ON BITOPOLOGICAL FULL NORMALITY

M. K. Bose and Ajoy Mukharjee

Abstract

The notion of bitopological full normality is introduced. Along with other results, we prove a bitopological version of A. H. Stone's theorem on paracompactness: A Hausdorff topological space is paracompact if and only if it is fully normal.

1. Introduction

A bitopological space is a set equipped with two topologies. Kelly [5] initiated the systematic study of such spaces. Since then considerable works have been done on bitopological spaces. Generalizing the notion of pairwise compactness (Fletcher, Hoyle III and Patty [4]), Bose, Roy Choudhury and Mukharjee [1] introduced a notion of pairwise paracompactness and obtained an analogue of Michael's theorem (Michael [6]). In this paper, we introduce the notions of pairwise full normality and a-pairwise full normality. For a pairwise Hausdorff topological space X, we prove that X is a-pairwise fully normal if it is pairwise paracompact, and conversely, X is pairwise paracompact if it is pairwise fully normal. To prove the converse part, we use the above Michael's theorem on pairwise paracompactness.

2. Definitions

Let $\left(X, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ be a bitopological space.
Definition 2.1. [4] A cover \mathcal{U} of X is a pairwise open cover if $\mathcal{U} \subset \mathcal{P}_{1} \cup \mathcal{P}_{2}$ and for each $i=1,2, \mathcal{U} \cap \mathcal{P}_{i}$ contains a nonempty set.

Definition 2.2. [2] A pairwise open cover \mathcal{V} of X is said to be a parallel refinement of a pairwise open cover \mathcal{U} of X if every $\left(\mathcal{P}_{i}\right)$-open set of \mathcal{V} is contained in some $\left(\mathcal{P}_{i}\right)$-open set of \mathcal{U}.

We also recall the following known definitions:

[^0](a) X is said to be pairwise Hausdorff (Kelly [5]) if for each pair of distinct points x and y of X, there exist $U \in \mathcal{P}_{1}$ and $V \in \mathcal{P}_{2}$ such that $x \in U, y \in V$ and $U \cap V=\emptyset$.
(b) \mathcal{P}_{i} is said to be regular with respect to $\mathcal{P}_{j}, i \neq j$ if for each $x \in X$ and each $\left(\mathcal{P}_{i}\right)$-closed set A with $x \notin A$, there exist $U \in \mathcal{P}_{i}$ and $V \in \mathcal{P}_{j}$ such that $x \in U, A \subset V$ and $U \cap V=\emptyset . X$ is said to be pairwise regular (Kelly [5]) if \mathcal{P}_{i} is regular with respect to \mathcal{P}_{j} for both $i=1$ and $i=2$.
(c) X is said to be pairwise normal (Kelly [5]) if for any pair of a $\left(\mathcal{P}_{i}\right)$-closed set A and a $\left(\mathcal{P}_{j}\right)$-closed set B with $A \cap B=\emptyset, i \neq j$, there exist $U \in \mathcal{P}_{j}$ and $V \in \mathcal{P}_{i}$ such that $A \subset U, B \subset V$ and $U \cap V=\emptyset$.
(d) A cover $\left\{E_{\alpha} \mid \alpha \in A\right\}$ of X is said to be point finite (Dugundji [3]) if for each $x \in X$, there are at most finitely many indices $\alpha \in A$ such that $x \in E_{\alpha}$.
The following definitions are introduced in Bose, Roy Choudhury and Mukharjee [1].

Definition 2.3. A subcollection \mathcal{C} of a refinement \mathcal{V} of a pairwise open cover \mathcal{U} of X is \mathcal{U}-locally finite if for each $x \in X$, there exists a neighbourhood of x intersecting a finite number of members of \mathcal{C}, the neighbourhood being $\left(\mathcal{P}_{i}\right)$-open if x belongs to a $\left(\mathcal{P}_{i}\right)$-open set of \mathcal{U}.

Definition 2.4. The bitopological space X is pairwise paracompact if every pairwise open cover \mathcal{U} of X has a \mathcal{U}-locally finite parallel refinement.

