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GENERAL INTEGRAL OPERATOR DEFINED
BY HADAMARD PRODUCT

B. A. Frasin

Abstract. In this paper, we introduce a new general integral operator defined by Hadamard
product. Some properties involving this operator on a class of functions of complex order are
determined . Furthermore, we obtained new sufficient conditions for this operator to be univalent
in the open unit disc. Finally, we prove several subordination results involving starlike and
convex functions of complex order. Several corollaries and consequences of the main results are
also considered.

1. Introduction and definitions

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2
anzn

which are analytic in the open unit disc U = {z : |z| < 1}. Further, by S we shall
denote the class of all functions in A which are univalent in U . For two functions
f and g analytic in U , we say that the function f(z) is subordinate to g(z), and
we write f ≺ g or f(z) ≺ g(z) , (z ∈ U), if there exists a Schwarz function w(z),
analytic in U with w(0) = 0, |w(z)| < 1, (z ∈ U), such that f(z) = g(w(z)), (z ∈ U).
For two functions f(z) ∈ A and g(z) given by

g(z) = z +
∞∑

n=2
bnzn (1.1)

their Hadamard product (or convolution) is defined by

(f ∗ g)(z) := z +
∞∑

n=2
anbnzn. (1.2)

For a function g ∈ A defined by (1.1), where bn ≥ 0 (n ≥ 2), Prajapat [17] defined
the family Sγ(g, b) so that it consists of functions f ∈ A satisfying the condition

Re
{

1 +
1
b

(
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1
)}

> γ (z ∈ U ; b ∈ C \ {0}; 0 ≤ γ < 1). (1.3)

provided that (f ∗ g)(z) 6= 0.
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128 B. A. Frasin

Several well-known subclasses of analytic functions are special cases of our
class Sγ(g, b) for suitable choices of g(z). For example,

Sγ

(
z +

∞∑
n=2

zn, b

)
= S?

γ(b) =Re
{

1 +
1
b

(
zf ′(z)
f(z)

− 1
)}

> γ

and

Sγ

(
z +

∞∑
n=2

nzn, b

)
= Cγ(b) = Re

{
1 +

1
b

(
zf ′′(z)
f ′(z)

)}
> γ

where the classes S?
γ(b) and Cγ(b) are, respectively, the classes of starlike and

convex functions of order b and type γ introduced and studied by Frasin [11]. Also,
we have

Sγ

(
z +

∞∑
n=2

Ck
k+n−1z

n, b

)
= SRk

γ(b) = Re
{

1 +
1
b

(
z(Rkf(z))′

Rkf(z)
− 1

)}
> γ

and

Sγ

(
z +

∞∑
n=2

nkzn, b

)
= SDk

γ(b) = Re
{

1 +
1
b

(
z(Dkf(z))′

Dkf(z)
− 1

)}
> γ

where Rkf(z) = z+
∑∞

n=2 Ck
k+n−1anzn, k ∈ N0 = N∪{0} is Ruscheweyh derivative

[14] and Dkf(z) = z +
∑∞

n=2 nkanzn, k ∈ N0 is Salagean derivative [18]. Finally
the class Sγ(g, b) reduces to the subclasses

Sγ

(
z +

∞∑
n=2

(a)n−1

(c)n−1
zn, b

)
= S?

γ(a, c, b) = Re
{

1 +
1
b

(
z(L(a, c)f(z))′

L(a, c)f(z)
− 1

)}
> γ

Sγ

(
z +

∞∑
n=2

[1 + (n− 1)λ]kzn, b

)
= SDk

γ(λ, b) = Re
{

1 +
1
b

(
z(Dk

λf(z))′

Dk
λf(z)

− 1
)}

> γ

and

Sγ

(
z +

∞∑
n=2

(δ1)n−1 . . . (δq)n−1

(β1)n−1 . . . (βs)n−1(n− 1)!
zn, b

)
= SH?

γ(q, s, b)

= Re
{

1 +
1
b

(
z(Hq

s [δ1]f(z))′

Hq
s [δ1]f(z)

− 1
)}

> γ.

