^{k}\right| \\
& \leq \sum_{k=2}^{\infty} k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\} a_{k}-[\beta(\alpha+2)-1] \leq 0
\end{aligned}
$$

Hence, by the maximum modulus theorem, we have $f \in S_{s, n}^{\star} T(\alpha, \beta)$.
For the converse, assume that

$$
\left|\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)-D^{n} f(-z)}-1}{\alpha \frac{D^{n+1} f(z)}{D^{n} f(z)-D^{n} f(-z)}+1}\right|=\left|\frac{-z-\sum_{k=2}^{\infty} k^{n}\left[k-1+(-1)^{k}\right] a_{k} z^{k}}{(\alpha+2) z-\sum_{k=2}^{\infty} k^{n}\left[\alpha k+1-(-1)^{k}\right] a_{k} z^{k}}\right|<\beta
$$

Since $|\operatorname{Re} z| \leq|z|$ for all z, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z+\sum_{k=2}^{\infty} k^{n}\left[k-1+(-1)^{k}\right] a_{k} z^{k}}{(\alpha+2) z-\sum_{k=2}^{\infty} k^{n}\left[\alpha k+1-(-1)^{k}\right] a_{k} z^{k}}\right\}<\beta \tag{2.2}
\end{equation*}
$$

Choose values of z on the real axis so that $\frac{D^{n+1} f(z)}{D^{n} f(z)-D^{n} f(-z)}$ is real and $D^{n} f(z)-$ $D^{n} f(-z) \neq 0$ for $z \neq 0$. Upon clearing the denominator in (2.2) and letting $z \longrightarrow 1^{-}$through real values, we obtain

$$
1+\sum_{k=2}^{\infty} k^{n}\left[k-1+(-1)^{k}\right] a_{k} \leq \beta(\alpha+2)-\beta \sum_{k=2}^{\infty} k^{n}\left[\alpha k+1-(-1)^{k}\right] a_{k}
$$

This gives the required condition.

Corollary 1. Let the function $f(z)$ defined by (1.8) be in the class $S_{s, n}^{\star} T(\alpha, \beta)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{\beta(2+\alpha)-1}{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}} \quad\left(k \geq 2 ; n \in N_{0}\right) \tag{2.3}
\end{equation*}
$$

The equality in (2.3) is attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{\beta(2+\alpha)-1}{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}} z^{k} \quad\left(k \geq 2 ; n \in N_{0}\right) \tag{2.4}
\end{equation*}
$$

Theorem 2. Let the function $f(z)$ be defined by (1.8). Then $f(z) \in$ $S_{c, n}^{\star} T(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}\{(1+\alpha \beta) k+2(\beta-1)\} a_{k} \leq \beta(2+\alpha)-1 \tag{2.5}
\end{equation*}
$$

Corollary 2. Let the function $f(z)$ defined by (1.8) be in the class $S_{c, n}^{\star} T(\alpha, \beta)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{\beta(2+\alpha)-1}{k^{n}\{(1+\alpha \beta) k+2(\beta-1)\}} \quad\left(k \geq 2 ; n \in N_{0}\right) \tag{2.6}
\end{equation*}
$$

The equality in (2.6) is attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{\beta(2+\alpha)-1}{k^{n}\{(1+\alpha \beta) k+2(\beta-1)\}} z^{k} \quad\left(k \geq 2 ; n \in N_{0}\right) \tag{2.7}
\end{equation*}
$$

ThEOREM 3. Let the function $f(z)$ be defined by (1.8). Then $f(z) \in$ $S_{s c, n}^{\star} T(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\} a_{k} \leq \beta(2+\alpha)-1 \tag{2.8}
\end{equation*}
$$

Corollary 3. Let the function $f(z)$ defined by (1.8) be in the class $S_{s c, n}^{\star} T(\alpha, \beta)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{\beta(2+\alpha)-1}{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}} \quad\left(k \geq 2 ; n \in N_{0}\right) \tag{2.9}
\end{equation*}
$$

The equality in (2.9) is attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{\beta(2+\alpha)-1}{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}} z^{k} \quad\left(k \geq 2 ; n \in N_{0}\right) \tag{2.10}
\end{equation*}
$$