If in the above definition, some sets $U \in \mathcal{U}$ are both $\left(\mathcal{P}_{1}\right)$-open and $\left(\mathcal{P}_{2}\right)$-open, then for each such set U, we select one of \mathcal{P}_{1} and \mathcal{P}_{2} with respect to which U is open. For this choice, we have a \mathcal{U}-locally finite refinement of \mathcal{U}. Changing the choice, we get a class of \mathcal{U}-locally finite refinements of \mathcal{U}. If there are two distinct sets $U_{1}, U_{2} \in \mathcal{U}$ such that for $i=1,2, U_{i}$ is $\left(\mathcal{P}_{i}\right)$-open and $U_{1} \cap U_{2} \neq \emptyset$, then for \mathcal{U}-local finiteness of a subcollection \mathcal{C} of the refinement \mathcal{V} of \mathcal{U} at the points $x \in U_{1} \cap U_{2}$, we must get two neighbourhoods $N_{i}, i=1,2$ of x such that N_{i} is $\left(\mathcal{P}_{i}\right)$-open and each intersects a finite number of members of \mathcal{C}.

Definition 2.5. The bitopological space $\left(X, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is strongly pairwise regular if it is pairwise regular, and if both the topological spaces $\left(X, \mathcal{P}_{1}\right)$ and $\left(X, \mathcal{P}_{2}\right)$ are regular.

If \mathcal{U} is a pairwise open cover of X, then for each $i=1,2, \mathcal{U}^{i}$ denotes the class of $\left(\mathcal{P}_{i}\right)$-open sets belonging to \mathcal{U}. For a point $x \in X$, a set $A \subset X$ and a collection \mathcal{C} of subsets of X, we write

$$
\begin{aligned}
S t(x, \mathcal{C}) & =\bigcup\{C \in \mathcal{C} \mid x \in C\} \\
S t(A, \mathcal{C}) & =\bigcup\{C \in \mathcal{C} \mid A \cap C \neq \emptyset\}
\end{aligned}
$$

Let \mathcal{P} be the topology on X generated by the subbase $\mathcal{A}=\mathcal{P}_{1} \cup \mathcal{P}_{2}$.
We now introduce the following definitions.

Definition 2.6. Let \mathcal{U} be a pairwise open cover of X. A parallel refinement \mathcal{V} of \mathcal{U} is said to be a parallel star (resp. barycentric) refinement of \mathcal{U} whenever it satisfies the following conditions: (1) if there are two distinct sets $U_{1}, U_{2} \in \mathcal{U}$ such that U_{i} is $\left(\mathcal{P}_{i}\right)$-open and $U_{1} \cap U_{2} \neq \emptyset$, then for $x \in U_{1} \cap U_{2}$, there are two sets $V_{1}, V_{2} \in \mathcal{V}$ such that $V_{i} \subset U_{i}, V_{i}$ is $\left(\mathcal{P}_{i}\right)$-open and $x \in V_{1} \cap V_{2} ;(2)$ for any $V \in \mathcal{V}$ (resp. $x \in X$), there exists a $U \in \mathcal{U}$ such that $\operatorname{St}(V, \mathcal{V}) \subset U$ (resp. $S t(x, \mathcal{V}) \subset U)$.

A (\mathcal{P})-open refinement \mathcal{V} of \mathcal{U} is said to be a (\mathcal{P})-open barycentric refinement of \mathcal{U} if for any $x \in X$, there exists a $U \in \mathcal{U}$ such that $S t(x, \mathcal{V}) \subset U$.

Definition 2.7. A set $G \in \mathcal{P}$ is said to be $\left(\mathcal{P}_{j}^{*}\right)$-open if it is a union of a $\left(\mathcal{P}_{i}\right)$-open set and a nonempty $\left(\mathcal{P}_{j}\right)$-open set. The complement of a $\left(\mathcal{P}_{j}^{*}\right)$-open set is called a $\left(\mathcal{P}_{j}^{*}\right)$-closed set.

Definition 2.8. X is said to be α-pairwise normal if for any pair of a $\left(\mathcal{P}_{i}\right)$ closed set A and a $\left(\mathcal{P}_{j}^{*}\right)$-closed set B with $A \cap B=\emptyset, i \neq j$, there exist a set $U \in \mathcal{P}$ and a set $V \in \mathcal{P}_{i}$ such that $A \subset U, B \subset V$ and $U \cap V=\emptyset$.

