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SOME REMARKS ON ALMOST LINDELÖF SPACES
AND WEAKLY LINDELÖF SPACES

Yan-Kui Song and Yun-Yun Zhang

Abstract. A space X is almost Lindelöf (weakly Lindelöf ) if for every open cover U of X,

there exists a countable subset V of U such that
⋃
{V : V ∈ V} = X (respectively,

⋃
V = X). In

this paper, we investigate the relationships among almost Lindelöf spaces, weakly Lindelöf spaces
and Lindelöf spaces, and also study topological properties of almost Lindelöf spaces and weakly
Lindelöf spaces.

1. Introduction

By a space we mean a topological space. Let us recall that a space X is
Lindelöf if every open cover of X has a countable subcover. As a generalization
of Lindelöfness, Willard and Mathur [8] defined a space X to be almost Lindelöf
if for every open cover U of X, there exists a countable subset V of U such that⋃{V : V ∈ V} = X. Frolik [4] defined a space X to be weakly Lindelöf if for every
open cover U of X, there exists a countable subset V of U such that

⋃V = X.
Clearly, every Lindelöf space is almost Lindelöf and every almost Lindelöf space is
weakly Lindelöf, but the converses do not hold (see Examples 2.2 and 2.3). On the
study of almost Lindelöf spaces and weakly Lindelöf spaces, the readers can see the
references [1, 2, 4, 5, 6].

The purpose of this paper is to investigate the relationships among almost
Lindelöf spaces, weakly Lindelöf spaces and Lindelöf spaces, and also to study
topological properties of almost Lindelöf spaces and weakly Lindelöf spaces.

Recall that the extent e(X) of a space X is the smallest cardinal number κ such
that the cardinality of every discrete closed subset of X is not greater than κ. The
cardinality of a set A is denoted by |A|. Let ω be the first infinite cardinal, ω1 the
first uncountable cardinal and c the cardinality of the set of all real numbers. As
usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals.
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For a cardinal κ, cf(κ) denotes the cofinality κ. Every cardinal is often viewed as
a space with the usual order topology. Other terms and symbols that we do not
define follow [3].

2. Some examples

In this section, we give some examples showing the relationship among almost
Lindelöf spaces, weakly Lindelöf spaces and Lindelöf spaces. First, we give a well-
known result for the sake of completeness.

Proposition 2.1. If X is a regular almost Lindelöf space, then X Lindelöf.

In the following, we give an example showing that Proposition 2.1 is not true
for Urysohn spaces.

Example 2.2. There exists an Urysohn almost Lindelöf space X which is not
Lindelöf.

Proof. Let

A = {aα : α < ω1}, B = {bi : i ∈ ω}, Y = {〈aα, bi〉 : α < ω1, i ∈ ω}
and

X = Y ∪A ∪ {a} where a /∈ Y ∪A.

We topologize X as follows: every point of Y is isolated; a basic neighborhood of
aα ∈ A for each α < ω1 takes the form

Uaα(i) = {aα} ∪ {〈aα, bj〉 : α < ω1, j ≥ i} where i ∈ ω

and a basic neighborhood of a takes the form

Ua(α) = {a} ∪
⋃
{〈aβ , bi〉 : β > α, i ∈ ω}} where α < ω1.

Clearly, X is a Urysohn space. Moreover X is not regular, since the point a can
not be separated from the closed set {aα : α < ω1}. Since {aα : α < ω1} is an
uncountable discrete closet set of X, then X is not Lindelöf.

We show that X is almost Lindelöf. Let U be any open cover of X. Then there
exists some Ua ∈ U such that a ∈ Ua. By the definition of topology of X, there
exists a β < ω1 such that Ua(β) ⊆ Ua, then

{aα : α > β} ∪ {a} ∪ {〈aα, bi〉 : α > β, i ∈ ω} ⊆ Ua.

It is not difficult to see that X \ Ua is at most countable, so there exists a
countable subset V of U such that X \ Ua ⊆

⋃V. If we put V = {Ua} ∪ V, then
V is a countable subfamily of U such that X = {V : V ∈ V}, which completes the
proof.

