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SENSITIVITY ANALYSIS IN MULTI-PARAMETRIC
STRICTLY CONVEX QUADRATIC OPTIMIZATION

B. Kheirfam

Abstract. In this paper, we study multi-parametric sensitivity analysis for support set and
optimal partition invariancy with simultaneous perturbations in the right-hand-side of constraints
and the Linear Term of the objective function of the quadratic programming. We show that the
invariancy regions are convex polyhedral sets and we describe the set of admissible parameters
by the basis vectors of the lineality space and the extreme directions of the defined cone over
appropriate problems, and compare them with the linear optimization case.

1. Introduction

Sensitivity analysis and parametric programming, in particular, multi-para-
metric programming are still in focus of research [3, 5, 6]. In practice, numerical
results are subject to errors and the exact solution of the problem under consid-
eration is not known. The results obtained by numerical methods although are
approximations of the solutions of the problem but they could be considered as the
exact solutions of a corresponding perturbed problem. This is a motivation for sen-
sitivity analysis. Usually perturbations occur in the right-hand-side (RHS) of the
constraints and/or in the linear term of the objective function. If perturbation in
the data happens with identical parameter, the problem is called a single-parametric
optimization problem. Quadratic optimization problems have been solved para-
metrically [11, 17] and the method is based on simplex method. Karmarkar [12]
introduced a method which solves linear optimization problems in polynomial time
which is known as interior point method led to reconsider sensitivity analysis for
linear optimization [1, 6, 8, 16], quadratic optimization [6]. The concept of opti-
mal partition introduced originally [7] has been extended to quadratic optimization
[2]. The optimal partition sensitivity analysis for quadratic optimization problems
have been studied when perturbation occurs in the right-hand-side (RHS) or in the
linear term of the objective function where the authors investigated the behavior
of the optimal value function along with its characteristics [6]. A different view
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of sensitivity analysis named support set sensitivity analysis has been introduced
by Koltai and Terlaky [13]. Hladik [10] studied support set and optimal partition
invariancy sensitivity analysis for multi-parameter linear optimization. However,
there are some differences in support set and optimal partition invariancy sensitivity
analysis in linear optimization and in convex quadratic optimization problems.

In this paper, we study these differences and show how to determine the invari-
ancy regions for convex quadratic optimization in view of critical regions which are
polyhedral sets. Also we point out the cases in which the support set and optimal
partition invariancy sensitivity analysis of convex quadratic optimization problems
are the same as support set and optimal partition invariancy sensitivity analysis of
linear optimization problems.

Let us consider the primal problem

min cT x +
1
2
xT Qx

s.t : Ax = b (QP)
x ≥ 0,

and its Wolfe dual

maxbT y − 1
2
xT Qx

s.t : AT y + s−Qx = c (QD)
s ≥ 0,

where Q ∈ Rn×n is a symmetric positive semidefinite matrix, A ∈ Rm×n, b ∈
Rm and c ∈ Rn are fixed data and x, s ∈ Rn and y ∈ Rm are unknown vectors.
We denote the feasible solution set of the primal and dual problems by

QP = {x : Ax = b, x ≥ 0},
QD = {(y, s) : AT y + s−Qx = c, s ≥ 0},

respectively. Feasible solutions x ∈ QP and (y, s) ∈ QD are optimal if and only
if xT s = 0 [4]. Also let QP∗ and QD∗ denote the corresponding optimal solution
sets. Then for any x ∈ QP∗ and (y, s) ∈ QD∗ we have

xisi = 0, i = 1, 2, . . . , n.