It is easy to see that X is α-pairwise normal if and only if for any $\left(\mathcal{P}_{j}^{*}\right)$-closed set K and any $\left(\mathcal{P}_{i}\right)$-open set U with $K \subset U$, there exists a $\left(\mathcal{P}_{i}\right)$-open set V such that $K \subset V \subset(\mathcal{P}) c l V \subset U$.

Definition 2.9. A pairwise open cover $\mathcal{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ is said to be shrinkable if there exists a pairwise open cover $\mathcal{V}=\left\{V_{\alpha} \mid \alpha \in A\right\}$ such that for each $\alpha \in A,(\mathcal{P}) \operatorname{cl} V_{\alpha} \subset U_{\alpha} . \mathcal{V}$ is then called a shrinking of \mathcal{U}.

Definition 2.10. X is said to be pairwise (resp. a-pairwise) fully normal if for every pairwise open cover \mathcal{U} of X, there is a pairwise open (resp. (\mathcal{P})-open) cover \mathcal{V} of X such that \mathcal{V} is a parallel (resp. (\mathcal{P})-open) star (resp. barycentric) refinement of \mathcal{U}.

We denote the set of natural numbers by N and the set of real numbers by R.

3. Theorems

ThEOREM 3.1. X is pairwise fully normal if and only if for every pairwise open cover \mathcal{U} of X, there is a pairwise open cover \mathcal{V} of X such that \mathcal{V} is a parallel barycentric refinement of \mathcal{U}.

The above theorem can be proved with standard arguments.
THEOREM 3.2. If X is pairwise fully normal, then it is α-pairwise normal and pairwise normal.

Proof. Let A and B be two disjoint subsets of X which are $\left(\mathcal{P}_{i}\right)$-closed and $\left(\mathcal{P}_{j}^{*}\right)$-closed respectively with $i \neq j$. Then there exist a $\left(\mathcal{P}_{i}\right)$-open set G_{1} and a nonempty $\left(\mathcal{P}_{j}\right)$-open set G_{2} such that $X-B=G_{1} \cup G_{2}$. So $\left\{X-A, G_{1}, G_{2}\right\}$ is a pairwise open cover of X. Therefore there exists a parallel star refinement
\mathcal{V} of $\left\{X-A, G_{1}, G_{2}\right\}$. Then $G=S t(A, \mathcal{V})$ and $H=S t(B, \mathcal{V})$ are (\mathcal{P})-open and $\left(\mathcal{P}_{i}\right)$-open respectively, $A \subset G$ and $B \subset H$. We claim $G \cap H=\emptyset$. If $G \cap H \neq \emptyset$, then there exist $V^{\prime}, V^{\prime \prime} \in \mathcal{V}$ with $A \cap V^{\prime} \neq \emptyset, B \cap V^{\prime \prime} \neq \emptyset$ and $V^{\prime} \cap V^{\prime \prime} \neq \emptyset$, and so $S t\left(V^{\prime}, \mathcal{V}\right)$ intersects both A and B which is impossible. Thus X is α-pairwise normal. Similarly, we can show that it is pairwise normal.

EXAMPLE 3.3. For any $a \in R$, the bitopological space $\left(R, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ where $\mathcal{P}_{1}=\{\emptyset, R,(-\infty, a],(a, \infty)\}$ and $\mathcal{P}_{2}=\{\emptyset, R,(-\infty, a),[a, \infty)\}$ is α-pairwise normal but not pairwise normal.

