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NEW EXTENDED WEYL TYPE THEOREMS

M. Berkani and H. Zariouh

Abstract. In this paper we introduce and study the new properties (ab), (gab), (aw) and
(gaw) as a continuation of our previous article [4], where we introduced the two properties (b)
and (gb).

Among other, we prove that if T is a bounded linear operator acting on a Banach space X,
then T possesses property (gb) if and only if T possesses property (gab) and ind(T − λI) = 0 for
all λ ∈ σa(T ) \σ

SBF−+
(T ); where σ

SBF−+
(T ) is the essential semi-B-Fredholm spectrum of T and

σa(T ) is the approximate spectrum of T . We prove also that T possesses property (gaw) if and
only if T possesses property (gab) and Ea(T ) = Πa(T ).

1. Introduction

Throughout this paper, X will denote an infinite-dimensional complex Banach
space, L(X) the Banach algebra of all bounded linear operators acting on X. For
T ∈ L(X), let T ∗, N(T ), R(T ), σ(T ) and σa(T ) denote respectively the adjoint,
the null space, the range, the spectrum and the approximate point spectrum of
T . Let α(T ) and β(T ) be the nullity and the deficiency of T defined by α(T ) =
dimN(T )and β(T ) = codimR(T ). Recall that an operator T ∈ L(X) is called
upper semi-Fredholm if α(T ) < ∞ and R(T ) is closed, while T ∈ L(X) is called
lower semi-Fredholm if β(T ) < ∞. Let SF+(X) denotes the class of all upper
semi-Fredholm operators. If T ∈ L(X) is either an upper or a lower semi-Fredholm
operator, then T is called a semi-Fredholm operator, and the index of T is defined
by ind(T ) = α(T ) − β(T ). If both α(T ) and β(T ) are finite, then T is called a
Fredholm operator. Let F (X) denotes the class of all Fredholm operators. Define
SF−+ (X) = {T ∈ SF+(X) : ind(T ) ≤ 0}. The class of Weyl operators is defined
by W (X) = {T ∈ F (X) : ind(T ) = 0}. The classes of operators defined above
generate the following spectra : The Weyl spectrum is defined by σW (T ) = {λ ∈
C : T − λI /∈ W (X)}, while the Weyl essential approximate spectrum is defined by
σSF−+

(T ) = {λ ∈ C : T − λI /∈ SF−+ (X)}.
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Following Coburn [10], we say that Weyl’s theorem holds for T ∈ L(X) if
σ(T ) \ σW (T ) = E0(T ), where E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI) < ∞}.
Here and elsewhere in this paper, for A ⊂ C, isoA is the set of isolated points
of A. According to Rakočević [14], an operator T ∈ L(X) is said to satisfy a-
Weyl’s theorem if σa(T ) \ σSF−+

(T ) = E0
a(T ), where E0

a(T ) = {λ ∈ isoσa(T ) : 0 <
α(T − λI) < ∞}.

For T ∈ L(X) and a nonnegative integer n define T[n] to be the restriction of T
to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular, T[0] = T ). If for
some integer n the range space R(Tn) is closed and T[n] is an upper (a lower) semi-
Fredholm operator, then T is called an upper (a lower) semi-B-Fredholm operator.
In this case the index of T is defined as the index of the semi-Fredholm operator T[n],
see [7]. Moreover, if T[n] is a Fredholm operator, then T is called a B-Fredholm
operator. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm
operator. An operator T is said to be a B-Weyl operator [6, Definition 1.1] if it is a
B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T ) of T is defined
by σBW (T ) = {λ ∈ C : T − λIis not a B-Weyl operator }.

Recall that the ascent a(T ) of an operator T is defined by a(T ) = inf{n ∈
N : N(Tn) = N(Tn+1)}, and the descent δ(T ) of T is defined by δ(T ) = inf{n ∈
N : R(Tn) = R(Tn+1)} with inf ∅ = ∞. An operator T ∈ L(X) is called Drazin
invertible if it has a finite ascent and descent. The Drazin spectrum σD(T ) of an
operator T is defined by σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.