The support set of a nonnegative vector x is defined by

σ(x) = {i : xi > 0}.
The index set {1, 2, . . . , n} can be partitioned into subsets

B = {i : xi > 0 for some x ∈ QP∗},
N = {i : si > 0 for some (y, s) ∈ QD∗},
T = {1, 2, . . . , n} \ (B ∪ N )

= {i : xi = si = 0 for all x ∈ QP∗ and (x, y, s) ∈ QD∗}.
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This partition is known as the optimal partition of the index set {1, 2, . . . , n} for
problems (QP ) and (QD), and is denoted by π = (B,N , T ). The uniqueness of
the optimal partition follows from the convexity of the optimal solution sets QP∗
and QD∗. A maximally complementary solution (x,y, s) is a pair of primal-dual
optimal solutions of QP and QD for which

xi > 0 if and only if i ∈ B,

si > 0 if and only if i ∈ N .

The existence of maximally complementary solution is a consequence of the convex-
ity of the optimal solution sets QP∗ and QD∗ [14]. Knowing a maximally comple-
mentary solution, one can easily determine the optimal partition as well. If T = ∅
in an optimal partition, then any maximally complementary solution is strictly
complementary. It is worth to mention that we have σ(x∗) ⊆ B and σ(s∗) ⊆ N for
any pair of primal-dual optimal solutions (x∗,y∗, s∗).

Let λ and ε be k-dimensional vectors of parameters. We consider the paramet-
ric primal problem in the general form

min cT (ε)x +
1
2
xT Qx

s.t : Ax = b(λ) (QPP)
x ≥ 0,

and its Wolfe dual

maxbT (λ)y − 1
2
xT Qx

s.t : AT y + s−Qx = c(ε) (QDP)
s ≥ 0.

Let x∗ and (x∗,y∗, s∗) be the optimal solutions of (QP ) and (QD) respectively.
The corresponding optimal partition is denoted by π = (B,N , T ). Let us define
two kinds of invariancy sensitivity analysis as follows.

Support set invariancy: Sensitivity analysis aims to identify the range of
the parameters variations, in which the perturbed problem has an optimal solution
with the same support set as of the unperturbed problem i.e. σ(x) = σ(x∗). Note
that the given optimal solution is not necessarily a basic feasible solution.

Optimal partition invariancy: We want to find (λ, ε) such that the per-
turbed problem has a the same optimal partition as the unperturbed problems i.e.
we are interested in finding the region where

{(λ, ε) : π(λ, ε) = π}.

The corresponding sets of sensitivity analysis are denoted by ΥP (x∗) and Υπ

respectively which are referred to as critical regions.
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Now we try to extend support set and optimal partition invariancy sensitivity
analysis to multi-parametric case when the perturbations occur independently and
simultaneously. Thus some definitions and theorems on polyhedron are quoted
from [15].

Definition 1. A set C ⊆ Rn is a polyhedron if and only if there exist an m×n
matrix H and a vector h of m real numbers such that C = {x ∈ Rn : Hx ≤ h}
where 0 < m < ∞.

Definition 2. The lineality space of C is defined as

LC = {x ∈ Rn : Hx = 0}.
Clearly, 0 ∈ LC and we have LC = {0} if and only if r(H) = n. Let

L⊥C = {x ∈ Rn : yT x = 0 for all y ∈ LC},
be the orthogonal complement of LC in Rn. Thus, we have dimLC = n− r(H) and
dimL⊥C = r(H) and LC = {0} if and only if L⊥C = Rn. Let G be the matrix of the
rows vectors that form a basis for LC . Then G has n− r(H) rows and n columns
r(G) = n− r(H) and L⊥C = {x ∈ Rn : Gx = 0}.

Definition 3. Let S ⊆ Rn be any set. Then the set

{x ∈ Rn : x =
t∑

i=1

µixi,
t∑

i=1

µi = 1, µi ≥ 0, xi ∈ S, 0 ≤ t < ∞},

is the convex hull, or conv(S) of S and the set

{x ∈ Rn : x =
t∑

i=1

µixi, µi ≥ 0, xi ∈ S, 0 ≤ t < ∞},

is the conical hull of S, or cone(S).

Theorem 4. Let C be a polyhedron, LC its lineality space and C0 = C∩L⊥C .
Denote by S = {x1, . . . ,xq} the extreme points and by T = {y1, . . . ,yr} the
extreme directions of C0. Then C0 = conv(S)+ cone(T) and C = LC + conv(S)+
cone(T).