EXAMPLE 3.4. Let $p \in R, \mathcal{P}_{1}=\{\emptyset, R\} \cup\{E \cup(x, \infty) \mid p \notin E \subset R, x \in R$ and $x \geq p+1\}$ and $\mathcal{P}_{2}=$ the usual topology of R. Then the bitopological space $\left(R, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is pairwise normal, since for any $\left(\mathcal{P}_{1}\right)$-closed set $A(\neq \emptyset, R)$, we have

$$
A=E \cap(-\infty, x], p \in E \subset R, x \geq p+1
$$

and for any $\left(\mathcal{P}_{2}\right)$-closed set B with $A \cap B=\emptyset$, we have $p \notin B$, one can take for $y>x$,

$$
\begin{aligned}
& U=(X-B) \cap(-\infty, y) \in \mathcal{P}_{2} \\
& V=B \cup(y, \infty) \in \mathcal{P}_{1}
\end{aligned}
$$

so that $A \subset U, B \subset V$ and $U \cap V=\emptyset$.
But $\left(R, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is not α-pairwise normal, since for the $\left(\mathcal{P}_{1}\right)$-closed set

$$
F=((p-1, p+1) \cup(\text { the set of rationals })) \cap(-\infty, x], x \geq p+1
$$

and the $\left(\mathcal{P}_{2}^{*}\right)$-closed set

$$
K=M \cap((-\infty, p-1] \cup[p+1, \infty))
$$

where M is the $\left(\mathcal{P}_{1}\right)$-closed set

$$
((p-1, p+1) \cup(\text { the set of irrationals })) \cap(-\infty, x], x \geq p+1
$$

there exists no pair of a (\mathcal{P})-open set U and a $\left(\mathcal{P}_{1}\right)$-open set V with $F \subset U, K \subset V$ and $U \cap V=\emptyset$.

From the above two examples, it follows that the notions of pairwise normality and α-pairwise normality are independent.

Theorem 3.5. If X is pairwise Hausdorff and pairwise paracompact, then X is α-pairwise normal.

Proof. Let us consider a $\left(\mathcal{P}_{i}\right)$-closed set A and a $\left(\mathcal{P}_{j}^{*}\right)$-closed set B with $A \cap B=$ \emptyset and $i \neq j$. Let $\xi \in B$. Then $\xi \notin A$. Since X is pairwise Hausdorff and pairwise paracompact, it is pairwise regular (Theorem 5, Bose et al. [1]). Therefore there exist a set $U_{\xi} \in \mathcal{P}_{j}$ and a set $V_{\xi} \in \mathcal{P}_{i}$ such that $A \subset U_{\xi}, \xi \in V_{\xi}$ and $U_{\xi} \cap V_{\xi}=\emptyset$. The set $X-B$ is $\left(\mathcal{P}_{j}^{*}\right)$-open, and so there exist a $\left(\mathcal{P}_{i}\right)$-open set G_{1} and a nonempty $\left(\mathcal{P}_{j}\right)$-open set G_{2} such that $X-B=G_{1} \cup G_{2}$. Therefore the family $\mathcal{V}=\left\{V_{\xi} \mid \xi \in B\right\} \cup\left\{G_{1}, G_{2}\right\}$ is a pairwise open cover of X. Since X is
pairwise paracompact, there exists a \mathcal{V}-locally finite parallel refinement \mathcal{D} of \mathcal{V}. Let $V=\bigcup\{D \in \mathcal{D} \mid D \cap B \neq \emptyset\}$. Then $V \in \mathcal{P}_{i}$ and $B \subset V$. Now let $x \in A \subset X-B$. Since $X-B=G_{1} \cup G_{2}$ and $G_{1}, G_{2} \in \mathcal{V}$, it follows that there exists a neighbourhood W_{x} of x such that $W_{x} \in \mathcal{P}_{i}$ (resp. $W_{x} \in \mathcal{P}_{j}$) if $x \in G_{1}$ (resp. $x \in G_{2}$) and W_{x} intersects finite number of sets $D_{x}^{1}, D_{x}^{2}, \ldots, D_{x}^{m}$ with $B \cap D_{x}^{k} \neq \emptyset$ and $D_{x}^{k} \in \mathcal{D}$ for $k=1,2, \ldots, m$. If $D_{x}^{k} \subset V_{\xi_{k}}, \xi_{k} \in B$, then $U_{x} \cap V=\emptyset$ and $x \in U_{x}$ where $U_{x}=W_{x} \cap\left(\bigcap_{k=1}^{m} U_{\xi_{k}}\right) \in \mathcal{P}$. If $U=\bigcup_{x \in A} U_{x}$, then $U \in \mathcal{P}, A \subset U$ and $U \cap V=\emptyset$. Therefore X is α-pairwise normal.