Define also the set LD(X) by LD(X) = {T ∈ L(X) : a(T ) < ∞ and
R(T a(T )+1) is closed } and σLD(T ) = {λ ∈ C : T − λI /∈ LD(X)}. Following
[5], an operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X). We
say that λ ∈ σa(T ) is a left pole of T if T − λI ∈ LD(X), and that λ ∈ σa(T )
is a left pole of T of finite rank if λ is a left pole of T and α(T − λI) < ∞. Let
Πa(T ) denotes the set of all left poles of T and let Π0

a(T ) denotes the set of all left
poles of T of finite rank. From [5, Theorem 2.8] it follows that if T ∈ L(X) is left
Drazin invertible, then T is an upper semi-B-Fredholm operator of index less than
or equal to 0.

Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be the
set of all poles of the resolvent of T of finite rank, that is Π0(T ) = {λ ∈ Π(T ) :
α(T − λI) < ∞}. According to [12], a complex number λ is a pole of the resolvent
of T if and only if 0 < max (a(T − λI), δ(T − λI)) < ∞. Moreover, if this is true
then a(T −λI) = δ(T −λI). According also to [12], the space R((T −λI)a(T−λI)+1)
is closed for each λ ∈ Π(T ). Hence we have always Π(T ) ⊂ Πa(T ) and Π0(T ) ⊂
Π0

a(T ).

We say that Browder’s theorem holds for T ∈ L(X) if σ(T ) \ σW (T ) = Π0(T ),
and that a-Browder’s theorem holds for T ∈ L(X) if σa(T ) \ σSF−+

(T ) = Π0
a(T ).

Following [6], we say that generalized Weyl’s theorem holds for T ∈ L(X) if σ(T ) \
σBW (T ) = E(T ), where E(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI)} is the set of all
isolated eigenvalues of T , and that generalized Browder’s theorem holds for T ∈
L(X) if σ(T ) \ σBW (T ) = Π(T ). It is proved in [3, Theorem 2.1] that generalized
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Browder’s theorem is equivalent to Browder’s theorem. In [5, Theorem 3.9], it is
shown that an operator satisfying generalized Weyl’s theorem satisfies also Weyl’s
theorem, but the converse does not hold in general. Nonetheless and under the
assumption E(T ) = Π(T ), it is proved in [8, Theorem 2.9] that generalized Weyl’s
theorem is equivalent to Weyl’s theorem.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators,
SBF−+ (X) = {T ∈ SBF+(X) : ind(T ) ≤ 0}. The upper B-Weyl spectrum of
T is defined by σSBF−+

(T ) = {λ ∈ C : T − λI /∈ SBF−+ (X)}. We say that
generalized a-Weyl’s theorem holds for T ∈ L(X) if σa(T ) \ σSBF−+

(T ) = Ea(T ),
where Ea(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI)} is the set of all eigenvalues of
T which are isolated in σa(T ) and that T ∈ L(X) obeys generalized a-Browder’s
theorem if σa(T ) \σSBF−+

(T ) = Πa(T ). It is proved in [3, Theorem 2.2] that gener-
alized a-Browder’s theorem is equivalent to a-Browder’s theorem, and it is known
from [5, Theorem 3.11] that an operator satisfying generalized a-Weyl’s theorem
satisfies a-Weyl’s theorem, but the converse does not hold in general and under
the assumption Ea(T ) = Πa(T ) it is proved in [8, Theorem 2.10] that generalized
a-Weyl’s theorem is equivalent to a-Weyl’s theorem.

Following [15], we say that T ∈ L(X) possesses property (w) if σa(T ) \
σSF−+

(T ) = E0(T ). The property (w) has been studied in [1, 15]. In [1, Theo-
rem 2.8], it is shown that property (w) implies Weyl’s theorem, but the converse is
not true in general.

We say that T ∈ L(X) possesses property (gw) if σa(T ) \ σSBF−+
(T ) = E(T ).