3. Distortion theorems

THEOREM 4. Let the function $f(z)$ defined by (1.8) be in the class $S_{s, n}^{\star} T(\alpha, \beta)$. Then we have

$$
\begin{equation*}
|z|-\frac{\beta(2+\alpha)-1}{2^{n+1-i}(1+\alpha \beta)}|z|^{2} \leq\left|D^{i} f(z)\right| \leq|z|+\frac{\beta(2+\alpha)-1}{2^{n+1-i}(1+\alpha \beta)}|z|^{2} \tag{3.1}
\end{equation*}
$$

for $z \in U$, where $0 \leq i \leq n$. The result is sharp.
Proof. Note that $f(z) \in S_{s, n}^{\star} T(\alpha, \beta)$ if and only if $D^{i} f(z) \in S_{s, n-i}^{\star} T(\alpha, \beta)$, and that

$$
\begin{equation*}
D^{i} f(z)=z-\sum_{k=2}^{\infty} k^{i} a_{k} z^{k} \tag{3.2}
\end{equation*}
$$

Using Theorem 1, we know that

$$
\begin{align*}
2^{n+1-i}(1+\alpha \beta) \sum_{k=2}^{\infty} k^{i} a_{k} & \leq \sum_{k=2}^{\infty} k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\} a_{k} \\
& \leq \beta(2+\alpha)-1 \tag{3.3}
\end{align*}
$$

that is, that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{i} a_{k} \leq \frac{\beta(2+\alpha)-1}{2^{n+1-i}(1+\alpha \beta)} \tag{3.4}
\end{equation*}
$$

It follows from (3.2) and (3.4) that

$$
\begin{equation*}
\left|D^{i} f(z)\right| \geq|z|-|z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k} \geq|z|-\frac{\beta(2+\alpha)-1}{2^{n+1-i}(1+\alpha \beta)}|z|^{2} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D^{i} f(z)\right| \leq|z|+|z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k} \leq|z|+\frac{\beta(2+\alpha)-1}{2^{n+1-i}(1+\alpha \beta)}|z|^{2} \tag{3.6}
\end{equation*}
$$

Finally, we note that the equality in (3.1) is attained by the function

$$
\begin{equation*}
D^{i} f(z)=z-\frac{\beta(2+\alpha)-1}{2^{n+1-i}(1+\alpha \beta)} z^{2} \tag{3.7}
\end{equation*}
$$

or by

$$
\begin{equation*}
f(z)=z-\frac{\beta(2+\alpha)-1}{2^{n+1}(1+\alpha \beta)} z^{2} \tag{3.8}
\end{equation*}
$$

Corollary 4. Let the function $f(z)$ defined by (1.8) be in the class $S_{s, n}^{\star} T(\alpha, \beta)$. Then we have

$$
\begin{equation*}
|z|-\frac{\beta(2+\alpha)-1}{2^{n+1}(1+\alpha \beta)}|z|^{2} \leq|f(z)| \leq|z|+\frac{\beta(2+\alpha)-1}{2^{n+1}(1+\alpha \beta)}|z|^{2} \tag{3.9}
\end{equation*}
$$

for $z \in U$. The result is sharp for the function $f(z)$ given by (3.8).
Proof. Taking $i=0$ in Theorem 4, we can easily show (3.9).

Corollary 5. Let the function $f(z)$ defined by (1.8) be in the class $S_{s, n}^{\star} T(\alpha, \beta)$.
Then we have

$$
\begin{equation*}
1-\frac{\beta(2+\alpha)-1}{2^{n}(1+\alpha \beta)}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{\beta(2+\alpha)-1}{2^{n}(1+\alpha \beta)}|z| \tag{3.10}
\end{equation*}
$$

for $z \in U$. The result is sharp for the function $f(z)$ given by (3.8).
Similarly we can prove the following result.
Theorem 5. Let the function $f(z)$ be defined by (1.8) be in the class $S_{c, n}^{\star} T(\alpha, \beta)$. Then we have

$$
\begin{equation*}
|z|-\frac{\beta(2+\alpha)-1}{2^{n+1-i} \beta(1+\alpha)}|z|^{2} \leq\left|D^{i} f(z)\right| \leq|z|+\frac{\beta(2+\alpha)-1}{2^{n+1-i} \beta(1+\alpha)}|z|^{2} \tag{3.11}
\end{equation*}
$$

for $z \in U$, where $0 \leq i \leq n$. The result is sharp, for the function $f(z)$ given by

$$
\begin{equation*}
D^{i} f(z)=z-\frac{\beta(2+\alpha)-1}{2^{n+1-i} \beta(1+\alpha)} z^{2} \tag{3.12}
\end{equation*}
$$

or by

$$
\begin{equation*}
f(z)=z-\frac{\beta(2+\alpha)-1}{2^{n+1} \beta(1+\alpha)} z^{2} \tag{3.13}
\end{equation*}
$$