Theorem 3.6. If X is α-pairwise normal, then every point finite pairwise open cover is shrinkable.

Proof. Let $\mathcal{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ be a point finite pairwise open cover of X. We well-order the index set A, and write $A=\{1,2, \ldots, \alpha, \ldots\}$. By transfinite induction, we now construct a pairwise open cover $\mathcal{V}=\left\{V_{\alpha} \mid \alpha \in A\right\}$ which is a shrinking of \mathcal{U}. We write $F_{1}=X-\bigcup\left\{U_{\alpha} \mid \alpha>1\right\}$. Since \mathcal{U} is a pairwise open cover, it follows that if U_{1} is $\left(\mathcal{P}_{i}\right)$-open, then F_{1} is $\left(\mathcal{P}_{j}^{*}\right)$-closed and $F_{1} \subset U_{1}$. Therefore there exists a $\left(\mathcal{P}_{i}\right)$-open set V_{1} such that $F_{1} \subset V_{1} \subset(\mathcal{P}) c l V_{1} \subset U_{1}$. Assume that V_{β} is defined for every $\beta<\alpha$, and consider the set

$$
F_{\alpha}=X-\left(\left(\bigcup\left\{V_{\beta} \mid \beta<\alpha\right\}\right) \cup\left(\bigcup\left\{U_{\gamma} \mid \gamma>\alpha\right\}\right)\right)
$$

If U_{α} is $\left(\mathcal{P}_{i}\right)$-open, then F_{α} is $\left(\mathcal{P}_{j}^{*}\right)$-closed. Also $F_{\alpha} \subset U_{\alpha}$. Therefore there exists a set $V_{\alpha} \in \mathcal{P}_{i}$ such that

$$
\begin{equation*}
F_{\alpha} \subset V_{\alpha} \subset(\mathcal{P}) c l V_{\alpha} \subset U_{\alpha} \tag{1}
\end{equation*}
$$

If $x \in X$, then there exist a finite number of sets $U_{\alpha_{1}}, U_{\alpha_{2}}, \ldots, U_{\alpha_{n}}$ such that $x \in U_{\alpha_{i}}$ for all $i=1,2, \ldots, n$. If $\alpha=\max \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, then for $\gamma>\alpha, x \notin U_{\gamma}$. Therefore $x \in F_{\alpha} \subset V_{\alpha}$ if $x \notin V_{\beta}$ for all $\beta<\alpha$. So $\mathcal{V}=\left\{V_{\alpha} \mid \alpha \in A\right\}$ is a pairwise open cover of X. Hence it follows from (1) that \mathcal{V} is a shrinking of \mathcal{U}.

Now we prove an analogue (Theorem 3.8) of A. H. Stone's theorem on paracompactness (Stone [7]).

For this, we require the following result.
Theorem 3.7. [1] If X is strongly pairwise regular, then X is pairwise paracompact if and only if every pairwise open cover \mathcal{U} of X has a parallel refinement $\mathcal{V}=\bigcup_{n=1}^{\infty} \mathcal{V}_{n}$, where each \mathcal{V}_{n} is \mathcal{U}-locally finite.

Theorem 3.8. Suppose X is pairwise Hausdorff. If X is pairwise paracompact, then it is a-pairwise fully normal. Conversely, if X is pairwise fully normal, then it is pairwise paracompact.

Proof. At first we suppose that X is pairwise Hausdorff and pairwise paracompact.