Property (gw) has been introduced and studied in [2]. Property (gw) extends
property (w) to the context of B-Fredholm theory, and it is proved in [2] that
an operator possessing property (gw) possesses property (w) but the converse is
not true in general. According to [4], an operator T ∈ L(X) is said to possess
property (gb) if σa(T ) \ σSBF−+

(T ) = Π(T ), and is said to possess property (b) if

σa(T )\σSF−+
(T ) = Π0(T ). It is shown [4, Theorem 2.3] that an operator possessing

property (gb) possesses property (b) but the converse is not true in general.
In this paper we define and study the new properties (ab), (gab), (aw) and

(gaw) in connection with Weyl type theorems [5]. We prove that an operator
T ∈ L(X) possessing property (gab) possesses property (ab) but the converse is not
true in general as shown by Example 2.3, nonetheless and under the assumption
that Π(T ) = Πa(T ) we prove that the two properties are equivalent.

We show also that an operator possessing property (ab) satisfies Browder’s the-
orem, and we show that an operator possessing property (gab) satisfies generalized
Browder’s theorem, but the converses of these results are not true in general.

We prove that an operator possessing property (gb) possesses property (gab)
and that an operator possessing property (b) possesses property (ab), but the con-
verses of these theorems are not true in general.

We prove also that an operator possessing property (gaw) possesses property
(aw) but the converse is not in general, and we show that an operator possessing
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property (gaw) possesses property (gab) but the converse does not hold in gen-
eral, however, under the assumption that Ea(T ) = Πa(T ) the two properties are
equivalent.

In the last part, as a conclusion, we give a diagram summarizing the different
relations between Weyl type theorems and properties, extending a similar diagram
given in [4].

2. Properties (gab) and (ab)

For T ∈ L(X), let ∆(T ) = σ(T ) \ σW (T ) and ∆g(T ) = σ(T ) \ σBW (T ),
∆a(T ) = σa(T ) \ σSF−+

(T ) and ∆g
a(T ) = σa(T ) \ σSBF−+

(T ).

Definition 2.1. A bounded linear operator T ∈ L(X) is said to possess
property (ab) if ∆(T ) = Π0

a(T ), and is said to possess property (gab) if ∆g(T ) =
Πa(T ).

Theorem 2.2 Let T ∈ L(X). If T possesses property (gab), then T possesses
property (ab).

Proof. Suppose that T possesses property (gab), then ∆g(T ) = Πa(T ). If
λ ∈ ∆(T ), then λ ∈ ∆g(T ) = Πa(T ). Hence λ is a left pole of T . Since T − λI ∈
SF+(X), then α(T − λI) is finite. So λ ∈ Π0

a(T ).
Conversely, if λ ∈ Π0

a(T ), then λ is a left pole of T , α(T−λI) and a(T−λI) are
finite. Since T possesses property (gab), we have λ ∈ ∆g(T ) and ind(T − λI) = 0.
As a(T − λI) < ∞, then δ(T − λI) < ∞. Hence α(T − λI) = β(T − λI) < ∞.
Thus λ ∈ σ(T )\σW (T ). Finally, we have ∆(T ) = Π0

a(T ), and T possesses property
(ab).

The converse of Theorem 2.2 does not hold in general as shown by the following
example.

Example 2.3. Let R be the unilateral right shift operator defined on
the Hilbert space `2(N). It is known from [13, Theorem 3.1] that σ(R) =
D(0, 1) is the closed unit disc in C, σa(R) = C(0, 1) is the unit circle of C and
R has empty eigenvalues set. Moreover, σW (R) = D(0, 1) and Π0

a(R) = ∅.
Define T on the Banach space X = `2(N) ⊕ `2(N) by T = 0 ⊕ R. Then
σ(T ) = D(0, 1), N(T ) = `2(N) ⊕ {0}, σa(T ) = {0} ∪ C(0, 1), σW (T ) = D(0, 1),
σBW (T ) = D(0, 1), Πa(T ) = {0} and Π0

a(T ) = ∅. Hence σ(T ) \ σW (T ) = Π0
a(T )

and σ(T ) \ σBW (T ) = ∅ 6= Πa(T ). Consequently, T possesses property (ab) but it
does not possess property (gab).

Theorem 2.4. Let T ∈ L(X). IfT possesses property (ab), then T satisfies
Browder’s theorem.