Corollary 6. Let the function $f(z)$ defined by (1.8) be in the class $S_{c, n}^{\star} T(\alpha, \beta)$. Then we have

$$
\begin{equation*}
|z|-\frac{\beta(2+\alpha)-1}{2^{n+1} \beta(1+\alpha)}|z|^{2} \leq|f(z)| \leq|z|+\frac{\beta(2+\alpha)-1}{2^{n+1} \beta(1+\alpha)}|z|^{2} \tag{3.14}
\end{equation*}
$$

for $z \in U$. The result is sharp for the function $f(z)$ given by (3.13).
Corollary 7. Let the function $f(z)$ defined by (1.8) be in the class $S_{c, n}^{\star} T(\alpha, \beta)$. Then we have

$$
\begin{equation*}
1-\frac{\beta(2+\alpha)-1}{2^{n} \beta(1+\alpha)}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{\beta(2+\alpha)-1}{2^{n} \beta(1+\alpha)}|z| \tag{3.15}
\end{equation*}
$$

for $z \in U$. The result is sharp for the function $f(z)$ given by (3.13).
ThEOREM 6. Let the function $f(z)$ be defined by (1.8) be in the class $S_{s c, n}^{\star} T(\alpha, \beta)$. Then we have

$$
\begin{equation*}
|z|-\frac{\beta(2+\alpha)-1}{2^{n+1-i}(1+\alpha \beta)}|z|^{2} \leq\left|D^{i} f(z)\right| \leq|z|+\frac{\beta(2+\alpha)-1}{2^{n+1-i}(1+\alpha \beta)}|z|^{2} \tag{3.16}
\end{equation*}
$$

for $z \in U$, where $0 \leq i \leq n$. The result is sharp.

4. Extreme points

Theorem 7. The class $S_{s, n}^{\star} T(\alpha, \beta)$ is closed under convex linear combination.
Proof. Let the functions $f_{j}(z)=z-\sum_{k=2}^{\infty} a_{k, j} z^{k}\left(a_{k, j} \geq 0 ; j=1,2\right)$ be in the class $S_{s, n}^{\star} T(\alpha, \beta)$. It is sufficient to show that the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\lambda f_{1}(z)+(1-\lambda) f_{2}(z) \quad(0 \leq \lambda \leq 1) \tag{4.1}
\end{equation*}
$$

is in the class $S_{s, n}^{\star} T(\alpha, \beta)$. Since, for $0 \leq \lambda \leq 1$,

$$
h(z)=z-\sum_{k=2}^{\infty}\left[\lambda a_{k, 1}+(1-\lambda) a_{k, 2}\right] z^{k}
$$

with the aid of Theorem 1, we have

$$
\sum_{k=2}^{\infty} k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}\left[\lambda a_{k, 1}+(1-\lambda) a_{k, 2}\right] \leq[\beta(2+\alpha)-1]
$$

which implies that $h(z) \in S_{s, n}^{\star} T(\alpha, \beta)$.
As a consequence of Theorem 1, there exist extreme points of the class $S_{s, n}^{\star} T(\alpha, \beta)$.

TheOrem 8. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{k}(z)=z-\frac{\beta(2+\alpha)-1}{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}} z^{k} \quad(k \geq 2) \tag{4.2}
\end{equation*}
$$

for $0 \leq \alpha \leq 1,0<\beta \leq 1$ and $n \in N_{0}$. Then $f(z)$ is in the class $S_{s, n}^{\star} T(\alpha, \beta)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z) \tag{4.3}
\end{equation*}
$$

where $\lambda_{k} \geq 0(k \geq 1)$ and $\sum_{k=1}^{\infty} \lambda_{k}=1$.
Proof. Suppose that

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)=z-\sum_{k=2}^{\infty} \frac{\beta(2+\alpha)-1}{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}} \lambda_{k} z^{k} \tag{4.4}
\end{equation*}
$$

Then we get

$$
\begin{array}{r}
\sum_{k=2}^{\infty} \frac{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{\beta(2+\alpha)-1} \frac{\beta(2+\alpha)-1}{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}} \lambda_{k} \\
=\sum_{k=2}^{\infty} \lambda_{k}=1-\lambda_{1} \leq 1 \tag{4.5}
\end{array}
$$

By virtue of Theorem 1, this shows that $f(z) \in S_{s, n}^{\star} T(\alpha, \beta)$.

