SUBSPACE AND ADDITION THEOREMS FOR EXTENSION AND COHOMOLOGICAL DIMENSIONS. A PROBLEM OF KUZMINOV

V. V. Fedorchuk

Abstract. Let K be either a CW or a metric simplicial complex. We find sufficient conditions for the subspace inequality

$$A \subset X, \quad K \in AE(X) \Rightarrow K \in AE(A).$$

For the Lebesgue dimension $(K = S^n)$ our result is a slight generalization of Engelking's theorem for a strongly hereditarily normal space X. As a corollary we get the inequality

$$A \subset X \Rightarrow \dim_G A \le \dim_G B.$$

for a certain class of paracompact spaces X and an arbitrary abelian group G.

As for the addition theorems

$$\begin{split} K \in \mathrm{AE}(A), \ \ L \in \mathrm{AE}(B) \Rightarrow K * L \in \mathrm{AE}(A \cup B), \\ \dim_G(A \cup B) \leq \dim_G A + \dim_G B + 1, \end{split}$$

we extend Dydak's theorems for metrizable spaces (G is a ring with unity) to some classes of paracompact spaces.

Introduction

One of the main results of theory of Lebesgue dimension is the inequality

(1) $\dim(A \cup B) \le \dim A + \dim B + 1.$

This inequality is called *Urysohn–Menger formula*. Inequality (1) was established for separable metric spaces by P.S. Urysohn in [40] (announcement [39]) and was extended to hereditarily normal spaces by Ju.M. Smirnov [37].

When cohomological dimension theory was extended to paracompact spaces by means of sheaves (look at [22], [23], [28]), W.I. Kuzminov posed the following question ([28], Problem 10).

Research supported by the Russian Foundation for Basic Research (grant no. 09-01-00741) and by RNP (grant no. 2.1.1.3704).

AMS Subject Classification: 55M11, 54F45.

Keywords and phrases: Dimension, cohomological dimension; absolute extensor; CW-complex; metric simplicial complex; subspace theorem; addition theorem.

Let X be a hereditarily paracompact space and let $X = A \cup B$. Is it true that the inequality

(2) $\dim_G X \le \dim_G A + \dim_G B + 1$

holds for an arbitrary abelian group?

L.R. Rubin [39] was the first who gave a partial answer to this question. Namely, he proved that

(3) $\dim_{\mathbb{Z}}(A \cup B) \leq \dim_{\mathbb{Z}} A + \dim_{\mathbb{Z}} B + 1$

for subspaces of metrizable spaces. Thereafter J. Dydak and J.J. Walsh [19] proved the inequality (2) for $G = \mathbb{Z}_p$ or G is a subring of the ring of rationals \mathbb{Q} , and $\dim_G A$, $\dim_G B \geq 2$. A.N. Dranishnikov and D. Repovš [13] proved the inequality (2) for $G = \mathbb{Z}_p$ or G is subring of \mathbb{Q} , $\dim(A \cup B)$ is finite and $\dim_G A = 1$ or $\dim_G B = 1$. At last J. Dydak [16] proved that inequality (2) holds for any ring G with unity. All these results were obtained for metrizable spaces.

A.Ch. Chigogidze [2] using the method of inverse systems and applying Rubin's theorem proved

THEOREM A. If X is a perfectly normal space and $X = A \cup B$, then $\dim_{\mathbb{Z}}^{0} X \leq \dim_{\mathbb{Z}}^{0} A + \dim_{\mathbb{Z}}^{0} B + 1$.

Here $\dim_G^0 X \leq n$ means that $K(G, n) \in AE(X)$. Applying Ghigogidze's technique and using mentioned above Dydak's theorem, one can prove

THEOREM B. If X is a perfectly normal space and $X = A \cup B$, then $\dim^0_G X \leq \dim^0_G A + \dim^0_G B + 1$

for an arbitrary countable ring with unity G.

It should be mentioned that generally Kuzminov's question has a negative answer. A.N. Dranishnikov, D. Repovš and E.V. Ščepin [14] constructed subsets A and B of \mathbb{R}^4 such that

 $\dim_{\mathbb{Q}/\mathbb{Z}}(A \cup B) > \dim_{\mathbb{Q}/\mathbb{Z}} A + \dim_{\mathbb{Q}/\mathbb{Z}} B + 1.$

Thereafter J. Dydak [16] proved that if $G \otimes G = 0$, then for any $m \ge 2$ there is a subset A of S^{2m+1} such that $\dim_G A \le m - 1$ and $\dim_G (S^{2m+1} \setminus A) \le m$.