2. Invariancy regions

To identify the sets ΥP (x∗) and Υπ, a computational method is introduced in
this section.

2.1. Support set invariancy.
Let (x∗,y∗, s∗) be a primal-dual optimal solution of (QP ) and (QD) with

P = σ(x∗) and Z = {1, 2, . . . , n} \ P . Consider the partition (P,Z) of the index
set {1, 2, . . . , n} for matrices A, Q and the vectors x, c and s as follows

Q =
(

QPP QPZ

QT
PZ QZZ

)
, A = (AP AZ ) ,

c =
(

cP

cZ

)
, x =

(
xP

xZ

)
, s =

(
sP

sZ

)
.

(1)
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We want to identify the set ΥP (x∗).

Theorem 5. Let (hP
i ,hi), i ∈ I be a basis of the lineality space

L = {(v,u) : AT
P v −QPP uP −QPZuZ = 0, Au = 0, uZ = 0},

and let (gP
j ,gj), ∀j ∈ J be all extreme directions of the convex polyhedron cone

S = {(v,u) : AT
P v −QPP uP −QPZuZ ≥ 0, Au = 0, uZ ≥ 0} ∩ L⊥.

Then

ΥP (x∗) = {(λ, ε) : b(λ)T hP
i +c(ε)T hi = 0, ∀i ∈ I, b(λ)T gP

j +c(ε)T gj > 0, ∀j ∈ J}.

Proof. First we identify the set of (λ, ε) such that support set of the given
solution remains invariant i.e.

ΥP (x∗) = {(λ, ε) : ∃(x,y, s) ∈ QPP∗ ×QDP∗ with σ(x) = P}
= {(λ, ε) : Ax = b(λ), AT y + s−Qx = c(ε),

x, s ≥ 0, xT s = 0, σ(x) = P}
= {(λ, ε) : AP xP = b(λ),xP > 0, AT

P y −QPP xP = cP (ε),

AT
Zy − (QPZ)T xP ≤ cZ(ε)}.

Therefore, it is sufficient to determine the set of λ and ε for which the system

AP xP = b(λ)

AT
P y −QPP xP = cP (ε)

AT
Zy − (QPZ)T xP ≤ cZ(ε)

xP > 0,

(2)

can be solved. But the system (2) is solvable if and only if the corresponding
problem

max 0T y + 0T xP

s.t : AP xP = b(λ)

AT
P y −QPP xP = cP (ε)

AT
Zy − (QPZ)T xP ≤ cZ(ε)

xP ≤ −η,

(3)

has an optimal solution for sufficiently small η > 0. From duality theory in linear
programming it is equivalent to the optimality of the following dual problem

min b(λ)T v + c(ε)T u− ηT wP

s.t : AT
P v −QPP uP −QPZuZ −wP = 0

Au = 0
uZ ≥ 0
wP ≥ 0.

(4)
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On the other hand the problem (4) is equivalent to

min
(
b(λ)−AP η

)T
v +

(
c(ε)T + ηT [QPP ,QPZ ]

)
u

s.t : AT
P v −QPP uP −QPZuZ ≥ 0

Au = 0
uZ ≥ 0.

(5)

Now let L denote the lineality space of the problem (5) i.e.

L = {(v,u) : AT
P v −QPP uP −QPZuZ = 0, Au = 0, uZ = 0}.

