CAUCHY OPERATOR ON BERGMAN SPACE OF HARMONIC FUNCTIONS ON UNIT DISC

Milutin R. Dostanić

Abstract

We find the exact asymptotic behaviour of singular values of the operator $C P_{h}$, where C is the integral Cauchy's operator and P_{h} integral operator with the kernel $$
K(z, \zeta)=\frac{\left(1-|z|^{2}|\zeta|^{2}\right)^{2}}{\pi|1-z \bar{\zeta}|^{4}}-\frac{2}{\pi} \frac{|z|^{2}|\zeta|^{2}}{|1-z \bar{\zeta}|^{2}}
$$

1. Introduction

Let D be the unit disc in C and let $d A$ denote Lebesgue measure on D. By $L_{a}^{2}(D)\left(L_{h}^{2}(D)\right)$ we denote the space of all analytic (harmonic) functions f on D with finite norm

$$
\left(\int_{D}|f|^{2} d A\right)^{1 / 2}=\|f\|<\infty
$$

It is well known that $L_{a}^{2}(D)$ and $L_{h}^{2}(D)$ are closed subspaces of $L^{2}(D)$. By $P\left(P_{h}\right)$ we denote the orthogonal projection of $L^{2}(D)$ onto $L_{a}^{2}(D)\left(L_{h}^{2}(D)\right)$. With $\langle\cdot, \cdot\rangle$ we denote the inner product on $L^{2}(D)$.

It is known that P_{h} is an integral operator on $L^{2}(D)$ with the kernel

$$
K(z, \zeta)=\frac{\left(1-|z|^{2}|\zeta|^{2}\right)^{2}}{\pi|1-z \bar{\zeta}|^{4}}-\frac{2}{\pi} \frac{|z|^{2}|\zeta|^{2}}{|1-z \bar{\zeta}|^{2}}
$$

By C we denote the operator acting on $L^{2}(D)$ in the following way:

$$
C f(z)=-\frac{1}{\pi} \int_{D} \frac{f(\zeta)}{\zeta-z} d A(\zeta) \quad \text { (Cauchy's operator). }
$$

For a compact operator T, let $s_{n}(T)$ denote the eigenvalues of the operator $\left(T^{*} T\right)^{1 / 2}$ arranged in non-decreasing order ([5]).

2010 AMS Subject Classification: 47G10, 45P05.
Keywords and phrases: Bergman space; Cauchy operator; asymptotics of eigenvalues.
Partially supported by MNZZS Grant, № ON144010

By $\mathcal{N}_{t}(T)=\sum_{s_{n}(T) \geq t} 1, t>0$ we denote the singular values distribution function of T. The notation $a_{n} \sim b_{n}\left(a_{n} \asymp b_{n}\right)$ means

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1 \quad\left(0<c_{1} \leq \frac{a_{n}}{b_{n}} \leq c_{2}<\infty\right)
$$

where c_{1}, c_{2} do not depend on n.
The authors of [1] and [2] have determined the norm and singular values of C on the space $L^{2}(D)$. It is known, [4], that $s_{n}(C) \sim \frac{1}{\sqrt{n}}(n \rightarrow \infty)$. It was proved in [3] that the restriction of C on $L_{a}^{2}(D)$ accelerates the descending of its singular values, i.e.,

$$
s_{n}\left(\left.C\right|_{L_{a}^{2}(D)}\right)=s_{n}(C P) \asymp \frac{1}{n} .
$$

The exact asymptotic behaviour of the singular values of operator $P C$ was given in [4] (for an arbitrary domain), implying

$$
s_{n}(C P) \sim \frac{1}{n}
$$

In this paper we find the exact asymptotic behaviour of singular values of the operator $C P_{h}$.

2. Result

ThEOREM. The following asymptotic formula

$$
s_{n}\left(\left.C\right|_{L_{h}^{2}(D)}\right)=s_{n}\left(C P_{h}\right) \sim \frac{\sqrt{2}+1}{n}, \quad n \rightarrow \infty
$$

holds.
Proof. The kernel $H_{0}(\cdot, \cdot)$ of the operator $C P_{h}$ is given by

$$
H_{0}(z, \zeta)=-\frac{1}{\pi} \int_{D} \frac{K(t, \zeta)}{t-z} d A(t)
$$

i.e.,

$$
C P_{h} f(z)=\int_{D} H_{0}(z, \zeta) f(\zeta) d A(\zeta)
$$

The kernel H_{0} can be represented as

$$
\begin{equation*}
H_{0}(z, \zeta)=-\frac{1}{\pi^{2}} A(z, \zeta)+\frac{2}{\pi^{2}} B(z, \zeta) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& A(z, \zeta)=\int_{D} \frac{\left(1-|t|^{2}|\zeta|^{2}\right)^{2}}{(t-z)(1-\bar{t} \zeta)^{2}(1-t \bar{\zeta})^{2}} d A(t) \\
& B(z, \zeta)=\int_{D} \frac{|t|^{2}|\zeta|^{2}}{(t-z)(1-\bar{t} \zeta)(1-t \bar{\zeta})} d A(t)
\end{aligned}
$$