The purpose of this paper is to find general conditions under which Kuzminov's hypothesis is true. Let us start with the following theorem that was proved by P.J. Huber [15], Y. Kodama [27] and I.A. Shvedov [36] (look at [28]).

THEOREM C. If X is a paracompact space, then $\dim_G X = \dim_G^0 X$.

Combining Theorems B and C we get

THEOREM D. If X is a paracompact perfectly normal space and $X = A \cup B$, then

 $\dim_G X \le \dim_G A + \dim_G B + 1$

for an arbitrary countable ring with unity G.

Our main result is the following generalization of Dydak's theorem ([16], Theorem 1.4, the first part).

THEOREM 5.2. Suppose A, B are subsets of a hereditarily paracompact p_1 -space X and G is a ring with unity. Then

 $\dim_G(A \cup B) \le \dim_G A + \dim_G B + 1$

in the following cases:

1) G is countable;

2) X is perfectly normal.

A space X is said to be a p_1 -space if X admits a perfect mapping onto a first countable space. Every first countable hereditarily paracompact space is a hereditarily paracompact p_1 -space.

We prove also Subspace Theorem 2.20. On the one hand, it generalizes Pasynkov–Zambahidze's [43] and Engelking's [21] theorems for Lebesgue dimension. On the other hand, Theorem 2.20 is a generalization of Dydak's subspace theorem for extension dimension [16]. Corollary 2.22 is a subspace theorem for cohomological dimension.

Another auxiliary result is Theorem 3.4 which is a generalization of Urysohn– Menger addition theorem for Lebesgue dimension. Theorem 3.4 is also a generalization of Dydak's addition theorem for extension dimension of metrizable spaces [16].

Yet another auxiliary result is the following extension of Dranishnikov's theorem [8] to paracompact spaces.

THEOREM 4.8. Let X be a paracompact p_1 -space and let $K \in AE(X)$ be a CW-complex such that either:

1) K is countable; 2) X is perfectly normal. Then $\dim_{H_m(K,\mathbb{Z})} X \leq m \text{ for all } m > 0.$

1. Preliminaries

All spaces are assumed to be normal T_1 , all mappings are continuous. Any additional information concerning general topology and dimension theory one can find in [20], [21], [9], [11], [12], [18]. Recall some known notions and facts.

1.1. DEFINITION. Let X and Y be spaces and let $Z \subset X$. The property that all partial mappings $f: Z \to Y$ extend over X will be denoted by $Y \in AE(X, Z)$. If every mapping $f: Z \to Y$ extends over an open set $U_f \supset Z$, then we write

 $Y \in ANE(X, Z)$. If every partial mapping $f : C \to Y$ on X, C is a closed subset of X, can be extended over X (respectively over an open set $U_f \supset C$), then Y is called an *absolute (neighbourhood) extensor* of X (notation: $Y \in A(N)E(X)$).

1.2. PROPOSITION. If $Y \in A(N)E(X)$ and $F \subset X$ is closed, then $Y \in A(N)E(F)$.

Proposition 1.2 yields

1.3. PROPOSITION. Let $Y \in ANE(X)$ and let F be a closed subspace of X such that $Y \in AE(F)$ and $Y \in AE(C)$ for every closed subset C of X containing in $X \setminus F$. Then $Y \in AE(X)$.

1.4. COROLLARY. If $X = X_1 \cup \cdots \cup X_n$, where X_i are closed in X, and $Y \in AE(X_i)$, $i = 1, \ldots, n$, and $Y \in ANE(X)$, then $Y \in AE(X)$.

1.5. PROPOSITION. If a space $X = \bigoplus_{\alpha \in A} X_{\alpha}$ is the union of a discrete family of its subspaces X_{α} such that $Y \in A(N)E(X_{\alpha})$ for any $\alpha \in A$, then $Y \in A(N)E(X)$.