Let \mathcal{U} be a pairwise open cover of X. Then there exists a \mathcal{U}-locally finite parallel refinement $\mathcal{V}=\left\{V_{\alpha} \mid \alpha \in A\right\}$ of \mathcal{U}. Since \mathcal{V} is \mathcal{U}-locally finite, it is point
finite. Again by Theorem 3.5, X is α-pairwise normal, and so by Theorem 3.6, there exists a shrinking $\mathcal{W}=\left\{W_{\alpha} \mid \alpha \in A\right\}$ of \mathcal{V}. \mathcal{W} is a pairwise open cover of X such that for each α,

$$
\begin{equation*}
(\mathcal{P}) c l W_{\alpha} \subset V_{\alpha} \tag{2}
\end{equation*}
$$

For $x \in X$, we write

$$
\begin{equation*}
D_{x}=\bigcap\left\{V_{\alpha} \mid x \in(\mathcal{P}) c l W_{\alpha}\right\} \tag{3}
\end{equation*}
$$

From (2) and point finiteness of \mathcal{V}, it follows that there are finite number of V_{α} in the intersection (3). Hence $D_{x} \in \mathcal{P}$. Now let

$$
K_{x}=\bigcup\left\{(\mathcal{P}) c l W_{\alpha} \mid x \notin(\mathcal{P}) c l W_{\alpha}\right\}
$$

Since \mathcal{V} is \mathcal{U}-locally finite, $\left\{(\mathcal{P}) \operatorname{cl} W_{\alpha}\right\}$ is (\mathcal{P})-locally finite. Therefore by 9.2 (Dugundji [3], p. 82), K_{x} is a (\mathcal{P})-closed set. Therefore $G_{x}=X-K_{x}$ is a (\mathcal{P})-open set. Hence the collection $\mathcal{B}=\left\{D_{x} \cap G_{x} \mid x \in X\right\}$ is a (\mathcal{P})-open cover of X. For $y \in X$, let $y \in(\mathcal{P}) c l W_{\alpha}$. If $y \in D_{x} \cap G_{x}$, then $x \in(\mathcal{P}) c l W_{\alpha}$, since otherwise $(\mathcal{P}) c l W_{\alpha} \subset K_{x}$ and hence $y \notin G_{x}$. Again if $x \in(\mathcal{P}) c l W_{\alpha}$, then $D_{x} \subset V_{\alpha} \Rightarrow D_{x} \cap G_{x} \subset V_{\alpha}$. Therefore \mathcal{B} is a (\mathcal{P})-open barycentric refinement of \mathcal{V} and hence of \mathcal{U}. Therefore X is a-pairwise fully normal.

Conversely, suppose X is pairwise Hausdorff and pairwise fully normal. Let $\mathcal{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ be a pairwise open cover of X. By Theorem 3.1, we can construct a sequence $\left\{\mathcal{U}_{n}\right\}$ of pairwise open covers of X such that \mathcal{U}_{1} is a parallel barycentric refinement of \mathcal{U}, and for each $n \in N, \mathcal{U}_{n+1}$ is a parallel barycentric refinement of \mathcal{U}_{n}. For $\alpha \in A$, let

$$
\begin{aligned}
V_{\alpha}^{n} & =\left\{x \in U_{\alpha} \mid S t\left(x, \mathcal{U}_{n}\right) \subset U_{\alpha}\right\} \\
V_{\alpha} & =\bigcup_{n=1}^{\infty} V_{\alpha}^{n}
\end{aligned}
$$

If $x \in V_{\alpha}$, then $x \in V_{\alpha}^{n}$ for some n, and so $S t\left(x, \mathcal{U}_{n}\right) \subset U_{\alpha}$. Now let $y \in \operatorname{St}\left(x, \mathcal{U}_{n+1}\right)$, then $x \in S t\left(y, \mathcal{U}_{n+1}\right)$. Since \mathcal{U}_{n+1} is a barycentric refinement of \mathcal{U}_{n}, it follows that, $S t\left(y, \mathcal{U}_{n+1}\right) \subset S t\left(x, \mathcal{U}_{n}\right) \subset U_{\alpha}$. So $y \in V_{\alpha}^{n+1} \subset V_{\alpha}$. Thus $S t\left(x, \mathcal{U}_{n+1}\right) \subset V_{\alpha}$. Since \mathcal{U}_{1} is a barycentric refinement of \mathcal{U}, for any $x \in X$, there exists a U_{α} such that $S t\left(x, \mathcal{U}_{1}\right) \subset U_{\alpha}$ and so $x \in V_{\alpha}^{1} \subset V_{\alpha}$. Therefore $\mathcal{V}=\left\{V_{\alpha} \mid \alpha \in A\right\}$ is a refinement of \mathcal{U}. We now well-order \mathcal{V} as $V_{1}, V_{2}, \ldots, V_{\alpha}, \ldots$ For a fixed $n \in N$, we define

$$
\begin{aligned}
& B_{1}^{n}=X-S t\left(X-V_{1}, \mathcal{U}_{n}\right) \\
& B_{\alpha}^{n}=X-S t\left(\left(X-V_{\alpha}\right) \cup\left(\bigcup_{\beta<\alpha} B_{\beta}^{n}\right), \mathcal{U}_{n}\right) \quad \text { if } \alpha>1
\end{aligned}
$$