Proof. Suppose that T possesses property (ab), then ∆(T ) = Π0
a(T ). If λ ∈

∆(T ), then a(T −λI) is finite and T −λI is a Weyl operator. Hence δ(T −λI) < ∞
and T − λI is Drazin invertible. Since λ ∈ σ(T ), then λ ∈ Π0(T ).
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Conversely, if λ ∈ Π0(T ), then T − λI is a Weyl operator and λ ∈ σ(T ), so
Π0(T ) ⊂ ∆(T ). Hence ∆(T ) = Π0(T ), i.e. T satisfies Browder’s theorem.

The following example shows that a-Browder’s theorem and Browder’s theorem
do not imply property (ab).

Example 2.5. Let R ∈ L(`2(N)) be the unilateral right shift and S ∈ L(`2(N))
the operator defined by S(ξ1, ξ2, ξ3, . . . ) = (0, ξ2, ξ3, ξ4, . . . ).

Consider the operator T defined on the Banach space X = `2(N) ⊕ `2(N) by
T = R ⊕ S, then σ(T ) = D(0, 1) is the closed unit disc in C, isoσ(T ) = ∅ and
σa(T ) = C(0, 1)∪{0}, where C(0, 1) is the unit circle of C, σSF−+

(T ) = C(0, 1) and
σW (T ) = D(0, 1). This implies that σ(T )\σW (T ) = ∅ and σa(T )\σSF−+

(T ) = {0}.
Moreover, we have Π0

a(T ) = {0}. Hence T satisfies a-Browder’s theorem and so T
satisfies Browder’s theorem. But T does not possess property (ab).

However, from Theorem 2.2 and Theorem 2.4 we have immediately the follow-
ing result.

Corollary 2.6. Let T ∈ L(X). Then T possesses property (ab) if and only
if T satisfies Browder’s theorem and Π0(T ) = Π0

a(T ). In particular, If T possesses
property (gab), then T satisfies generalized Browder’s theorem.

The converse of the last assertion of the preceding corollary is not true in
general. Indeed, if we consider the operator T defined in Example 2.5, then
σBW (T ) = D(0, 1), σSBF−+

(T ) = C(0, 1) and Π(T ) = ∅. This implies that
σ(T ) \σBW (T ) = ∅and σa(T ) \σSBF−+

(T ) = {0}. Moreover, we have Πa(T ) = {0}.
HenceT satisfies generalized a-Browder’s theorem and T satisfies generalized Brow-
der’s theorem. But T does not possess property (gab) because σ(T ) \ σBW (T ) 6=
Πa(T ).

However, we have the following result.

Corollary 2.7. Let T ∈ L(X). Then T possesses property (gab) if and only
if T satisfies generalized Browder’s theorem and Π(T ) = Πa(T ).

Proof. Assume that T possesses property (gab), i.e. ∆g(T ) = Πa(T ). Then
from Corollary 2.6, T satisfies generalized Browder’s theorem, i.e. ∆g(T ) = Π(T ),
and hence Π(T ) = Πa(T ).

Conversely, assume that T satisfies generalized Browder’s theorem and Π(T ) =
Πa(T ), then ∆g(T ) = Π(T ) and Π(T ) = Πa(T ), which implies that ∆g(T ) = Πa(T )
and T possesses property (gab).

Theorem 2.8. Let T ∈ L(X). The following statements are equivalent:
(i) T possesses property (gab);
(ii) T possesses property (ab) and Π(T ) = Πa(T ).

Proof. Assume that T possesses property (gab), then from Theorem 2.2 and
Corollary 2.7, T possesses property (ab) and Π(T ) = Πa(T ). Conversely, assume



150 M. Berkani, H. Zariouh

that property (ab) holds for T and Π(T ) = Πa(T ). From Theorem 2.4, T satisfies
Browder’s theorem. As we know from [3, Theorem 2.1] that Browder’s theorem is
equivalent to generalized Browdre’s theorem, it follows that T satisfies generalized
Browder’s theorem. Hence we have ∆g(T ) = Π(T ). As by hypothesis Π(T ) =
Πa(T ), then ∆g(T ) = Πa(T ) and T possesses property (gab).

