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FRACTIONAL DOUBLE NEWTON STEP PROPERTIES
FOR POLYNOMIALS WITH ALL REAL ZEROS

A. Melman

Abstract. When doubling the Newton step for the computation of the largest zero of a real
polynomial with all real zeros, a classical result shows that the iterates never overshoot the largest
zero of the derivative of the polynomial. Here we show that when the Newton step is extended
by a factor θ with 1 < θ < 2, the iterates cannot overshoot the zero of a different function. When
θ = 2, our result reduces to the one for the double-step case. An analogous property exists for
the smallest zero.

1. Introduction

A polynomial with all real zeros has a minimum or maximum in between each
pair of adjacent distinct zeros and is convex or concave to the left and right of
the smallest and largest of these optima, respectively. This means that if one
wanted to compute, for example, the largest zero with Newton’s method, then the
iterates would converge monotonically from an initial point to the right of that
zero. A similar situation exists for the smallest zero. Newton’s method for solving
f(z) = 0 is defined by zk+1 = zk − f(zk)/f ′(zk), starting from an appropriate z0.
Its geometric significance is that the next iterate is the zero of the tangent to f(z)
at the current iterate, which explains why starting, e.g., to the right of the largest
zero of a convex or concave function causes the iterates to converge monotonically
to that zero.

The convergence can be accelerated by increasing the Newton step
−f(zk)/f ′(zk), although there is now a possibility of overshooting the zero. If an
overshoot does occur, then a classical result for a doubling of the step for polyno-
mials with all real zeros (see, e.g., [3], [4]) shows that the overshoot must lie to the
right of the largest zero of the derivative of the polynomial. In addition, it describes
what happens to a subsequent (regular) Newton step.

Although probably not of great practical importance, it is nevertheless an
intriguing and natural question to ask how far an iterate can overshoot if the Newton
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step for a polynomial with all real zeros is increased by a factor θ that is less than
two, i.e., 1 < θ < 2, which we will refer to as a fractional double Newton step. We
will show that in this case too one can identify a function whose zero constitutes a
lower bound on the overshoot. More specifically, consider a polynomial p(x) with
zeros ξ1 ≥ ξ2 ≥ · · · ≥ ξn. Then, if the Newton step is multiplied by a factor
1 < θ < 2 and an overshoot occurs from a point to the right of the largest zero of
the polynomial, we will show that the overshoot lies to the right of the largest zero
of a function of the form

h(θ)
x− ξ1

+
n∑

j=2

1
x− ξj

, (1)

where 0 < h(θ) < 1. For θ → 2+, we recover the result for the double step method.
As such, we provide a more complete treatment of what happens when a Newton
step is extended continuously, rather than just doubled.

To conclude the introduction, we define the following functions for 1 < θ ≤ 2
and q ≥ 0:

φθ,q(x) =
(θ − 1)q

x− ξ1
+

n∑
j=2

1
x− ξj

and φ(x) = φ2,q(x) = φθ,0(x) =
n∑

j=1

1
x− ξj

.

For any value of 1 < θ ≤ 2 and q ≥ 0, the function φθ,q is singular at each zero
of p(x) and strictly decreasing on intervals between distinct zeros. For ξ1 6= ξ2, we
denote its largest zero by η

(θ,q)
1 and its graph on (ξ2, ξ1) looks as follows:

Fig. 1. The graph of φθ,q(x) on (ξ2, ξ1)

Since p(x) = an

n∏
j=1

(x− ξj), we note that φ(x) =
n∑

j=1

1
x− ξj

=
p′(x)
p(x)

and that,

when ξ1 6= ξ2, the largest zeros of p′(x) and φ(x) coincide, so that the classical
result for the double-step Newton method can be rephrased in terms of the largest
zero of the function in (1) with h(θ) ≡ 1. Also, with our definitions, Newton’s
method can be written as zk+1 = zk − 1/φ(zk).

The main idea of the paper is to show that the function value of φθ,q at an
overshoot on the interval (ξ2, ξ1) is negative, which means that the overshoot must
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lie to the right of the zero of that function. We then proceed to find the largest
possible value of q for which this is true. The larger q, the larger the zero of the
corresponding φθ,q and the better the lower bound on the overshoot will be. This
finally leads to the function h(θ).