On the other hand, suppose that the function $f(z)$ defined by (1.8) is in the class $S_{s, n}^{\star} T(\alpha, \beta)$. Again, by using Theorem 1, we can show that

$$
\begin{equation*}
a_{k} \leq \frac{\beta(2+\alpha)-1}{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}\left(k \geq 2 ; n \in N_{0}\right) \tag{4.6}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\lambda_{k}=\frac{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{\beta(2+\alpha)-1}\left(k \geq 2 ; n \in N_{0}\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}=1-\sum_{k=2}^{\infty} \lambda_{k} \tag{4.8}
\end{equation*}
$$

we can see that $f(z)$ can be expressed in the form (4.3). This completes the proof of Theorem 8 .

Corollary 8. The extreme points of the class $S_{s, n}^{\star} T(\alpha, \beta)$ are the functions $f_{k}(z)(k \geq 1)$ given by Theorem 8.

Similarly we can prove the following results.
Theorem 9. Let $f_{1}(z)=z$ and

$$
f_{k}(z)=z-\frac{\beta(2+\alpha)-1}{k^{n}\{(1+\alpha \beta) k+2(\beta-1)\}} z^{k} \quad(k \geq 2)
$$

for $0 \leq \alpha \leq 1,0<\beta \leq 1$ and $n \in N_{0}$. Then $f(z)$ is in the class $S_{c, n}^{\star} T(\alpha, \beta)$ if and only if it can be expressed in the form $f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)$, where $\lambda_{k} \geq 0(k \geq 1)$ and $\sum_{k=1}^{\infty} \lambda_{k}=1$.

Corollary 9. The extreme points of the class $S_{c, n}^{\star} T(\alpha, \beta)$ are the functions $f_{k}(z)(k \geq 1)$ given by Theorem 9.

Theorem 10. Let $f_{1}(z)=z$ and

$$
f_{k}(z)=z-\frac{\beta(2+\alpha)-1}{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}} z^{k} \quad(k \geq 2)
$$

for $0 \leq \alpha \leq 1,0<\beta \leq 1$ and $n \in N_{0}$. Then $f(z)$ is in the class $S_{s c, n}^{\star} T(\alpha, \beta)$ if and only if it can be expressed in the form $f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)$, where $\lambda_{k} \geq 0(k \geq 1)$ and $\sum_{k=1}^{\infty} \lambda_{k}=1$.

Corollary 10. The extreme points of the class $S_{s c, n}^{\star} T(\alpha, \beta)$ are the functions $f_{k}(z)(k \geq 1)$ given by Theorem 10.

5. Radii of close-to-convexity, starlikeness and convexity

Theorem 11. Let the function $f(z)$ defined by (1.8) be in the class $S_{s, n}^{\star} T(\alpha, \beta)$, then $f(z)$ is close-to-convex of order $\delta(0 \leq \delta<1)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=\inf _{k}\left\{\frac{(1-\delta) k^{n-1}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{\beta(2+\alpha)-1}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) \tag{5.1}
\end{equation*}
$$

The result is sharp with the extremal function given by (2.4).