Theorem 2.9. Let T ∈ L(X). Then T possesses property (b) if and only if
(i) T possesses property (ab);
(ii) ind(T − λI) = 0 for all λ ∈ ∆a(T ).

Proof. Suppose that T possesses property (b), then by [4, Theorem 2.5], T
satisfies Browder’s theorem, i.e. ∆(T ) = Π0(T ), and from [4, Corollary 2.7] we have
Π0(T ) = Π0

a(T ). So ∆(T ) = Π0
a(T ) and T possesses property (ab). If λ ∈ ∆a(T ), as

T possesses property (b) then λ ∈ Π0(T ). So ind(T − λI) = 0. Conversely, assume
that T possesses property (ab) and ind(T − λI) = 0 for all λ ∈ ∆a(T ). Since T
possesses property (ab), then T satisfies Browder’s theorem. From [4, Theorem
2.11], we see that T possesses property (b).

Now we give a characterization similar to Theorem 2.9, in the case of property
(gab).

Theorem 2.10. Let T ∈ L(X). Then T possesses property (gb) if and only if
(i) T possesses property (gab);
(ii) ind(T − λI) = 0 for all λ ∈ ∆g

a(T ).

Proof. Assume that T possesses property (gb), then from [4, Corollary 2.8], T
satisfies generalized Browder’s theorem, i.e. ∆g(T ) = Π(T ), and from [4, Corollary
2.9] we have Π(T ) = Πa(T ). Therefore ∆g(T ) = Πa(T ) and T possesses property
(gab). If λ ∈ ∆g

a(T ), as T possesses property (gb) then λ ∈ Π(T ). Hence T − λI is
a B-Weyl operator and so ind(T − λI) = 0. Conversely, assume that T possesses
property (gab) and ind(T − λI) = 0 for all λ ∈ ∆g

a(T ). Since T possesses property
(gab) then by Corollary 2.7, T satisfies generalized Browder’s theorem. From [4,
Theorem 2.12], T possesses property (gb).

The following example shows that in general properties (ab) and (gab) do not
imply properties (b) and (gb) respectively.

Example 2.11. Let R and L denote the unilateral right shift operator and
the unilateral left shift operator, respectively on the Hilbert space `2(N) and we
consider the operator T defined by T = L⊕R⊕R. Then α(T ) = 1, β(T ) = 2 and
a(T ) = ∞. This implies in particular that 0 /∈ σSF−+

(T ). Since a(T ) = ∞, it follows
that T does not satisfy a-Browder’s theorem and so T does not satisfy generalized
a-Browder’s theorem. From [4, Theorem 2.5], T does not possess property (b)
and from [4, Theorem 2.3], T does not possess property (gb). On the other hand,
σ(T ) = D(0, 1) the closed unit disc in C, Πa(T ) = ∅ and σBW (T ) = D(0, 1). Hence
σ(T ) \ σBW (T ) = Πa(T ) and T possesses property (gab). So T possesses also
property (ab).
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Remark 2.12. The properties (gab) and (ab) are not transmitted from an
operator to its adjoint. To see this, if we consider the operator T defined in Example
2.5, then σ(T ∗) = D(0, 1), σa(T ) = C(0, 1) ∪ {0}, σBW (T ∗) = D(0, 1). Moreover,
we have Πa(T ∗) = ∅. So σ(T ∗) \σBW (T ∗) = Πa(T ∗). Hence T ∗ possesses property
(gab), which implies that T ∗ possesses also property (ab). But T = (T ∗)∗ does not
possess properties (ab) and (gab).

3. Properties (gaw) and (aw)

Definition 3.1. A bounded linear operator is said to possess property (aw)
if ∆(T ) = E0

a(T ), and is said to possess property (gaw) if ∆g(T ) = Ea(T ).

Lemma 3.2. Let T ∈ L(X) be an upper semi-B-Fredholm operator. If α(T ) <
∞, then T is an upper semi-Fredholm operator.

Proof. Since T ∈ SBF+(X), there exists an integer n such that R(Tn) is closed
and T[n] : R(Tn) → R(Tn) is an upper semi-Fredholm operator. Since α(T ) < ∞,
it follows from [16, Lemma 3.3] that α(Tn) < ∞. As we know that R(Tn) is
closed, hence Tn is an upper semi-Fredholm operator. Thus T is also an upper
semi-Fredholm operator.