Let (hP
i ,hi), i ∈ I denote the vectors of basis of L, and (gP

j ,gj), j ∈ J denote the
extreme directions of S = {(v,u) : AT

P v −QPP uP −QPZuZ ≥ 0, Au = 0, uZ ≥
0} ∩ L⊥. Any solution of problem (5) can be written as

(v,u) =
∑
i∈I

µi(hP
i ,hi) +

∑
j∈J

µ
′
j(g

P
j ,gj)

=
( ∑

i∈I

µihP
i +

∑
j∈J

µ
′
jg

P
j ,

∑
i∈I

µihi +
∑
j∈J

µ
′
jg

)
, µ

′
j ≥ 0, ∀j ∈ J, (6)

by Theorem 1. From weak duality Theorem, we have

(b(λ)−AP η)T (
∑

i∈I

µihP
i +

∑

j∈J

µ
′
jg

P
j )

+
(
c(ε)T + ηT [QPP ,QPZ ]

)( ∑

i∈I

µihi +
∑

j∈J

µ
′
jgj)

) ≥ 0,

which holds if and only if{
b(λ)−AP η)T hP

i +
(
c(ε)T + ηT [QPP ,QPZ ]

)
hi = 0, ∀i ∈ I,

(b(λ)−AP η)T gP
j +

(
c(ε)T + ηT [QPP , QPZ ]

)
gj ≥ 0, ∀j ∈ J.

(7)

Since AT
P hP

i −[QPP ,QPZ ]hi = 0 for all i ∈ I and 0 6= −AT
P gP

j +[QPP ,QPZ ]gj ≤ 0
for all j ∈ J , then from (7) we get

{
b(λ)T hP

i + c(ε)T hi = 0, ∀i ∈ I,

b(λ)T gP
j + c(ε)T gj > 0, ∀j ∈ J.

(8)

Therefore, (8) describes the set ΥP (x∗).
Remark 6. If Q = 0, then the problems (QPP) and (QDP) reduce to linear

optimization problems. In this case, we have

ΥP (x∗) = {λ : AP xP = b(λ),xP > 0} × {ε : AT
P y = cP (ε),AT

Zy ≤ cZ(ε)},
and the relation (7) reduces to





(b(λ)−AP η)T hP
i = 0, ∀i ∈ I,

(b(λ)−AP η)T gP
j ≥ 0, ∀j ∈ J,

c(ε)T hi = 0, ∀i ∈ I,

c(ε)T gj ≥ 0, ∀j ∈ J.

(9)
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Therefore

ΥP (x∗) = {λ : b(λ)T hP
i = 0, ∀i ∈ I, b(λ)T gP

j > 0, ∀j ∈ J}
× {ε : c(ε)T hi = 0, ∀i ∈ I, c(ε)T gj ≥ 0, ∀j ∈ J},

where hP
i , i ∈ I, and gP

j , j ∈ J , are the basis vectors

L1 = {v : AT
p v = 0},

and the extreme directions

S1 = {v : AT
p v ≥ 0} ∩ L⊥1 ,

and also hi, i ∈ I, and gj , j ∈ J , are the basis vectors

L2 = {u : Au = 0, uz = 0},
and the extreme directions

S2 = {u : Au = 0, uz ≥ 0} ∩ L⊥2 ,

respectively.
Remark 7. Let Q = 0 and ε = 0. In this case, the set of optimal solutions of

dual problem is invariant [16]. Therefore, we will have

ΥP (x∗) = {λ : AP xP = b(λ),xP > 0}.
Thus,

ΥP (x∗) = {λ : b(λ)T hP
i = 0, ∀i ∈ I, b(λ)T gP

j > 0, ∀j ∈ J},
where hP

i , i ∈ I, and gP
j , j ∈ J are defined as in Remark 6. One can see that

ΥP (x∗) is the same as Theorem 5 in [10].
Remark 8. Let Q = 0 and λ = 0. In this case, the set of optimal solutions of

primal problem is invariant [16]. Therefore, we will have

ΥP (x∗) = {ε : AT
P y = cP (ε),AT

Zy ≤ cZ(ε)}.
Thus,

ΥP (x∗) = {ε : c(ε)T hi = 0, ∀i ∈ I, c(ε)T gj ≥ 0, ∀j ∈ J},
where hi, i ∈ I, and gj , j ∈ J are defined as in Remark 6, and note that ΥP (x∗)
is as Theorem 1 in [10].