First we prove a technical lemma, after which a string of lemmas following the
above outline culminates in our main result.

2. Preliminary lemmas

To start, we show in the following lemma that if an overshoot occurs for an
extended Newton step, i.e., a step multiplied by a factor θ with 0 < θ ≤ 2, for a
polynomial with all real zeros of degree n ≥ 3 and starting from a point to the
right of its largest zero, then that largest zero must have multiplicity one. With
our notation, this means that ξ2 > ξ1.

Lemma 2.1. Let p(x) be a real polynomial of degree n ≥ 3, all zeros ξ1 ≥ ξ2 ≥
· · · ≥ ξn of which are real and let 1 < θ ≤ 2. Then for every z > ξ1, z−θ

p(z)
p′(z)

< ξ1

implies that ξ1 6= ξ2.

Proof. First we note that p(z)/p′(z) > 0. Then, because n ≥ 3, we have that

1
2

(
p′(z)
p(z)

)
=

1
2

(
n∑

j=1

1
z − ξj

)
>

1
2

(
1

z − ξ1
+

1
z − ξ2

)

and therefore 2 p(z)
p′(z) < H(z − ξ1, z − ξ2), where H(a, b) stands for the harmonic

mean of a and b. Since z − ξ1 and z − ξ2 are positive numbers, this means that

H(z − ξ1, z − ξ2) ≤ z − ξ2 and therefore that ξ1 > z − θ
p(z)
p′(z)

≥ z − 2
p(z)
p′(z)

>

z −H(z − ξ1, z − ξ2) ≥ ξ2, so that ξ1 > ξ2.

Before we continue, we define γj = φ(z)(z − ξj), i.e., γj is the distance from z

to ξj in terms of Newton steps from z. The next lemma bounds φθ,q

(
z − θ

φ(z)

)
in

terms of φ(z), θ, and γ1.

Lemma 2.2. Let φθ,q(x) and φ(x) be as defined before and let p(x) be a real
polynomial of degree n ≥ 2, all zeros ξ1 ≥ ξ2 ≥ · · · ≥ ξn of which are real. Let
1 < θ ≤ 2, q ≥ 0, z > ξ1, and y = z − θ

φ(z) . Then y < ξ1 implies that

φθ,q(y) ≤ φ(z)
(

(θ − 1)q

γ1 − θ
+

γ1 − 1
θ − (θ − 1)γ1

)
. (2)

When n = 2, we require that ξ1 6= ξ2.

Proof. First, we have either by assumption or by Lemma 2.1 that ξ1 > ξ2,
so that the function φθ,q looks exactly as in Figure 1, i.e., its largest zero η

(θ,q)
1
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satisfies ξ2 < η
(θ,q)
1 < ξ1. We have

φθ,q(y) =
(θ − 1)q

y − ξ1
+

n∑
j=2

1
y − ξj

=
(θ − 1)q

z − θ/φ(z)− ξ1
+

n∑
j=2

1
z − θ/φ(z)− ξj

=
(θ − 1)q

z − ξ1 − θ/φ(z)
+

n∑
j=2

1
z − ξj − θ/φ(z)

= φ(z)
(

(θ − 1)q

φ(z)(z − ξ1)− θ
+

n∑
j=2

1
φ(z)(z − ξj)− θ

)
.

Recalling that γj = φ(z)(z − ξj), we obtain
n∑

j=1

1
γj

=
n∑

j=1

1
(φ(z))(z − ξj)

=
1

φ(z)

n∑
j=1

1
z − ξj

= 1 .

In terms of the variables γj , we have

φθ,q(y) = φ(z)
(

(θ − 1)q

γ1 − θ
+

n∑
j=2

1
γj − θ

)
. (3)

Since φ(z) > 0, we can derive an upper bound on φθ,q(y) for given γ1 by computing
an upper bound on the function

∑n
j=2 1/(γj − θ) over all values γj > 0 (j =

2, 3, . . . , n), subject to the restriction that
∑n

j=2 1/γj = 1− 1/γ1.

We note that, because z − θ/φ(z) < ξ1 and z − 1/φ(z) > ξ1, it follows that
1 < γ1 < θ, which implies that 0 < 1− 1

γ1
< θ−1

θ so that, for j = 2, . . . , n, 1
γj

< θ−1
θ .