The subclass S?
γ(a, c, b) introduced and studied by Selvaraj and Karthikeyan

[19] and this class defined by the Carlson-Shaffer [9] linear operator L(a, c)f(z) :=
z+

∑∞
n=2

(a)n−1
(c)n−1

anzn. The subclass SH?
γ(q, s, b) introduced and studied by Prajapat

[17] and defined by the Dziok-Srivastava operator [10]

Hq
s [δ1] = z +

∞∑
n=2

(δ1)n−1 . . . (δq)n−1

(β1)n−1 . . . (βs)n−1

anzn

(n− 1)!

and the subclass SDk
γ(λ, b); 0 ≤ λ ≤ 1, defined by Al-Oboudi operator [2] Dk

λf(z) =
z +

∑∞
n=2[1 + (n− 1)λ]kanzn.
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Remark 1.1. The classes S?
0 (b) and C0(b) of starlike and convex functions of

complex order b in U were introduced and investigated earlier by Nasr and Aouf [16]
and Wiatrowski [21]. Also, we note that SDk

γ(1, b) = SDk
γ(b) and SH?

γ(1, 1, b) =
S?

γ(δ1, β1, b).
Using the Hadamard product defined by (1.2), we introduce the following gen-

eral integral operator.

Definition 1.2. Given fi, gi ∈ A, αi ∈ C for all i = 1, . . . , n, n ∈ N. We let
I : An → A be the integral operator defined by

I(f1, . . . , fn; g1, . . . , gn)(z) = F(z) =
∫ z

0

(
(f1 ∗ g1)(t)

t

)α1

· · ·
(

(fn ∗ gn)(t)
t

)αn

dt

(1.4)
where (f ∗ g)(z)/z 6= 0, z ∈ U .

Remark 1.3. Note that the integral operator F(z) generalize many operators
introduced and studied by several authors, for example:

(1) For g1 = · · · = gn = z
1−z , we obtain the integral operator

Fn(z) =
∫ z

0

(
f1(t)

t

)α1

. . .

(
fn(t)

t

)αn

dt (1.5)

introduced and studied by Breaz and Breaz [4].
(2) For g1 = · · · = gn = z

(1−z)2 , we obtain the integral operator

Fα1,... ,αn(z) =
∫ z

0

(f ′1(t))
α1 . . . (f ′n(t))αn dt (1.6)

introduced and studied by Breaz et al. [6].
(3) For g1 = · · · = gn = z +

∑∞
n=2 Ck

k+n−1z
n, we obtain the integral operator

I(f1, . . . , fn)(z) =
∫ z

0

(
Rkf1(t)

t

)α1

. . .

(
Rkfn(t)

t

)αn

dt (1.7)

introduced in [13].
(4) For g1 = · · · = gn = z +

∑∞
n=2 nkzn, we obtain the integral operator

IkF (z) =
∫ z

0

(
Dkf1(t)

t

)α1

. . .

(
Dkfn(t)

t

)αn

dt

introduced and studied by Breaz et al. [5].
(5) For g1 = · · · = gn = z +

∑∞
n=2[1 + (n − 1)λ]kzn, we obtain the integral

operator

In(f1, . . . , fn)(z) =
∫ z

0

(
Dk

λf1(t)
t

)α1

. . .

(
Dk

λfn(t)
t

)αn

dt

introduced and studied by Bulut [8].
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(6) For g1 = · · · = gn = z +
∑∞

n=2
(a)n−1
(c)n−1

zn, we obtain the integral operator

Fα(a, c; z) =
∫ z

0

(
L(a, c)f1(t)

t

)α1

. . .

(
L(a, c)fn(t)

t

)αn

dt (1.8)

introduced and studied by Selvaraj and Karthikeyan [19].

(7) For g1 = z
1−z and α1 = 1, n = 1, we obtain Alexander integral operator

introduced in [1]

I(z) =
∫ z

0

f1(t)
t

dt

(8) For g1 = z
1−z and α1 = 1; n = 1, we obtain the integral operator

Fα(z) =
∫ z

0

(
f(t)

t

)α

dt

studied in [15].

In order to derive our main results, we have to recall here the following univa-
lence criteria.

Lemma 1.4. [3] If f ∈ A satisfies

(1− |z|2)
∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 (z ∈ U),

then the function f is univalent in U .

Lemma 1.5. [12] Let f ∈ C0(b), b ∈ C\{0}, and let a 6= 0 be a complex number
and either |2ab + 1| ≤ 1 or |2ab− 1| ≤ 1. Then

(f ′(z))a ≺ (1− z)−2ab

and this is the best dominant.