It is easy to see that

$$
\begin{align*}
S t\left(B_{\alpha}^{n}, \mathcal{U}_{n}\right) & \subset V_{\alpha} \text { for all } \alpha \\
S t\left(B_{\alpha}^{n}, \mathcal{U}_{n}\right) \cap B_{\beta}^{n} & =\emptyset \text { for all } \beta \neq \alpha \tag{4}
\end{align*}
$$

Let $x \in X$. Since $\left\{V_{\alpha} \mid \alpha \in A\right\}$ is a cover of X, there is a first index α such that $x \in V_{\alpha}$. Then $S t\left(x, \mathcal{U}_{m}\right) \subset V_{\alpha}$ for some m. We now show $x \in B_{\alpha}^{m}$. If possible,
suppose $x \notin B_{\alpha}^{m}$. Then

$$
\begin{aligned}
x & \in S t\left(\left(X-V_{\alpha}\right) \cup\left(\bigcup_{\beta<\alpha} B_{\beta}^{m}\right), \mathcal{U}_{m}\right) \\
& \Rightarrow \operatorname{St}\left(x, \mathcal{U}_{m}\right) \cap\left(\left(X-V_{\alpha}\right) \cup\left(\bigcup_{\beta<\alpha} B_{\beta}^{m}\right)\right) \neq \emptyset \\
& \Rightarrow \operatorname{St}\left(x, \mathcal{U}_{m}\right) \cap B_{\beta}^{m} \neq \emptyset \text { for some } \beta<\alpha\left(\text { since } \operatorname{St}\left(x, \mathcal{U}_{m}\right) \subset V_{\alpha}\right) \\
& \Rightarrow x \in \operatorname{St}\left(B_{\beta}^{m}, \mathcal{U}_{m}\right) \subset V_{\beta} .
\end{aligned}
$$

This contradicts the fact that α is the first index for which $x \in V_{\alpha}$. Therefore $x \in B_{\alpha}^{m}$. Hence $\left\{B_{\alpha}^{n} \mid n \in N, \alpha \in A\right\}$ is a cover of X. We now define

$$
G_{\alpha}^{n}=S t\left(B_{\alpha}^{n}, \mathcal{U}_{n+2}^{i}\right), n \in N, \alpha \in A \text { if } U_{\alpha} \text { is }\left(\mathcal{P}_{i}\right) \text { open. }
$$