The functions A and B can be determined explicitly using Cauchy-Green formula ([6], p. 42):

$$
-\frac{1}{\pi} \int_{D} \frac{\partial f}{\partial \bar{\zeta}} \frac{d A(\zeta)}{\zeta-z}=f(z)-\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

Since

$$
\begin{aligned}
A(z, \zeta)= & \int_{D} \frac{(1-t \bar{\zeta}+t \bar{\zeta}(1-\bar{t} \zeta))^{2}}{(t-z)(1-\bar{t} \zeta)^{2}(1-t \bar{\zeta})^{2}} d A(t) \\
= & \int_{D} \frac{d A(t)}{(t-z)(1-\bar{t} \zeta)^{2}}+\int_{D} \frac{t^{2} \bar{\zeta}^{2}}{(t-z)(1-t \bar{\zeta})^{2}} d A(t) \\
& +\int_{D} \frac{2 t \bar{\zeta}}{(t-z)(1-\bar{t} \zeta)(1-t \bar{\zeta})} d A(t),
\end{aligned}
$$

we obtain

$$
\begin{align*}
& -\frac{1}{\pi} A(z, \zeta)=-\frac{1}{\pi} \int_{D} \frac{d A(t)}{(t-z)(1-\bar{t} \zeta)^{2}} \\
& \quad-\frac{1}{\pi} \int_{D} \frac{t^{2} d A(t)}{(t-z)(1-t \bar{\zeta})^{2}} \cdot \bar{\zeta}^{2}+2 \bar{\zeta}\left(-\frac{1}{\pi} \int_{D} \frac{t d A(t)}{(t-z)(1-\bar{t} \zeta)(1-t \bar{\zeta})}\right) \tag{2}
\end{align*}
$$

From Cauchy-Green formula, it follows

$$
\begin{aligned}
& -\frac{1}{\pi} \int_{D} \frac{d A(t)}{(t-z)(1-\bar{t} \zeta)^{2}}=\frac{1}{\zeta}(1-\bar{z} \zeta)^{-1}-\frac{1}{\zeta} \\
& -\frac{1}{\pi} \int_{D} \frac{d A(t)}{(t-z)(1-t \bar{\zeta})^{2}}=\frac{z}{(1-z \bar{\zeta})^{2}}\left(|z|^{2}-1\right)
\end{aligned}
$$

Hence, from (2), we get

$$
\begin{align*}
-\frac{1}{\pi} A(z, \zeta)=\frac{1}{\zeta}(1-\bar{z} \zeta)^{-1}-\frac{1}{\zeta}+ & \frac{z \bar{\zeta}^{2}}{(1-z \bar{\zeta})^{2}}\left(|z|^{2}-1\right) \\
& +2 \bar{\zeta}\left(-\frac{1}{\pi} \int_{D} \frac{t d A(t)}{(t-z)(1-\bar{t} \zeta)(1-t \bar{\zeta})}\right) \tag{3}
\end{align*}
$$

Since, $-\frac{1}{\pi} B(z, \zeta)=-\frac{1}{\pi} \int_{D} \frac{t \bar{\zeta}(\bar{t} \zeta-1+1) d A(t)}{(t-z)(1-\bar{t} \zeta)(1-t \bar{\zeta})}$, we get

$$
\begin{align*}
& -\frac{1}{\pi} B(z, \zeta)=-\bar{\zeta}\left(-\frac{1}{\pi} \int_{D} \frac{t d A(t)}{(t-z)(1-t \bar{\zeta})}\right) \\
& \quad+\bar{\zeta}\left(-\frac{1}{\pi} \int_{D} \frac{t d A(t)}{(t-z)(1-\bar{t} \zeta)(1-t \bar{\zeta})}\right) \tag{4}
\end{align*}
$$

It follows from (1), (3) and (4) that

$$
\begin{aligned}
H_{0}(z, \zeta)=\frac{1}{\pi}\left(\frac{1}{\zeta}(1-\bar{z} \zeta)^{-1}-\frac{1}{\zeta}\right)+\frac{1}{\pi} \frac{z \bar{\zeta}^{2}}{(1-z \bar{\zeta})} & \left(|z|^{2}-1\right) \\
& +\frac{2 \bar{\zeta}}{\pi}\left(-\frac{1}{\pi} \int_{D} \frac{t d A(t)}{(t-z)(1-t \bar{\zeta})}\right)
\end{aligned}
$$

Applying Cauchy-Green formula again, we obtain

$$
\begin{equation*}
H_{0}(z, \zeta)=\frac{1}{\pi}\left(\frac{1}{\zeta}(1-\bar{z} \zeta)^{-1}-\frac{1}{\zeta}\right)+\frac{1}{\pi} \frac{z \bar{\zeta}^{2}}{(1-z \bar{\zeta})}\left(|z|^{2}-1\right)+\frac{2 \bar{\zeta}}{\pi} \frac{|z|^{2}-1}{1-z \bar{\zeta}} \tag{5}
\end{equation*}
$$