2. Convexity of the operator I(f1, . . . , fn; g1, . . . , gn)

We first prove

Theorem 2.1. Let αi > 0, 0 ≤ γi < 1 for all i = 1, . . . , n and 0 ≤ 1 +∑n
i=1 αi(γi−1) < 1. If fi ∈ Sγi(gi, b) for i = 1, . . . , n, b ∈ C\{0} then the integral

operator F given by (1.4) belongs to Cδ(b), where δ = 1 +
∑n

i=1 αi(γi − 1).

Proof. From the definition (1.4), we observe that F ∈ A, i.e. F(0) = F ′(0)−
1 = 0. On the other hand, it is easy to see that

F ′(z) =
n∏

i=1

(
(fi ∗ gi)(z)

z

)αi
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and (
zF ′′(z)
F ′(z)

)
=

n∑
i=1

αi

(
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
)

(2.1)

thus we have

1
b

(
zF ′′(z)
F ′(z)

)
=

1
b

n∑
i=1

αi

(
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
)

=
n∑

i=1

αi

[
1 +

1
b

(
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
)]

−
n∑

i=1

αi

or, equivalently,

1 +
1
b

(
zF ′′(z)
F ′(z)

)
=

n∑
i=1

αi

[
1 +

1
b

(
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
)]

−
n∑

i=1

αi + 1 (2.2)

Taking the real part of both terms of (2.2), we have

Re
{

1 +
1
b

(
zF ′′(z)
F ′(z)

)}
=

n∑
i=1

αi Re
[
1 +

1
b

(
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
)]

−
n∑

i=1

αi + 1.

(2.3)
Since fi ∈ Sγi

(gi, b) for all i = 1, . . . , n, from ((1.3) and (2.3) we obtain

Re
{

1 +
1
b

(
zF ′′(z)
F ′(z)

)}
> 1 +

n∑
i=1

αi(γi − 1),

but by the hypothesis 0 ≤ 1 +
∑n

i=1 αi(γi − 1) < 1,we have F ∈ Cδ(b), where
δ = 1 +

∑n
i=1 αi(γi − 1).

Letting g1 = · · · = gn = z
1−z in Theorem 2.1, we have

Corollary 2.2. [7] Let αi > 0, 0 ≤ γi < 1 for all i = 1, . . . , n and 0 ≤
1 +

∑n
i=1 αi(γi − 1) < 1. If fi ∈ S?

γi
(b) for i = 1, . . . , n, b ∈ C \ {0}, then the

integral operator Fn given by (1.5) belongs to Cδ(b), where δ = 1+
∑n

i=1 αi(γi−1).

Letting g1 = · · · = gn = z
(1−z)2 in Theorem 2.1, we have

Corollary 2.3. [7] Let αi > 0, 0 ≤ γi < 1 for all i = 1, . . . , n and 0 ≤
1+

∑n
i=1 αi(γi−1) < 1. If fi ∈ Cγi(b) for i = 1, . . . , n, b ∈ C\{0}, then the integral

operator Fα1,...,αn given by (1.6) belongs to Cδ(b), where δ = 1 +
∑n

i=1 αi(γi − 1).

Letting g1 = · · · = gn = z +
∞∑

n=2

(a)n−1
(c)n−1

zn in Theorem 2.1, we have

Corollary 2.4. [19] Let αi > 0, 0 ≤ γ < 1 for all i = 1, . . . , n and
0 ≤ 1+(γ−1)

∑n
i=1 αi < 1. If fi ∈ S?

γi
(a, c, b) for i = 1, . . . , n, b ∈ C\{0}, then the

integral operator Fα(a, c; z) given by (1.8) belongs to Cδ(b), δ = 1+(γ−1)
∑n

i=1 αi.

Remark 2.5. Taking different choices of g1 = · · · = gn as stated in Sec-
tion 1, Theorem 2.1 leads to new sufficient conditions for the integral operators
I(f1, . . . , fn)(z), IkF (z), and In(f1, . . . , fn)(z) to be in Cδ(b).
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3. Univalence conditions

Applying Lemma 1.4, we prove

Theorem 3.1. Let fi, gi ∈ A, αi ∈ C for all i = 1, . . . , n. If
∣∣∣∣
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
∣∣∣∣ ≤ 1 (z ∈ U),

and
∑n

i=1 |αi| ≤ 1, then the integral operator F given by (1.4) is univalent.