Therefore, γj > θ for j = 2, . . . , n and the function
∑n

j=2 1/(γj − θ) is well-defined.

The problem of finding such an upper bound is solved in [3] for θ = 2 but
the proof is entirely analogous for 1 < θ < 2. The upper bound is obtained by
setting γ2 = γ1

γ1−1 and γj = +∞ for j ≥ 3 (when n ≥ 3), which yields γ1−1
θ−(θ−1)γ1

.
Substituting this value into (3) gives

φθ,q(y) ≤ φ(z)
(

(θ − 1)q

γ1 − θ
+

γ1 − 1
θ − (θ − 1)γ1

)
.

This completes the proof.
For 1 ≤ x < θ, 1 < θ ≤ 2, and q ≥ 0, we define

ψθ,q(x) =
(θ − 1)q

x− θ
+

x− 1
θ − (θ − 1)x

. (4)

We can then rewrite the result in Lemma 2.2 as φθ,q(y) ≤ φ(z)ψθ,q(γ1).
It can easily be verified that

d

dx
ψθ,q(x) =

−(θ − 1)q

(x− θ)2
+

1
(θ − (θ − 1)x)2

. (5)

In the following lemma, we prove a few basic properties of the function ψθ,q(x)
on the interval 1 ≤ x < θ, namely that for 1 < θ < 2 it is a decreasing function



Fractional double Newton step properties for polynomials with all real zeros 5

when 0 ≤ q < 2 and that when q ≥ 2 it has a unique maximum at some point
x = γ̄θ,q on [1, θ). If ψθ,q(γ̄θ,q) ≤ 0, we obtain with Lemma 2.2 that φθ,q(y) ≤
φ(z)ψθ,q(γ̄θ,q) ≤ 0. Figure 1 then shows that the zero of φθ,q(x) on (ξ2, ξ1) must
be a lower bound on y. As was mentioned earlier, our goal is to find the largest
possible value of q for which ψθ,q(γ̄θ,q) is still negative because the larger the value
of q, the larger the zero of φθ,q(x) will be, and, consequently, the better (larger)
the lower bound on y = z − θ/φ(z). This is illustrated in Figure 2, which, as an
example, shows the graphs of φ1.8,1 and φ1.8,6 for p(x) = (x+1)(x−2)(x−4)(x−8).

Fig. 2. The graphs of the functions φ1.8,1 (dashed line) and φ1.8,6 (solid line).

Lemma 2.3. For 1 < θ < 2 the function ψθ,q(x) has the following properties
on [1, θ):

(1) For q ≥ 0, ψθ,q(1) < 0.
(2) For 0 ≤ q < 2, ψθ,q(x) is strictly decreasing in x.
(3) For q ≥ 2, ψθ,q(x) has a unique maximum at x = γ̄θ,q, with

γ̄θ,q = 1 +
(θ − 1)− (θ − 1)q/2

1− (θ − 1)1+q/2
. (6)

When θ = 2, ψ2,q(x) = −1 for any x ∈ [1, 2) and any value of q.

Proof. Part (1) in the statement of the proof is immediate from (4). Let us
now consider

ψ′θ,q(x) < 0 ⇐⇒ (θ − 1)q/2

θ − x
>

1
θ − (θ − 1)x

⇐⇒ x >
1− (θ − 1)q/2

1− (θ − 1)1+q/2
· θ (7)

⇐⇒ x >
1− (θ − 1)q/2

1− (θ − 1)1+q/2
· (1 + (θ − 1))
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⇐⇒ x >
1− (θ − 1)1+q/2 + (θ − 1)− (θ − 1)q/2

1− (θ − 1)1+q/2

⇐⇒ x > 1 +
(θ − 1)− (θ − 1)q/2

1− (θ − 1)1+q/2
. (8)

If q < 2, then θ − 1 < (θ − 1)q/2 so that statement (8) is true for x ∈ [1, θ).
Therefore, ψ′θ,q(x) < 0 on [1, θ) when q < 2.

Proceeding exactly as before, we find

ψ′θ,q(γ̄θ,q) = 0 ⇐⇒ γ̄θ,q = 1 +
(θ − 1)− (θ − 1)q/2

1− (θ − 1)1+q/2
.