Example 1. Consider the problem

min x2
1 + 2x1x2 + x2

2

s.t : x1 + x2 − x3 = 2
x2 + x4 = 2

−x1 + x2 + x5 = 2
x1, x2, x3, x4, x5 ≥ 0.
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Let b(λ) = (2 + λ, 2 − λ, 2 − 2λ). It is easy to verify that optimal partition for
λ = 0 is as follows

π = (B,N , T ) = ({1, 2, 4, 5}, {3}, ∅),
and x∗ = (2, 0, 0, 2, 4) is an optimal solution with σ(x∗) = {1, 4, 5}. Using Theorem
5, we specify ΥP (x∗). The lineality space and convex polyhedron cone are

L = {(v,u) : v1 − v3 − 2u1 − 2u2 = 0, u1 + u2 − u3 = 0, u2 + u4 = 0,

− u1 + u2 + u5 = 0, v2 = v3 = u2 = u3 = 0},
S = {(v,u) : v1 − v3 − 2u1 − 2u2 ≥ 0, u1 + u2 − u3 = 0, u2 + u4 = 0,

− u1 + u2 + u5 = 0, u2, u3, v2, v3 ≥ 0}.
Since L = {0}, thus there is no basis for the lineality space and the extreme
directions of the set S are as follows

gP
1 = (1, 0, 0)T , g1 = (−1, 1, 0,−1,−2)T , gP

3 = (1, 0, 1)T ,

gP
2 = (0, 1, 0)T , g2 = (0, 0, 0, 0, 0)T , g3 = (0, 0, 0, 0, 0)T .

Hence, we have

ΥP (x∗) = {λ : 2 + λ > 0, 2− λ > 0} = (−2, 2).

The region is matched with the region obtained for single-parametric case [9].

3. Optimal partition invariancy

Let π = (B,N , T ) be an optimal partition of the primal-dual problems (QP)
and (QD). We consider partition (B,N , T ) of the index set {1, 2, . . . , n} for matrices
A, Q and vectors x, c and s as follows.

Q =




QBB QBN QBT
QT
BN QNN QNT

QT
BT QT

NT QT T


 A = (AB AN AT )

c =




cB
cN
cT


 , x =




xB
xN
xT


 , s =




sB
sN
sT


 .

(10)

The following theorem describes the set Υπ.

Theorem 9. Let (hBi ,hi), i ∈ I be a basis of the lineality space

L = {(u,w) : AT
Bu− [

QT
BB,QBT ,QBN

]



wB
wT
wN


 = 0, Aw = 0, wN = 0},

and let (gBj ,gj), ∀j ∈ J be all extreme directions of the convex polyhedron cone

S = {(u,w) : AT
Bu− [

QT
BB,QBT ,QBN

]



wB
wT
wN


 ≥ 0, Aw = 0, wN ≥ 0} ∩ L⊥.
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Then

Υπ = {(λ, ε) : b(λ)T hBi + c(ε)T hi = 0, ∀i ∈ I, b(λ)T gBj + c(ε)T gj > 0, ∀j ∈ J}.

Proof. First we identify the set of (λ, ε) such that given optimal partition
remains invariant, i.e.,

Υπ = {(λ, ε) : π(λ, ε) = π}
= {(λ, ε) : Ax = b(λ), AT y + s−Qx = c(ε),

xB > 0, sN > 0, xN∪T = sB∪T = 0}
= {(λ, ε) : ABxB = b(λ),xB > 0, AT

By −QBBxB = cB(ε),

AT
Ny −QT

BNxB < cN (ε), AT
T y −QT

BT xB = cT (ε)}.