For a Tychonoff space X, let βX denote the Čech-Stone compactification of X.
Example 2.3. There exists a Tychonoff weakly Lindelöf space which is not

almost Lindelöf.
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Proof. Let D be a discrete space of cardinality ω1, let

X = (βD × (ω + 1)) \ ((βD \D)× {ω})
be the subspace of the product of βD and ω + 1.

We show that X is weakly Lindelöf. Let U be any open cover of X. Since
βD × ω is a σ-compact dense subset of X, then there exists a countable subset V
of U such that βD × ω ⊆ ⋃V, hence X =

⋃V, since βD × ω is a dense subset of
X, which shows that X is weakly Lindelöf.

Next, we show that X is not almost Lindelöf. Since |D| = ω1, we can enumerate
D as {dα : α < ω1}. For each α < ω1, let Uα = {dα}× (ω + 1). For each n ∈ ω, let
Vn = βD × {n}. Let us consider the open cover

U = {Uα : α < ω1} ∪ {Vn : n ∈ ω}
of X. It is not difficult to see that

⋃V =
⋃{V : V ∈ V} for each a countable subset

V of U . Let V be any countable subset of U and let α0 = sup{α : Uα ∈ V}. Then
α0 < ω1,since V is countable. If we pick α′ > α0, then 〈dα′ , ω〉 /∈ {V : V ∈ V},
since Uα′ is the only element of U containing 〈dα′ , ω〉 and

⋃V =
⋃{V : V ∈ V},

which completes the proof.
If we take D of arbitrarily big cardinality instead of ω1 in the proof in Example

2.3, we easily get the following result.

Proposition 2.4. For every infinite cardinal κ, there exists a Tychonoff
weakly Lindelöf space X such that e(X) ≥ κ.

Remark 2.1. F. Cammaroto and G. Santoro [2] also constructed an example
showing that there exists a Tychonoff weakly Lindelöf space that is not almost
Lindelöf (see Example 3.11 [2]). Example 2.3 is simpler than their construction.

Remark 2.2. As one of the referees observed, it is easy to see that every
CCC space is weakly Lindelöf, so every CCC, non Lindelöf Tychonoff space (for
example, a

∑
-product in 2κ) would work as such an example. However we include

Example 2.3 here, since we use it later in the text.
It is well known that the extent of a Lindelöf space is countable. However,

similar to the argument from Example 2.2, we can prove the following proposition
showing that the extent of a Urysohn almost Lindelöf space can be arbitrarily big.

Proposition 2.5. For every infinite cardinal κ, there exists a Urysohn almost
Lindelöf space X such that e(X) ≥ κ.

3. Behavior with respect to products, images and subspaces

From Example 2.2, it is not difficult to see that the closed subset of a Urysohn
almost Lindelöf space need not be almost Lindelöf. The following example shows
that a regular closed subspace of a Urysohn almost Lindelöf spaces need not be
almost Lindelöf.
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Example 3.1. There exist a Urysohn almost Lindelöf space X having a regular
closed subset which is not almost Lindelöf.

Proof. Let S1 be the space X from Example 2.2 and let S2 be the space X
from Example 2.3.

We assume that S1 ∩ S2 = ∅. Since |D| = ω1, we can enumerate D as {dα :
α < ω1}. Let ϕ : D × {ω} → A be a bijection defined by

ϕ(〈dα, ω〉) = aα for each α < ω1.

Let X be the quotient space obtained from the discrete sum S1⊕S2 by identifying
〈dα, ω〉 with ϕ(〈dα, ω〉) for each α < ω1. Let π : S1⊕S2 → X be the quotient map.
Let Y = π(S2). Then, Y is not almost Lindelöf in X since it is homeomorphic
to S2.

Now, we show X is almost Lindelöf. Let U be an open cover of X. Since π(S1)
is almost Lindelöf, then there exists a countable subfamily V ′ of U such that π(S1) ⊆⋃{V : V ∈ V ′}; on the other hand, for each n ∈ ω, since π(βD×{n}) is a compact
subset of X, there exists a finite subfamily Vn of U such that π(βD×{n}) ⊆ ⋃Vn.
If we put V = V ′ ∪⋃{Vn : n ∈ ω}, then V is a countable subfamily of U such that
X =

⋃{V : V ∈ V}, which shows that X is almost Lindelöf.
From Example 2.3, it is not difficult to see that the closed subset of a Tychonoff

weakly Lindelöf space need not be weakly Lindelöf. However we have the following
positive result.