If q ≥ 2, then θ − 1 ≥ (θ − 1)q/2, so that γ̄θ,q ≥ 1. In view of (7), we have that

ψ′θ,q(γ̄θ,q) = 0 ⇐⇒ γ̄θ,q =
1− (θ − 1)q/2

1− (θ − 1)1+q/2
· θ , (9)

and since (θ − 1)q/2 > (θ − 1)1+q/2, equation (9) implies that γ̄θ,q < θ. We have
therefore obtained a single critical point on [1, θ). Furthermore, because q ≥ 2, we
have that ψ′θ,q(1) = 1− (θ − 1)q−2 ≥ 0 and limx→θ ψ′θ,q(x) < 0. The critical point
must therefore represent a maximum.

It is also easily verified that ψ2,q(x) = −1 for any x ∈ [1, 2). This concludes
the proof.

Next, we compute the largest value of q for which ψθ,q(γ̄θ,q) remains negative.
Figure 3 shows a few curves, corresponding to θ = 1.4 and various values of q,
ranging from 1.5 to 5.5. Higher curves correspond to higher values of q. As can
clearly be seen, the maximum value of ψθ,q remains negative until a certain value
of q is reached. That value is obtained in the following lemma.

Fig. 3. The graphs of the functions ψ1.4,q for q = 1.5, 2, 2.8, 3.4199, 4.5, 5.5.
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Lemma 2.4. With ψθ,q(x) and γ̄θ,q defined as before, 1 < θ < 2, and q > 2,
we have that ψθ,q(γ̄θ,q) ≤ 0 as long as

q ≤ 2− 2
ln

(
1 +

√
θ(2− θ)

)

ln (θ − 1)
.

Proof. The proof begins with a straightforward substitution. We recall that

γ̄θ,q = 1 +
(θ − 1)− (θ − 1)q/2

1− (θ − 1)1+q/2
,

which implies

ψθ,q(γ̄θ,q) ≤ 0 ⇐⇒ (θ − 1)q

γ̄θ,q − θ
≤ 1− γ̄θ,q

θ − (θ − 1)γ̄θ,q

⇐⇒ (θ − 1)q(θ − (θ − 1)γ̄θ,q) ≥ (1− γ̄θ,q)(γ̄θ,q − θ)

⇐⇒ (θ − 1)q(1 + (θ − 1)− (θ − 1)γ̄θ,q)

≥ (1− γ̄θ,q)(γ̄θ,q − (θ − 1)− 1)

⇐⇒ (θ − 1)q

(
1− (θ − 1)2 − (θ − 1)1+q/2

1− (θ − 1)1+q/2

)

≥
(
− (θ − 1)− (θ − 1)q/2

1− (θ − 1)1+q/2

)(
(θ − 1)− (θ − 1)q/2

1− (θ − 1)1+q/2
− (θ − 1)

)

⇐⇒ (θ − 1)q
(
1− (θ − 1)2

)

≥
(
(θ − 1)q/2 − (θ − 1)

)(
(θ − 1)2+q/2 − (θ − 1)q/2

1− (θ − 1)1+q/2

)

⇐⇒ (θ − 1)q/2 ≥ (θ − 1)− (θ − 1)q/2

1− (θ − 1)1+q/2
.

From the last inequality, one readily obtains

(θ − 1)q − 2
θ − 1

(θ − 1)q/2 + 1 ≤ 0. (10)

As q −→ 2+ for a given θ, the function of q in the left-hand side of inequality (10)
approaches (θ− 1)2 − 1, which is a negative number. Its derivative with respect to
q is given by

(θ−1)q ln (θ − 1)−(θ−1)q/2 ln (θ − 1)
θ − 1

=
(

(θ − 1)q/2 − 1
θ − 1

)
(θ−1)q/2 ln (θ − 1) .