Therefore, it is sufficient to determine the set of λ and ε for which the system

ABxB = b(λ)

AT
By −QBBxB = cB(ε)

AT
Ny −QT

BNxB < cN (ε)

AT
T y −QT

BT xB = cT (ε)
xB > 0,

(11)

can be solved. The system (11) is solvable if and only if the corresponding problem

max 0T y + 0T xP

s.t : ABxB = b(λ)

AT
By −QBBxB = cB(ε)

AT
Ny −QT

BNxB ≤ cN (ε)− η

AT
T y −QT

BT xB = cT (ε)
xB ≥ ζ,

(12)

has an optimal solution for sufficiently small vectors η > 0 and ζ > 0. From duality
theory in linear programming it is equivalent to the optimality of the following dual
problem

minb(λ)T u + cB(ε)T wB + cT (ε)T wT + (cN (ε)− η)T wN − ζT v

s.t : AT
Bu−QT

BBwB −QBTwT −QBNwN − v = 0
Aw = 0
wN ≥ 0
v ≥ 0.

(13)
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On the other hand the problem (13) is equivalent to

min
(
b(λ)−ABζ

)T
u + c(ε)T w − ηT wN + ζT [QT

BB,QBT ,QBN ]




wB
wT
wN




s.t : AT
Bu−QT

BBwB −QBTwT −QBNwN ≥ 0
Aw = 0
wN ≥ 0.

(14)

Now let L denote the lineality space of the problem (14) i.e.

L = {(u,w) : AT
Bu− [

QT
BB,QBT ,QBN

]



wB
wT
wN


 = 0, Aw = 0, wN = 0}.

Let (hBi ,hi), i ∈ I denote the vectors of basis of L, and (gBj ,gj), j ∈ J denote the
extreme directions of

S = {(u,w) : AT
Bu− [

QT
BB,QBT ,QBN

]



wB
wT
wN


 ≥ 0, Aw = 0, wN ≥ 0} ∩ L⊥.

By Theorem 4, any solution of problem (14) can be written as

(u,w) =
∑
i∈I

µi(hBi ,hi) +
∑
j∈J

µ
′
j(g

B
j ,gj)

=
( ∑

i∈I

µihBi +
∑
j∈J

µ
′
jg
B
j ,

∑
i∈I

µihi +
∑
j∈J

µ
′
jg

)
, µ

′
j ≥ 0, ∀j ∈ J.

From weak duality Theorem, we have

(b(λ)−ABζ)T (
∑
i∈I

µihBi +
∑
j∈J

µ
′
jg
B
j ) +

(
c(ε)T + ζT [QT

BB,QBT ,QBN ]
)×

× ( ∑
i∈I

µihi +
∑
j∈J

µ
′
jgj)

)− ηT
( ∑

i∈I

µihi +
∑
j∈J

µ
′
jgj)

)
N ≥ 0.

The above relation holds if and only if
{

(b(λ)−ABζ)T hBi +
(
c(ε)T + ζT [QT

BB,QBT ,QBN ]
)
hi − ηT (hi)N = 0, ∀i ∈ I,

(b(λ)−ABζ)T gBj +
(
c(ε)T + ζT [QT

BB,QBT ,QBN ]
)
gj − ηT (gi)N ≥ 0, ∀j ∈ J,

(15)
Since AT

BhBi − [QT
BB,QBT ,QBN ]hi = 0, 0 6= −AT

BgBj + [QT
BB,QBT ,QBN ]gj ≤ 0,

ηT (hi)N = 0 and ηT (gj)N > 0 from (15) we get
{

b(λ)T hBi + c(ε)T hi = 0, ∀i ∈ I,

b(λ)T gBj + c(ε)T gj > 0, ∀j ∈ J.
(16)

Therefore, (16) describes the set Υπ.
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Remark 10. If the given pair of primal-dual optimal solution (x∗,y∗, s∗) is
strictly complementary, then σ(x∗) = P = B, Z = N and T = ∅. Therefore we
have

ΥB(x∗) = {(λ, ε) : ABxB = b(λ),xB > 0, AT
By −QBBxB = cB(ε),

AT
Ny − (QBN )T xB ≤ cN (ε)},

Υπ = {(λ, ε) : ABxB = b(λ),xB > 0, AT
By −QBBxB = cB(ε),

AT
Ny − (QBN )T xB < cN (ε)}.

These show that Υπ ⊆ ΥB(x∗); that is, the optimal partition invariancy region is
a subset of the support set invariancy region when the given optimal solution is a
strictly complementary solution.