Theorem 3.3. Let T ∈ L(X). If T possesses property (gaw), then T possesses
property (aw).

Proof. Assume that T possesses property (gaw), then ∆g(T ) = Ea(T ). If
λ ∈ ∆(T ), then λ ∈ ∆g(T ) = Ea(T ). Hence λ is an eigenvalue of T isolated in
σa(T ). Since T − λI is a Weyl operator, then α(T − λI) is finite. So λ ∈ E0

a(T ).

Conversely, if λ ∈ E0
a(T ), then λ is an eigenvalue of T isolated in σa(T ) and

α(T − λI) < ∞. Since T possesses property (gaw), then λ ∈ ∆g(T ), and T − λI is
an upper semi-B-Fredholm operator. As α(T − λI) is finite, then from Lemma 3.2
we have T − λI is an upper semi-Fredholm operator. Since ind(T − λI) = 0, then
T − λI is a Weyl operator and λ ∈ σ(T ) \ σW (T ). Finally, we have ∆(T ) = E0

a(T ),
and T possesses property (aw).

The converse of Theorem 3.3 does not hold in general as shown by the following
example.

Example 3.4. Let T the operator defined on the Banach space `2(N)⊕ `2(N)
by

T (x1, x2, x3, . . . ) = 0⊕ (0,
x1

2
,
x2

3
,
x3

4
, . . . ).

Then σ(T ) = {0}, σW (T ) = {0}, σBW (T ) = {0}, E0
a(T ) = ∅, and Ea(T ) = {0}.

Therefore σ(T ) \ σW (T ) = E0
a(T ) and σ(T ) \ σBW (T ) 6= Ea(T ). So T possesses

property (aw) but T does not possess property (gaw).

Theorem 3.5. Let T ∈ L(X). Then T possesses property (gaw) if and only
if T possesses property (gab) and Ea(T ) = Πa(T ).
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Proof. Suppose that T possesses property (gaw), then σ(T )\σBW (T ) = Ea(T ).
If λ ∈ σ(T ) \σBW (T ), then λ ∈ isoσa(T ), and T −λI is an upper semi-B-Fredholm
operator of index less or equal than zero. Hence from [5, Theorem 2.8] we have
λ ∈ Πa(T ). This implies that σ(T ) \ σBW (T ) ⊂ Πa(T ). Now if λ ∈ Πa(T ), since
Πa(T ) ⊂ Ea(T ) is always true, then λ ∈ Ea(T ), and as T possesses property (gaw)
we have λ ∈ σ(T ) \ σBW (T ). Hence σ(T ) \ σBW (T ) = Πa(T ), i.e. T possesses
property (gab) and Πa(T ) = Ea(T ).

Conversely, assume that T possesses property (gab) and Ea(T ) = Πa(T ). Then
σ(T ) \ σBW (T ) = Πa(T ) and Ea(T ) = Πa(T ). So σ(T ) \ σBW (T ) = Ea(T ) and T
possesses property (gaw).

Similarly to Theorem 3.5 we have the following result in the case of property
(aw), which we give without proof.

Theorem 3.6. Let T ∈ L(X). Then T possesses property (aw) if and only if
T possesses property (ab) and E0

a(T ) = Π0
a(T ).

The following example shows that in general properties (gab) and (ab) do not
imply properties (gaw) and (aw) respectively.

Example 3.7. Let T ∈ L(`2(N)) defined by T (x1, x2, x3, . . . ) = (x2
3 , x3

4 , x4
5 , . . . ).

Then σ(T ) = {0}, σBW (T ) = {0} and Ea(T ) = {0}. This implies that
σ(T ) \ σBW (T ) 6= Ea(T ) and T does not possess property (gaw). Moreover,
we have σW (T ) = {0} and E0

a(T ) = {0}. Therefore σ(T ) \ σW (T ) 6= E0
a(T )

and T does not possess property (aw). On the other hand, Πa(T ) = ∅. Then
σ(T ) \ σBW (T ) = Πa(T ), i.e. T possesses property (gab), and so T possesses prop-
erty (ab).