Proof. It follows from (2.1) that
∣∣∣∣
zF ′′(z)
F ′(z)

∣∣∣∣ ≤
n∑

i=1

|αi|
∣∣∣∣
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
∣∣∣∣ (3.1)

On multiplying the inequality (3.1) by (1− |z|2), we obtain

(1− |z|2)
∣∣∣∣
zF ′′(z)
F ′(z)

∣∣∣∣ ≤ (1− |z|2)
n∑

i=1

|αi|
∣∣∣∣
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
∣∣∣∣

≤ (1− |z|2)
n∑

i=1

|αi| ≤
n∑

i=1

|αi| ≤ 1. (3.2)

From Lemma 1.4, we have F ∈ S.
Letting g1 = · · · = gn = z

1−z in Theorem 3.1, we have

Corollary 3.2. [4] Let fi ∈ A, αi ∈ C for all i = 1, . . . , n. If
∣∣∣∣
zfi

′(z)
fi(z)

− 1
∣∣∣∣ ≤ 1 (z ∈ U),

and
∑n

i=1 |αi| ≤ 1, then the integral operator Fn given by (1.5) is univalent.

Letting g1 = · · · = gn = z +
∑∞

n=2 Ck
k+n−1z

n in Theorem 3.1, we have

Corollary 3.3. [13] Let fi ∈ A, αi ∈ C for all i = 1, . . . , n. If
∣∣∣∣
z(Rkfi(z))′

Rkfi(z)
− 1

∣∣∣∣ ≤ 1 (z ∈ U),

and
∑n

i=1 |αi| ≤ 1, then the integral operator I(f1, . . . , fn)(z) given by (1.7) is
univalent.

Letting g1 = · · · = gn = z +
∞∑

n=2

(a)n−1
(c)n−1

zn in Theorem 3.1, we have

Corollary 3.4. [19] Let fi ∈ A, αi ∈ C for all i = 1, . . . , n. If
∣∣∣∣
z(L(a, c)fi(z))′

L(a, c)fi(z)
− 1

∣∣∣∣ ≤ 1 (z ∈ U),

and
∑n

i=1 |αi| ≤ 1, then the integral operator Fα(a, c; z) given by (1.8) is univalent.
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Remark 3.5. Taking different choices of g1 = · · · = gn as stated in Sec-
tion 1, Theorem 3.1 leads to new sufficient conditions for the integral operators
Fα1,... ,αn(z), IkF (z) and In(f1, . . . , fn)(z) to be univalent in U .

Now, we prove

Theorem 3.6. Let fi, gi ∈ A, αi ∈ C for all i = 1, . . . , n. If fi, gi satisfy the
conditions

(i) |(fi ∗ gi)(z)| ≤ 1,

(ii)
∣∣∣ z2(fi∗gi)

′(z)
[(fi∗gi)(z)]2 − 1

∣∣∣ ≤ 1,

(iii) 3
n∑

i=1

|αi| ≤ 1

for all z ∈ U , then the integral operator F given by (1.4) is univalent.

Proof. From (3.2), we get

(1− |z|2)
∣∣∣∣
zF ′′(z)
F ′(z)

∣∣∣∣ ≤ (1− |z|2)
n∑

i=1

|αi|
∣∣∣∣
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

∣∣∣∣ + (1− |z|2)
n∑

i=1

|αi|

= (1− |z|2)
n∑

i=1

|αi|
∣∣∣∣
z2(fi ∗ gi)′(z)
[(fi ∗ gi)(z)]2

∣∣∣∣
∣∣∣∣
(fi ∗ gi)(z)

z

∣∣∣∣ + (1− |z|2)
n∑

i=1

|αi| .

Using Schwarz’s lemma and the conditions (i), (ii) and (iii) we obtain

(1− |z|2)
∣∣∣∣
zF ′′(z)
F ′(z)

∣∣∣∣ ≤ (1− |z|2)
n∑

i=1

|αi|
∣∣∣∣
z2(fi ∗ gi)′(z)
[(fi ∗ gi)(z)]2

∣∣∣∣ + (1− |z|2)
n∑

i=1

|αi|

= (1− |z|2)
n∑

i=1

|αi|
∣∣∣∣
z2(fi ∗ gi)′(z)
[(fi ∗ gi)(z)]2

− 1 + 1
∣∣∣∣ + (1− |z|2)

n∑
i=1

|αi|

≤ (1− |z|2)
n∑

i=1

|αi|
∣∣∣∣
z2(fi ∗ gi)′(z)
[(fi ∗ gi)(z)]2

− 1
∣∣∣∣ + 2(1− |z|2)

n∑
i=1

|αi|

≤ 3(1− |z|2)
n∑

i=1

|αi| ≤ 1.