Proof. For close-to-convexity it is sufficient to show that $\left|f^{\prime}(z)-1\right| \leq 1-\delta$ for $|z|<r_{1}$. We have

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} k a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right| \leq 1-\delta$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k}{1-\delta}\right) a_{k}|z|^{k-1} \leq 1 \tag{5.2}
\end{equation*}
$$

According to Theorem 1, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{\beta(2+\alpha)-1} a_{k} \leq 1 \tag{5.3}
\end{equation*}
$$

Hence (5.2) will be true if

$$
\left(\frac{k}{1-\delta}\right)|z|^{k-1} \leq \frac{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{\beta(2+\alpha)-1}
$$

or if

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\delta) k^{n-1}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{\beta(2+\alpha)-1}\right\}^{\frac{1}{k-1}}(k \geq 2) \tag{5.4}
\end{equation*}
$$

The theorem follows from (5.4).
Theorem 12. Let the function $f(z)$ defined by (1.8) be in the class $S_{s, n}^{\star} T(\alpha, \beta)$, then $f(z)$ is starlike of order $\delta(0 \leq \delta<1)$ in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=\inf _{k}\left\{\frac{(1-\delta) k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{(k-\delta)[\beta(2+\alpha)-1]}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) \tag{5.5}
\end{equation*}
$$

The result is sharp with the extremal function given by (2.4) and r_{2} attains its infimum for $k=2$.

Proof. It is sufficient to show that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\delta$ for $|z|<r_{2}$. We have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=2}^{\infty}(k-1) a_{k}|z|^{k-1}}{1-\sum_{k=2}^{\infty} a_{k}|z|^{k-1}}
$$

Thus $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\delta$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\delta) a_{k}|z|^{k-1}}{(1-\delta)} \leq 1 \tag{5.6}
\end{equation*}
$$

Hence, by using (5.3), (5.6) will be true if

$$
\frac{(k-\delta)|z|^{k-1}}{(1-\delta)} \leq \frac{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{\beta(2+\alpha)-1}
$$

or if

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\delta) k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{(k-\delta)[\beta(2+\alpha)-1]}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) \tag{5.7}
\end{equation*}
$$

The theorem follows easily from (5.7).
Remark. It is clear that r_{2} attains its infimum at $k=2$ for the function $f(z)$ given by

$$
f(z)=z-\frac{\beta(2+\alpha)-1}{2^{n+1}(1+\alpha \beta)} z^{2}
$$

Also, we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|=|z|\left|\frac{\beta(2+\alpha)-1}{2^{n+1}(1+\alpha \beta)-[\beta(2+\alpha)-1] z}\right|
$$

Then

$$
\frac{[\beta(2+\alpha)-1]|z|}{2^{n+1}(1+\alpha \beta)-[\beta(2+\alpha)-1]|z|}<1-\delta,
$$

that is, we have

$$
(2-\delta)[\beta(2+\alpha)-1]|z|<(1-\delta)\left[2^{n+1}(1+\alpha \beta)\right]
$$

Then, we have

$$
|z| \leq \frac{(1-\delta)\left[2^{n+1}(1+\alpha \beta)\right]}{(2-\delta)[\beta(2+\alpha)-1]}
$$

Corollary 11. Let the function $f(z)$ defined by (1.8) be in the class $S_{s, n}^{\star} T(\alpha, \beta)$, then $f(z)$ is convex of order $\delta(0 \leq \delta<1)$ in $|z|<r_{3}$, where

$$
\begin{equation*}
r_{3}=\inf _{k}\left\{\frac{(1-\delta) k^{n-1}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{(k-\delta)[\beta(2+\alpha)-1]}\right\}^{\frac{1}{k-1}}(k \geq 2) \tag{5.8}
\end{equation*}
$$

The result is sharp with the extremal function given by (2.4).

6. Integral operators

Theorem 13. Let the function $f(z)$ defined by (1.8) be in the class $S_{s, n}^{\star} T(\alpha, \beta)$ and c be a real number such that $c>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{6.1}
\end{equation*}
$$

also belongs to the class $S_{s, n}^{\star} T(\alpha, \beta)$.
Proof. From the representation of $F(z)$, it follows that

$$
\begin{equation*}
F(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k} \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k}=\left(\frac{c+1}{c+k}\right) a_{k} \tag{6.3}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \sum_{k=2}^{\infty} k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\} b_{k} \\
& \quad=\sum_{k=2}^{\infty} k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}\left(\frac{c+1}{c+k}\right) a_{k} \\
& \leq \tag{6.4}
\end{align*}
$$

since $f(z) \in S_{s, n}^{\star} T(\alpha, \beta)$. Hence, by Theorem $1, F(z) \in S_{s, n}^{\star} T(\alpha, \beta)$.
TheOrem 14. Let c be a real number such that $c>-1$. If $F(z) \in S_{s, n}^{\star} T(\alpha, \beta)$. Then the function $F(z)$ defined by (6.1) is univalent in $|z|<r^{\star}$, where

$$
\begin{equation*}
r^{\star}=\inf _{k}\left\{\frac{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}(c+1)}{[\beta(2+\alpha)-1](c+k)}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.5}
\end{equation*}
$$