Remark 3.8. Properties (gaw) and (aw) are not transmitted from an operator
to its adjoint. Indeed, let T ∈ L(`2(N)) defined by T (ξ1, ξ2, ξ3, . . . ) = (0, ξ1

2 , ξ2
3 , . . . ),

then T ∗(ξ1, ξ2, ξ3, . . . ) = ( ξ2
2 , ξ3

3 , . . . ). Moreover σ(T ) = {0}, σBW (T ) = {0},
σW (T ) = {0}, Ea(T ) = ∅ and E0

a(T ) = ∅. This implies that σ(T ) \ σBW (T ) =
Ea(T ) and σ(T ) \ σW (T ) = E0

a(T ). Therefore T possesses properties (gaw) and
(aw). On the other hand, σ(T ∗) = {0}, σBW (T ∗) = {0}, σW (T ∗) = {0}, Ea(T ∗) =
{0} and E0

a(T ∗) = {0}. Thus σ(T ∗) \ σBW (T ∗) 6= Ea(T ∗) and σ(T ∗) \ σW (T ∗) 6=
E0

a(T ∗). So T ∗ does not possesses properties (aw) and (gaw).

We conclude this section by some examples.

Examples 3.9. 1◦ Every unilateral right shift operator R defined on `2(N)
possesses property (gaw). Indeed, σa(R) = C(0, 1) is the unit circle of C , σ(R) =
D(0, 1) is the closed unit disc in C, σBW (R) = D(0, 1) and Ea(R) = ∅. Hence
σ(R) \ σBW (R) = Ea(R) and R possesses property (gaw).

2◦ Every unilateral left shift operator L defined on `2(N) possesses property
(gaw). Indeed σa(L) = D(0, 1), σ(L) = D(0, 1), σBW (L) = D(0, 1) and Ea(L) = ∅.
Hence σ(L) \ σBW (L) = Ea(L) and L possesses property (gaw).
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4. Conclusion

In this last part, we give a summary of the known Weyl type theorems as
in [5], including the properties introduced in [15], [2], [4] and in this paper. We
use the abbreviations gaW , aW , gW , W , (gw), (w), (gaw) and (aw) to signify
that an operator T ∈ L(X) obeys generalized a-Weyl’s theorem, a-Weyl’s theorem,
generalized Weyl’s theorem, Weyl’s theorem, property (gw), property (w), property
(gaw) and property (aw). Similarly, the abbreviations gaB, aB, gB, B, (gb), (b),
(gab) and (ab) have analogous meaning with respect to Browder’s theorem or the
properties introduced in [4] or the new properties introduced in this paper.

The following table summarizes the meaning of various theorems and proper-
ties.

gaW σa(T ) \ σSBF−+
(T ) = Ea(T ) gaB σa(T ) \ σSBF−+

(T ) = Πa(T )

aW σa(T ) \ σSF−+
(T ) = E0

a(T ) aB σa(T ) \ σSF−+
(T ) = Π0

a(T )

gW σ(T ) \ σBW (T ) = E(T ) gB σ(T ) \ σBW (T ) = Π(T )
W σ(T ) \ σW (T ) = E0(T ) B σ(T ) \ σW (T ) = Π0(T )

(gw) σa(T ) \ σSBF−+
(T ) = E(T ) (gb) σa(T ) \ σSBF−+

(T ) = Π(T )

(w) σa(T ) \ σSF−+
(T ) = E0(T ) (b) σa(T ) \ σSF−+

(T ) = Π0(T )

(gaw) σ(T ) \ σBW (T ) = Ea(T ) (gab) σ(T ) \ σBW (T ) = Πa(T )
(aw) σ(T ) \ σW (T ) = E0

a(T ) (ab) σ(T ) \ σW (T ) = Π0
a(T )

Table 1

In the following diagram, which extends the similar diagram presented in [4],
arrows signify implications between various Weyl type theorems, Browder type
theorems, property (gw), property (gb), property (gab) and property (gaw). The
numbers near the arrows are references to the results in the present paper (numbers
without brackets) or to the bibliography therein (the numbers in square brackets).

Table 2
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