Let $P, Q, R: L^{2}(D) \rightarrow L^{2}(D)$ be linear operators defined by

$$
\begin{aligned}
& P f(z)=\frac{1}{\pi} \int_{D}\left(\sum_{n=1}^{\infty} \bar{z}^{n} \zeta^{n-1}\right) f(\zeta) d A(\zeta) \\
& Q f(z)=\frac{1}{\pi} \int_{D}\left(\sum_{n=1}^{\infty}(n+2)\left(|z|^{2}-1\right) z^{n} \bar{\zeta}^{n+1}\right) f(\zeta) d A(\zeta) \\
& R f(z)=\frac{2}{\pi} \int_{D} \bar{\zeta} f(\zeta) d A(\zeta) \cdot\left(|z|^{2}-1\right)
\end{aligned}
$$

Then, it follows from (5) that $C P_{h}=P+Q+R$. Since $P^{*} Q=Q^{*} P=0$ and $Q P^{*}=P Q^{*}=0$, we obtain

$$
\begin{equation*}
\mathcal{N}_{t}(P+Q)=\mathcal{N}_{t}(P)+\mathcal{N}_{t}(Q) \tag{6}
\end{equation*}
$$

Since

$$
P f=\sum_{n=1}^{\infty}\left\langle f, \bar{e}_{n-1}\right\rangle \overline{e_{n}(z)} \cdot \frac{1}{\sqrt{n(n+1)}}
$$

where $e_{n}(z)=\sqrt{\frac{n+1}{\pi}} z^{n}, n=0,1, \ldots$, we obtain

$$
s_{n}(P)=\frac{1}{\sqrt{n(n+1)}} \sim \frac{1}{n}
$$

and so

$$
\begin{equation*}
\lim _{t \rightarrow 0+} t \mathcal{N}_{t}(P)=1 \tag{7}
\end{equation*}
$$

Consider the sequence $f_{n}(z)=\frac{1}{\sqrt{2 \pi}}\left(|z|^{2}-1\right) z^{n} \sqrt{(n+1)(n+2)(n+3)}, n \geq 1$. The system $\left(f_{n}\right)_{n=1}^{\infty}$ is orthogonal on $L^{2}(D)$.

Notice that

$$
Q f(z)=\sum_{n=1}^{\infty} \frac{\sqrt{2}}{\sqrt{(n+1)(n+3)}}\left\langle f, e_{n+1}\right\rangle f_{n}(z)
$$

hence we have

$$
s_{n}(Q)=\frac{\sqrt{2}}{\sqrt{(n+1)(n+3)}} \sim \frac{\sqrt{2}}{n}
$$

and so

$$
\begin{equation*}
\lim _{t \rightarrow 0+} t \mathcal{N}_{t}(Q)=\sqrt{2} \tag{8}
\end{equation*}
$$

It follows from (6), (7) and (8) that

$$
\lim _{t \rightarrow 0+} t \mathcal{N}_{t}(P+Q)=\sqrt{2}+1
$$

Putting $t=s_{n}(P+Q)$ in the previous equality, we obtain

$$
\begin{equation*}
s_{n}(P+Q) \sim \frac{\sqrt{2}+1}{n}, \quad n \rightarrow \infty \tag{9}
\end{equation*}
$$

Since the rank of R is one, according to Ky-Fan theorem ([5], p. 52), it follows from (9) that

$$
s_{n}\left(C P_{h}\right) \sim \frac{1+\sqrt{2}}{n}, \quad n \rightarrow \infty
$$

Conjecture. For arbitrary bounded, simple connected domain $\Omega \subset C$ having analytic boundary,

$$
\lim _{n \rightarrow \infty} n s_{n}\left(C P_{h}^{\Omega}\right)=d
$$

holds.
Here, P_{h}^{Ω} denotes Bergman projection on $L_{h}^{2}(\Omega)\left(L_{h}^{2}(\Omega)\right.$ is the space of harmonic functions on Ω), and the constant d depends on Ω. There are some indications that $d=\frac{1+\sqrt{2}}{2 \pi}|\partial \Omega|$, where $|\partial \Omega|$ denotes the length of the boundary of Ω.

REFERENCES

[1] J.M. Anderson, A. Hinkkanen, The Cauchy's transform on bounded domains, Proc. Amer. Math. Soc. 107 (1989), 179-185.
[2] J.M. Anderson, D. Khavinson, V. Lomonosov, Spectral properties of some operators arising in operator theory, Quart. J. Math. Oxford, II Ser. 43 (1992), 387-407.
[3] J. Arazy, D. Khavinson, Spectral estimates of Cauchy's transform in $L^{2}(\Omega)$, Integral Equation Oper. Theory 15 (1992), 901-919.
[4] M.R. Dostanić, Spectral properties of the Cauchy operator and its product with Bergman's projection on a bounded domain, Proc. London Math. Soc. III Ser. 76 (1998), 667-684.
[5] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs 18, American Mathematical Society, Providence, RI, 1969.
[6] I.N. Vekua, Generalized Analytic Functions, "Nauka", Moscow, 1988.
(received 22.01.2009, in revised form 13.05.2009)
University of Belgrade, Faculty of Mathematics, Studentski trg 16/IV, 11000 Beograd, Serbia
E-mail: domi@matf.bg.ac.rs