Proposition 3.2. Every regular closed subset of a weakly Lindelöf space X
is weakly Lindelöf.

Proof. Let X be a weakly Lindelöf space and let F be a regular closed subset
of X. Let U be an open cover of F . For each U ∈ U , there exists an open subset
VU in X such that VU ∩ F = U . Then {VU : U ∈ U} ∪ {X \ F} is an open
cover of X. Hence there exists a countable subset V of {VU : U ∈ U} ∪ {X \ F}
such that X =

⋃V, since X is weakly Lindelöf. Let W = V \ {X \ F}. Then
IntF ⊆ ⋃W. Hence F = IntF ⊆ ⋃W, since F is a regular closed subset of
X. Thus F = F ∩ ⋃W = clF (F ∩ (

⋃W)) = clF (∪{F ∩ W : W ∈ W}. Since
{F ∩W : W ∈ W} is a countable subset of U and F = clF (

⋃{F ∩W : W ∈ W}),
then F is weakly Lindelöf, which completes the proof.

The following positive results are obvious.

Proposition 3.3. If X is an almost Lindelöf space (a weakly Lindelöf space),
then every clopen subset of X is almost Lindelöf (respectively, weakly Lindelöf).

Proposition 3.4. The sum
⊕

s∈S Xs is almost Lindelöf (weakly Lindelöf) if
and only if all spaces Xs are almost Lindelöf (respectively, weakly Lindelöf) and the
set S is countable.

Proposition 3.5. A continuous image of an almost Lindelöf space (a weakly
Lindelöf space) is almost Lindelöf (respectively, weakly Lindelöf).
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Next, we turn to consider preimages. To show that the preimage of an almost
Lindelöf space (a weakly Lindelöf space) under a closed 2-to-1 continuous map
need not be almost Lindelöf(respectively, weakly Lindelöf) we use the Alexandorff
duplicate A(X) of a space X. The underlying set of A(X) is X×{0, 1}; each point
of X×{1} is isolated and a basic neighborhood of a point 〈x, 0〉 ∈ X×{0} is of the
from (U ×{0})∪ ((U ×{1}) \ {〈x, 1〉}), where U is a neighborhood of x in X. It is
well known that X is Lindelöf if and only if A(X) is Lindelöf. But the statement
is not true for almost Lindelöf Urysohn spaces and weakly Lindelöf spaces.

Example 3.6. There exists a closed 2-to-1 continuous map f : A(X) → X
such that X is a Uryshon almost Lindelöf space, but A(X) is not a weakly Lindelöf
space (hence is not almost Lindelöf).

Proof. Let X be the space from Example 2.2. Then X is almost Lindelöf and
has an infinite discrete closed subset A = {aα : α < ω1}. Hence the Alexandroff
duplicate A(X) of X is not weakly Lindelöf, since A×{1} is an uncountable infinite
discrete, open and closed set in A(X). Let f : A(X) → X be the natural map.
Then f is a closed 2-to-1 continuous map, which completes the proof.

If in the previous argument we use Example 2.3 instead of Example 2.2, we
get the following:

Example 3.7. There exists a closed 2-to-1 continuous map f : X → Y such
that Y is a Tychonoff weakly Lindelöf space, but X is not weakly Lindelöf.

Remark 3.1. The proof of Example 3.6 shows that the Alexandorff duplicate
A(X) need not be almost Lindelöf for a Urysohn almost Lindelöf space X and
the proof of Example 3.7 shows that the Alexandorff duplicate A(X) need not be
weakly Lindelöf for a Tychonoff weakly Lindelöf space X.

Proposition 3.8. For a space X, the following conditions are equivalent:
(1) X is Lindelöf;
(2) A(X) is Lindelöf;
(3) A(X) is almost Lindelöf;
(4) A(X) is weakly Lindelöf.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious. To show that
(4) ⇒ (1), suppose that X is not Lindelöf. Let U be an open cover of X witnessing
that X is not Lindelöf. Then {U × {0, 1} : U ∈ U} is an open cover of A(X) that
witnesses that A(X) is not weakly Lindelöf, since all points of X ×{1} are isolated
in A(X), which completes the proof.

Recall from [7] that a mapping f from a space X to a space Y is called almost
open if f−1(U) ⊆ f−1(U) for each open subset U of Y .