1.6. PROPOSITION ([7], (2.2)). Let $\{F_{\alpha} : \alpha \in A\}$ be a locally finite collection of closed sets of a countably paracompact space X. Then there exists a locally finite collection $\{G_{\alpha} : \alpha \in A\}$ of open sets, with $F_{\alpha} \subset G_{\alpha}$, in the following cases:

1) A is countable;

2) X is collectionwise normal. \blacksquare

1.7. PROPOSITION. Let F be a closed subspace of a countably paracompact space X and let $u = \{U_{\alpha} : \alpha \in A\}$ be a locally finite cover of F by functionally open in F sets. Then u can be extended to a locally finite functionally open cover $v = \{V_{\alpha} : \alpha \in A\}$ of X in the following cases:

1) A is countable;

2) X is collectionwise normal.

Proof. Since the family $\overline{u} = \{\overline{U}_{\alpha} : \alpha \in A\}$ is locally finite, we can apply Proposition 1.6 to $F_{\alpha} = \overline{U}_{\alpha}$. There exists a locally finite collection $\{G_{\alpha} : \alpha \in A\}$ of open sets in X, with $U_{\alpha} \subset G_{\alpha}$. Without loss of generality we can assume that $U_{\alpha} = G_{\alpha} \cap F$. Now we can find functionally open sets H_{α} such that

 $U_{\alpha} = F \cap H_{\alpha} \subset H_{\alpha} \subset G_{\alpha}.$

Let $H = \bigcup \{H_{\alpha} : \alpha \in A\}$ and let $C = X \setminus H$. Then $F \cap C = \emptyset$. Hence there exists a functionally open set W such that

 $C \subset W \subset X \setminus F.$

Fix some $\alpha_0 \in A$ and set

 $V_{\alpha_0} = H_{\alpha_0} \cup W, V_{\alpha} = H_{\alpha} \text{ for } \alpha \neq \alpha_0. \blacksquare$

Proposition 1.7 implies

1.8. PROPOSITION. Let F be a closed subspace of a countably paracompact space X. Then every locally finite partition of unity $\{\varphi_{\alpha} : \alpha \in A\}$ on F can be extended to a locally finite partition of unity on X in the following cases:

1) A is countable;

2) X is collectionwise normal. \blacksquare

1.9. REMARK. Point 2) for a paracompact space X was proved by J. Dydak ([17], Theorem 8.4).

We say that X is a p_1 -space if X admits a perfect mapping onto a first countable space.

1.10. THEOREM ([17], Theorem 11.1). Suppose F is a closed subset of a p_1 -space X and m is an infinite cardinal number. Then the following conditions are equivalent:

1) $K \in ANE(X, F)$ for every CW-complex, with $card(K^0) \le m$;

2) every locally finite partition of unity $\{\varphi_{\alpha} : \alpha \in A\}$ (with card(A) $\leq m$) on F extends to a locally finite partition of unity on X.

Proposition 1.8 and Theorem 1.10 yield

1.11. THEOREM. Let X be a normal space and let K be a CW-complex. Then $K \in ANE(X)$ in the following cases:

1) K is compact;

2) K^0 is countable and X is a countably paracompact p_1 -space;

3) X is a collectionwise normal countably paracompact p_1 -space.

1.12. THEOREM. Let X be s space and let K be a metric simplicial (contractible) complex. Then $K \in ANE(X)$ ($K \in AE(X)$) in the following cases:

1) K is countable and topologically complete;

2) X is perfectly normal and K is countable;

3) X is perfectly normal and collectionwise normal.

Remark on proof. O. Hanner [24], E. Michael [29], C.H. Dowker [5] proved assertions 1), 2), 3) respectively for a metrizable space K which is an ANE for metrizable spaces. On the other hand, every metric simplicial (contractible) complex is an ANE(\mathcal{M})(AE(\mathcal{M})).

1.13. PROPOSITION [7]. Let A be a closed set of a normal space X, let Y be a space, and let $f : (X \times 0) \cup (A \times I) \rightarrow Y$ be a mapping. If f extends over $X \times \{0\} \cup U$, where U is open in $X \times I$ and $A \times I \subset U$, then f extends over $X \times I$.

1.14. DEFINITION. We say that a pair (X, Y) of spaces satisfies homotopy extension theorem (notation: $(X, Y) \in het$) if the following theorem is fulfilled.