This is a strictly positive number which means that the function in the left-hand side
of inequality (10) is strictly increasing as a function of q, from which we conclude
that the maximum function value of ψθ,q(x) on [1, θ) remains negative as q increases
from q = 2+, until it vanishes for the value of q that satisfies

(θ − 1)q − 2
θ − 1

(θ − 1)q/2 + 1 = 0 . (11)
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We compute this value by noting that (11) is a quadratic equation in (θ − 1)q/2.
Its solutions are given by

(θ − 1)q/2 =
1
2

(
2

θ − 1
±

√
4

(θ − 1)2
− 4

)
=

1±
√

1− (θ − 1)2

θ − 1
·

Since θ−1 < 1, the only feasible solution is the one with the minus sign, which can
be rewritten as

(θ − 1)q/2 =
θ − 1

1 +
√

1− (θ − 1)2
. (12)

Taking the natural logarithm on both sides then easily yields

q = 2− 2
ln

(
1 +

√
θ(2− θ)

)

ln (θ − 1)
.

This completes the proof.
We are interested in the largest possible value for q. That means that the case

q > 2 is the only one of interest as Lemma 2.3 shows that ψθ,q is always negative
on [1, θ) for any 0 ≤ q ≤ 2.

In Figure 3, the curve touching the x-axis from below corresponds to q ≈
3.4199, the value given by Lemma 2.4.

3. Main result: the overshooting theorem

Our main result is stated in the following theorem.

Theorem 3.1. Let φθ,q(x) and φ(x) be as defined before and let p(x) be a real
polynomial of degree n ≥ 2, all zeros ξ1 ≥ ξ2 ≥ · · · ≥ ξn of which are real. Let

1 < θ ≤ 2, z > ξ1, and y = z − θ

φ(z)
. When n = 2, we also require that ξ1 6= ξ2.

Then, if y overshoots ξ1, i.e., if y < ξ1, it will not overshoot the largest zero of the
function

µ(x) =
h(θ)

x− ξ1
+

n∑
j=2

1
x− ξj

with h(θ) =

(
θ − 1

1 +
√

θ(2− θ)

)2

.

Proof. We start by noticing that θ = 2 simply reduces to the double step case
which was already dealt with in [3] and [4]. Now let 1 < θ < 2 and let γj , φθ,q(x),
φ(x), ψθ,q(x), and γ̄θ,q be as defined before. Then for any q > 2 we have with
Lemma 2.2 that

φθ,q(y) ≤ φ(z)ψθ,q(γ1) ≤ φ(z)ψθ,q(γ̄θ,q) . (13)

Lemma 2.4 shows that ψθ,q(γ̄θ,q) ≤ 0, which means that y lies to the right of the
zero of φθ,q on (ξ2, ξ1), as long as

q ≤ 2− 2
ln

(
1 +

√
θ(2− θ)

)

ln (θ − 1)
,
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or, with (12), as long as

(θ − 1)q ≥
(

θ − 1
1 +

√
θ(2− θ)

)2

.

We are interested in the smallest possible value for (θ − 1)q as it yields the largest
zero for φθ,q on (ξ2, ξ1). Substituting this smallest value in the expression for φθ,q

completes the proof.
Remarks.

(1) The function

h(θ) =

(
θ − 1

1 +
√

θ(2− θ)

)2

satisfies 0 < h(θ) < 1 so that the zero of µ(x), which we defined in the statement of
Theorem 3.1, will never be smaller than the zero of φ(x) (or p′(x)) on the interval
(ξ2, ξ1).

(2) Completely analogous results can be obtained for an overshoot from an
initial point to the left of the smallest zero of p(x).

(3) From Lemma 2.3 we know that the function ψθ,0(x) achieves its maximum
on 1 ≤ x < θ < 2 at x = 1, yielding a function value of −(θ−1)−1. With Lemma 2.2
this means that

φ(y) = φθ,0(y) ≤ −φ(z)/(θ − 1) .

From this we have

y − p(y)
p′(y)

= y − 1
φ(y)

= y − 1
φθ,0(y)

≤ z − θ

φ(z)
+

θ − 1
φ(z)

= z − 1
φ(z)

= z − p(z)
p′(z)

.

In other words, taking a regular Newton step from the overshoot yields an iterate
that is not worse than a regular Newton step from the last iterate before the
overshoot. This is the same property that holds for θ = 2 as demonstrated in [3]
and [4].

(4) It is a tedious but straightforward exercise to show that the lower bound on
the overshoot we derived here is at least as good as the much cruder one obtained
in [2].
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