Remark 11. If Q = 0, then T = ∅ and we will have

Υπ = {λ : ABxB = b(λ),xB > 0} × {ε : AT
By = cB(ε), AT

Ny < cN (ε)},
so

Υπ = {λ : b(λ)T hBi = 0, ∀i ∈ I, b(λ)T gBj > 0, ∀j ∈ J} ×
× {ε : c(ε)T hi = 0, ∀i ∈ I, c(ε)T gj > 0, ∀j ∈ J},

where hBi , i ∈ I, and gBj , j ∈ J , are the basis vectors

L3 = {u : AT
Bu = 0},

and the extreme directions

S3 = {u : AT
Bu ≥ 0} ∩ L⊥3 ,

and also hi, i ∈ I, and gj , j ∈ J , are the basis vectors

L4 = {w : Aw = 0, wN = 0},
and the extreme directions

S4 = {w : Aw = 0, wN ≥ 0} ∩ L⊥4 ,

respectively.
Remark 12. If Q = 0 and λ = 0, then we have

Υπ = {ε : c(ε)T hi = 0, ∀i ∈ I, c(ε)T gj > 0, ∀j ∈ J},
where hi and gj are defined as in Remark 11. Note that Υπ is the same as Theorem
3 in [10].

Remark 13. If Q = 0 and ε = 0, then

Υπ = {λ : b(λ)T hBi = 0, ∀i ∈ I, b(λ)T gBj > 0, ∀j ∈ J},
where hBi and gBj are defined as in Remark 11. It is obvious that Υπ is the same
as Theorem 7 in [10].
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Example 2. Consider the Example 1. Let b(λ) = (2 + λ1 − 2λ2, 2 − 3λ1 +
λ2, 2 − 2λ1 − 3λ2)T and c(ε) = (ε1 + 2ε2, 3ε1 − 5ε2, 0, 0, 0)T . We specify Υπ, by
using Theorem 9. Basis for the lineality space

L = {(u,w) : u1−u3−2w1−2w2 = 0, u1 +u2 +u3−2w1−2w2 = 0, w1 +w2 = 0,

w2 + w4 = 0,−w1 + w2 + w5 = 0, u2 = u3 = w3 = 0}

is hBi = (0, 0, 0)T , and hi = (1,−1, 0, 1, 2)T . The extreme directions of the polyhe-
dron

S = {(u,w) : u1−u3−2w1−2w2 ≥ 0, u1 +u2 +u3−2w1−2w2 ≥ 0, w1 +w2 = 0,

w2+w4 = 0,−w1+w2+w5 = 0, u2, u3, w3 ≥ 0}∩{(u,w) : w1−w2+w4+2w5 = 0},
are as follows

gB1 = (1, 0, 0)T , gB2 = (0, 1, 0)T , gB3 = (1, 0, 1)T ,

g1 = g2 = g3 = (0, 0, 0, 0, 0)T .

Therefore, we get

Υπ = {(λ, ε) : −2ε1+7ε2 = 0, 2+λ1−2λ2 > 0, 2−3λ1+λ2 > 0, 4−λ1−5λ2 > 0}.

Remark 14. If ε1 = λ1, ε2 = λ2, then the invariancy region is

λ2 =
2
7
λ1, −14

3
≤ λ1 <

14
19

.

Remark 15. If b(λ) = (2 + λ, 2 − λ, 2 − 2λ)T and ε = 0, then Υπ = (−2, 2).
The region is matched with the region obtained for single-parametric case [9].

4. Conclusion

We studied multi-parametric sensitivity analysis for quadratic optimization in
view of support set and optimal partition invariancy. The resulting critical regions
are determined by linear equality and linear inequalities or strict inequalities which
represent polyhedral set. We stated them for linear optimization with simulta-
neously perturbations in the right-hand-side of the constraints and the objective
coefficients, and compared them with independent perturbations [10]. Our results
are extension of the results linear optimization in [10].
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