Hence by Lemma 1.4, we have F ∈ S.
Letting g1 = · · · = gn = z +

∑∞
n=2 Ck

k+n−1z
n in Theorem 3.6, we have

Corollary 3.7. [13] Let fi ∈ A, αi ∈ C for all i = 1, . . . , n, satisfy
(i)

∣∣Rkfi(z)
∣∣ ≤ 1,

(ii)
∣∣∣ z2(Rkfi(z))′

(Rkfi(z))2
− 1

∣∣∣ ≤ 1,

(iii) 3
n∑

i=1

|αi| ≤ 1

then the integral operator I(f1, . . . , fn)(z) given by (1.7) is univalent.

Remark 3.8. Taking different choices of g1 = · · · = gn as stated in Sec-
tion 1, Theorem 3.6 leads to new sufficient conditions for the integral operators
Fn(z), Fα1,... ,αn(z), IkF (z), In(f1, . . . , fn)(z) and Fα(a, c; z) to be univalent in U .
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4. Subordination results

At last, we prove the following subordination result

Theorem 4.1. Let fi ∈ Sγ(gi, b) for i = 1, . . . , n, b ∈ C \ {0}, γ = 1/αi;
αi > 1 with

∑n
i=1 αi < n + 1 and let a 6= 0 be a complex number and either

|2ab + 1| ≤ 1 or |2ab− 1| ≤ 1. Then

(F ′(z))a =
n∏

i=1

(
(fi ∗ gi)(z)

z

)aαi

≺ (1− z)−2ab (z ∈ U),

and this is the best dominant.

Proof. Let fi ∈ Sγ(gi, b) for i = 1, . . . , n, b ∈ C\{0} where γ = 1−(1/
∑n

i=1 αi)
and

∑n
i=1 αi ≥ 1, then from (2.3), we obtain

Re
{

1 +
1
b

(
zF ′′(z)
F ′(z)

)}
=

n∑
i=1

αi Re
[
1 + 1

b

(
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
)]

−
n∑

i=1

αi + 1 > 0

and thus F ∈ C0(b). Applying Lemma 1.5, we have (F ′(z))a ≺ (1− z)−2ab that is,

n∏

i=1

(
(fi ∗ gi)(z)

z

)aαi

≺ (1− z)−2ab

Letting g1 = · · · = gn = z
1−z in Theorem 4.1, we have

Corollary 4.2. Let fi ∈ S?
γ(b) for i = 1, . . . , n, b ∈ C \ {0}, γ = 1/αi;

αi > 1 with
∑n

i=1 αi < n + 1 and let a 6= 0 be a complex number and either
|2ab + 1| ≤ 1 or |2ab− 1| ≤ 1. Then

n∏

i=1

(
fi(z)

z

)aαi

≺ (1− z)−2ab (z ∈ U),

and this is the best dominant.

Letting g1 = · · · = gn = z
(1−z)2 in Theorem 4.1, we have

Corollary 4.3. Let fi ∈ Cγ(b) for i = 1, . . . , n, b ∈ C\{0}, γ = 1/αi; αi > 1
with

∑n
i=1 αi < n + 1 and let a 6= 0 be a complex number and either |2ab + 1| ≤ 1

or |2ab− 1| ≤ 1. Then

n∏

i=1

(f ′i(z))aαi ≺ (1− z)−2ab (z ∈ U),

and this is the best dominant.

Letting n = 1, α1 = a = 1 and f1 = f in Theorem 4.1, then we have the
following result obtained by Srivastava and Lashin [20].
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Corollary 4.4. [20] Let f ∈ C0(b), b ∈ C \ {0}. Then

f ′(z) ≺ 1
(1− z)2b

(z ∈ U),

and this is the best dominant.

Remark 4.5. In view of Theorem 4.1 and by taking different choices of
g1 = · · · = gn as mentioned in Section 1, we obtain new subordination results
for functions in the classes SRk

γ(b), SDk
γ(b), S?

γ(a, c, b) , SH?
γ(q, s, b) and SDk

γ(λ, b).
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