The result is sharp.
Proof. Let $F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right)$. It follows from (6.1) that

$$
\begin{equation*}
f(z)=\frac{z^{1-c}\left[z^{c} F(z)\right]^{\prime}}{(c+1)}=z-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k} . \quad(c>-1) \tag{6.6}
\end{equation*}
$$

In order to obtain the required result it suffices to show that $\left|f^{\prime}(z)-1\right|<1$ in $|z|<r^{\star}$. Now

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} \frac{k(c+k)}{(c+1)} a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right|<1$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k(c+k)}{(c+1)} a_{k}|z|^{k-1}<1 \tag{6.7}
\end{equation*}
$$

Hence by using (5.3), (6.7) will be satisfied if

$$
\frac{k(c+k)}{(c+1)}|z|^{k-1}<\frac{k^{n}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}}{[\beta(2+\alpha)-1]}
$$

i.e., if

$$
\begin{equation*}
|z|<\left[\frac{k^{n-1}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}(c+1)}{(c+k)[\beta(2+\alpha)-1]}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.8}
\end{equation*}
$$

Therefore $F(z)$ is univalent in $|z|<r^{\star}$. Sharpness follows if we take

$$
\begin{equation*}
f(z)=z-\frac{(c+k)[\beta(2+\alpha)-1]}{k^{n-1}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}(c+1)} z^{k} \tag{6.9}
\end{equation*}
$$

$\left(k \geq 2 ; n \in N_{0} ; c>-1\right)$.
Acknowledgements. The authors thank the referees for their valuable suggestions to improve the paper.

REFERENCES

[1] J. Dziok, On the convex combination of the Dziok-Srivastava operator, Appl. Math. Comput. 188 (2006), 1214-1220.
[2] R.M. El-Ashwah, D.K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc. 2 (1987), 86-100.
[3] S.A. Halim, A. Janteng, M. Darus, Coefficient properties for classes with negative coefficient and starlike with respect to other points, Proceeding of The 13th Math. Sci. Nat. Symposium, UUM. 2 (2005), 658-663.
[4] S.A. Halim, A. Janteng, M. Darus, Classes with negative coefficient and starlike with respect to other points, Internat. Math. Forum 2 (2007), No. 46, 2261-2268.
[5] S. Owa, Z. Wu, F. Ren, A note on certain subclass of Sakaguchi functions, Bull. Soc. Roy. Liege 57 (1988), 143-150.
[6] M.S. Robertson, Applications of the subordination principle to univalent functions, Pacific J. Math. 11 (1961), 315-324.
[7] K. Sakaguchi, On certain univalent mapping, J. Math. Soc. Japan. 11 (1959), 72-75.
[8] G.S. Salagean, Subclasses of univalent functions, Lecture Notes Math. 1013, Springer Verlag, Berlin, (1983), 362-372.
[9] J. Sokol, Some remarks on the class of functions starlike with respect to symmetric points, Folia Scient. Univ. Tech. Resoviensis 73 (1990), 79-89.
[10] J. Stankiewicz, Some remarks on functions starlike with respect to symmetric points, Ann. Univ. Marie Curie Sklodowska 19 (1965), 53-59.
[11] T.V. Sudharsan, P. Balasubrahmananyam, K.G. Subramanian, On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math. 2 (1998), 57-68.
[12] Z. Wu, On classes of Sakaguchi functions and Hadamard products, Sci. Sinica Ser. A 30 (1987), 128-135.
(received 02.06.2009; in revised form 13.04.2010)
M. K. Aouf, Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura 33516, Egypt
E-mail: mkaouf127@yahoo.com
R. M. El-Ashwah, Department of Mathematics, Faculty of Science at Damietta, University of Mansoura, New Damietta 34517, Egypt
E-mail: r_elashwah@yahoo.com
S. M. El-Deeb, Department of Mathematics, Faculty of Science at Damietta, University of Mansoura, New Damietta 34517, Egypt
E-mail: shezaeldeeb@yahoo.com