Proposition 3.9. If f : X → Y is an almost open and perfect continuous
mapping and Y is an almost Lindelöf space, then X is almost Lindelöf.

Proof. Let U be an open cover of X. Then there is a finite subfamily Uy of U
such that

f−1(y) ⊆
⋃
Uy for each y ∈ Y.
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Let Uy =
⋃Uy. Then Vy = Y \ f(X \ Uy) is an open neighborhood of y, since f is

closed. Let V = {Vy : y ∈ Y }, then V is an open cover of Y , hence there exists a
countable subfamily {Vyn : n ∈ ω} of V such that Y =

⋃
n∈ω Vyn , since Y is almost

Lindelöf. Since f is almost open, then

X = f−1(
⋃
n∈ω

Vyn
) =

⋃
n∈ω

f−1(Vyn
) ⊆

⋃
n∈ω

f−1(Vyn
)

⊆
⋃
n∈ω

Uyn ⊆
⋃
n∈ω

⋃
Uyn ⊆

⋃
n∈ω

⋃
{U : U ∈ Uyn},

since Uyn
is finite. Hence X is almost Lindelöf , which completes the proof.

Similar to the proof of Proposition 3.9, we can prove the following proposition.

Proposition 3.10. If f : X → Y is an almost open and perfect continuous
mapping and Y is a weakly Lindelöf spaces, then X is weakly Lindelöf.

It is well known that the product of two Lindelöf spaces need not be Lindelöf,
which shows that the product of two almost Lindelöf need not be almost Lindelöf,
since every Lindelöf space is almost Lindelöf and every almost Lindelöf space is
Lindelöf for regular spaces. Since the product of a Lindelöf space and a compact
space is Lindelöf, then the product of a regular almost Lindelöf space and a compact
space is almost Lindelöf. For almost Lindelöf spaces, we have the similar result.

Proposition 3.11. If X is almost Lindelöf and Y is a compact space, then
X × Y is almost Lindelöf.

Proof. Let U be an open cover of X × Y . Without loss of generality we can
assume that U consists of basic open sets of X×Y . Since {x}×Y is a compact subset
of X × Y for each x ∈ X, there exists a finite subfamily {Uxi × Vxi : i = 1, 2, ...nx}
of U such that

{x} × Y ⊆
⋃
{Uxi × Vxi : 1 ≤ i ≤ nx}.

Let Wx =
⋂{Uxi : 1 ≤ i ≤ nx}. Then

{x} × Y ⊆
⋃
{Wx × Vxi : 1 ≤ i ≤ nx}.

LetW = {Wx : x ∈ X}. ThenW is an open cover of X. Since X is almost Lindelöf,
there is a countable subfamily {Wxj : j ∈ ω} of W such that X =

⋃
j∈ω Wxj , since

X is almost Lindelöf. Let

V = {Uxji
× Vxji

: 1 ≤ i ≤ nxj , j ∈ ω}.
Then V is a countable subfamily of U . To show that X × Y =

⋃{O : O ∈ V}, let
〈s, t〉 ∈ X × Y be fixed. Let Us × Vt be any open neighborhoods of 〈s, t〉 in X × Y
where Us and Vt are open neighborhood of x and y in X and Y , respectively. Since
X =

⋃
j∈ω Wxj , then there exists a j ∈ ω such that s ∈ Wxj . Thus

(Us × Vt) ∩ (
⋃
{Wxj × Vxji

: 1 ≤ i ≤ nxj}) 6= ∅.
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Therefore
(Us × Vt) ∩ (

⋃
{Uxji

× Vxji
: 1 ≤ i ≤ nxj

}) 6= ∅.

We have

〈s, t〉 ∈
⋃
{Uxji

× Vxji
: 1 ≤ i ≤ nxj

} =
⋃
{Uxji

× Vxji
: 1 ≤ i ≤ nxj

}.

This implies 〈s, t〉 ∈ ⋃{O : O ∈ V}. Hence X × Y =
⋃{O : O ∈ V}, which shows

that X × Y is almost Lindelöf.
Similar to the proof of Proposition 3.11, we can prove the following proposition.

Proposition 3.12. If X is weakly Lindelöf and Y is a compact space, then
X × Y is weakly Lindelöf.
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