Then G_{α}^{n} is $\left(\mathcal{P}_{i}\right)$-open. Since $\operatorname{St}\left(B_{\alpha}^{n}, \mathcal{U}_{n}\right) \subset V_{\alpha}$, we have $\operatorname{St}\left(B_{\alpha}^{n}, \mathcal{U}_{n+2}\right) \subset V_{\alpha}$ and hence $G_{\alpha}^{n} \subset V_{\alpha}$. Now let $x \in X$. Then $x \in B_{\alpha}^{n}$ for some pair of n and α and so $x \in U_{\alpha}$, since $B_{\alpha}^{n} \subset S t\left(B_{\alpha}^{n}, \mathcal{U}_{n}\right) \subset V_{\alpha} \subset U_{\alpha}$. If U_{α} is $\left(\mathcal{P}_{i}\right)$-open, then by definition of parallel barycentric refinement, $x \in U$ for some $U \in \mathcal{U}_{n+2}^{i}$. So $x \in$ $\operatorname{St}\left(B_{\alpha}^{n}, \mathcal{U}_{n+2}^{i}\right)=G_{\alpha}^{n}$. Therefore $\mathcal{G}=\left\{G_{\alpha}^{n} \mid n \in N, \alpha \in A\right\}$ is a cover of X and hence a parallel refinement of \mathcal{U}. We now show that there exists no $U \in \mathcal{U}_{n+2}$ intersecting both G_{α}^{n} and G_{β}^{n} for $\alpha \neq \beta$, whenever both U_{α} and U_{β} are $\left(\mathcal{P}_{i}\right)$-open. Suppose if possible, $U \in \mathcal{U}_{n+2}$ intersects both G_{α}^{n} and G_{β}^{n} for $\alpha \neq \beta$ with $U_{\alpha}, U_{\beta} \in \mathcal{P}_{i}$. Then there exist $H_{1}, H_{2} \in \mathcal{U}_{n+2}^{i}$ such that H_{1} intersects both B_{α}^{n} and U, and H_{2} intersects both B_{β}^{n} and U. Hence $S t\left(U, \mathcal{U}_{n+2}^{i}\right)$ intersects both B_{α}^{n} and B_{β}^{n}. Since \mathcal{U}_{n+2} is a star refinement of \mathcal{U}_{n}, it follows that some $W \in \mathcal{U}_{n}$ intersects both B_{α}^{n} and B_{β}^{n}. Therefore $\operatorname{St}\left(B_{\alpha}^{n}, \mathcal{U}_{n}\right)$ intersects B_{β}^{n} which contradicts (4).

Since \mathcal{U}_{n+2} is a parallel refinement of \mathcal{U}, it thus follows that for each $n \in N$, $\mathcal{G}_{n}=\left\{G_{\alpha}^{n} \mid \alpha \in A\right\}$ is \mathcal{U}-locally finite. Also we have $\mathcal{G}=\bigcup_{n=1}^{\infty} \mathcal{G}_{\alpha}^{n}$.

Since X is pairwise Hausdorff, any singleton subset of X is $\left(\mathcal{P}_{i}\right)$-closed for $i=1$ and 2. Therefore by Theorem 3.2, X is pairwise regular. Next we show that both $\left(X, \mathcal{P}_{1}\right)$ and $\left(X, \mathcal{P}_{2}\right)$ are regular topological spaces. Let F be a $\left(\mathcal{P}_{i}\right)$-closed subset of X with $x \notin F, i=1,2$. Considering $\{x\}$ as a $\left(\mathcal{P}_{i}\right)$-closed set, we get a parallel star refinement \mathcal{V} of $\{X-\{x\}, X-F\}$. Then $G=S t(\{x\}, \mathcal{V})$ and $H=S t(F, \mathcal{V})$ are $\left(\mathcal{P}_{i}\right)$-open sets with $x \in G, F \subset H$ and $G \cap H=\emptyset$. So $\left(X, \mathcal{P}_{i}\right)$ is regular. Hence X is strongly pairwise regular. Therefore by Theorem $3.7, X$ is pairwise paracompact.

Acknowledgement. The authors express their gratitude to the referee for the suggestions for the improvement of the paper.

REFERENCES

[1] M.K. Bose, A. Roy Choudhury, A. Mukharjee, On bitopological paracompactness, Mat. Vesnik 60 (2008), 255-259.
[2] M.C. Datta, Paracompactness in bitopological spaces and an application to quasi-metric spaces, Indian J. Pure Appl. Math. (6) 8 (1977), 685-690.
[3] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[4] P. Fletcher, H.B. Hoyle III, C.W. Patty, The comparison of topologies, Duke Math. J. 36 (1969), 325-331.
[5] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc. (3) 13 (1963), 71-89.
[6] E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838.
[7] A.H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977-982.
(received 08.10.2008, in revised form 22.04.2009)
Department of Mathematics, University of North Bengal, Siliguri, W. Bengal-734013, INDIA
E-mail: manojkumarbose@yahoo.com
Department of Mathematics, St. Joseph's College, North Point, Darjeeling, W. Bengal-734104, INDIA
E-mail: ajoyjee@yahoo.com

[^0]: 2010 AMS Subject Classification: 54E55.
 Keywords and phrases: Pairwise paracompact spaces; pairwise fully normal spaces; shrinkable pairwise open cover.