HOMOTOPY EXTENSION THEOREM. Let A be a closed subset of X. Then any mapping $f: (X \times 0) \cup (A \times I) \rightarrow Y$ extends over $X \times I$.

Proposition 1.13 yields

1.15. PROPOSITION. Let X be a normal space such that $Y \in ANE(X \times I)$, then $(X, Y) \in het$.

1.16. PROPOSITION [4]. The product $X \times Y$ of a countably paracompact space X and a compact metric space Y is countably paracompact.

1.17. PROPOSITION [7]. The product $X \times Y$ of a countably paracompact and collectionwise normal space X and a compact metric space Y is collectionwise normal.

1.18. PROPOSITION ([4], [26], [32]). Every perfectly normal space is countably paracompact. \blacksquare

1.19. THEOREM. Let X be a space and let K be a CW-complex. Then $(X, K) \in$ het in the following cases:

1) X is normal, K is compact;

2) X is countably paracompact p_1 -space, K^0 is countable;

3) X is countably paracompact collectionwise normal p_1 -space.

If L is a metric simplicial complex, then $(X, L) \in$ het in the following cases:

4) X is countably paracompact, L is countable and topologically complete;

5) X is perfectly normal, L is countable;

6) X is collectionwise normal and perfectly normal.

Proof. Point 1) was considered by M. Starbird [39] and K. Morita [34]. Point 2) is a consequence of Theorem 1.11. 2) and Propositions 1.13, 1.15, 1.16. Point 3) is a consequence of Theorem 1.11. 3) and Propositions 1.13, 1.15, 1.17.

Points 4), 5), 6) were considered by C.H. Dowker [7] in more general situation: L is a metrizable ANR.

Recall that a space X dominates a space Y (notation: $Y \leq {}_{h}X$) if there exist mappings $f: Y \to X$ and $g: X \to Y$ such that $g \circ f \simeq \operatorname{id}_{Y}$.

1.20. PROPOSITION. If X dominates $Y, (Z, Y) \in \text{het}$, and $X \in A(N)E(Z)$, then $Y \in A(N)E(Z)$.

Proposition 1.20 yields

1.21. PROPOSITION. Let X and Y be homotopy equivalent spaces and let $(Z, X) \in \text{het}, (Z, Y) \in \text{het}.$ Then $X \in A(N)E(Z)$ if and only if $Y \in A(N)E(Z)$.

1.22. PROPOSITION [42]. Every (countable) CW-complex is homotopy equivalent to a (locally finite countable) metric simplicial complex. ■

1.23. DEFINITION. Let K and L be spaces and let \mathcal{P} be a class of spaces. We say that $K \text{ AE}_{\mathcal{P}}$ -dominates L (notation: $L \leq_{\mathcal{P}} K$) if for every $X \in \mathcal{P}$ we have

Subspace and addition theorems for extension and cohomological dimensions

 $K \in AE(X) \Longrightarrow L \in AE(X).$

If $L \leq \mathcal{P}K$ and $K \leq \mathcal{P}L$ we write $K = \mathcal{P}L$.

From Proposition 1.18 we get

1.24. PROPOSITION. If K dominates L and $(X, L) \in$ het for every $X \in \mathcal{P}$, then $L \leq_{\mathcal{P}} K$.

Proposition 1.20 yields

1.25. PROPOSITION. Let K and L be homotopy equivalent spaces and let $(X, K) \in \text{het}, (X, L) \in \text{het for all } X \in \mathcal{P}$. Then $K = {}_{\mathcal{P}}L$.

1.26. DEFINITION. We say that a class \mathcal{K} of CW-complexes is equivalent to a class of \mathcal{L} of metric simplicial complexes with respect to a class \mathcal{P} of spaces (notation: $\mathcal{K} \sim \mathcal{PL}$) if for every $K \in \mathcal{K}$ there exists $L \in \mathcal{L}$ such that $K = \mathcal{PL}$ and for every $L \in \mathcal{L}$ there exists $K \in \mathcal{K}$ such that $K = \mathcal{PL}$.

1.27. THEOREM. Let \mathcal{K} be a class of CW-complexes, \mathcal{L} be a class of metric simplicial complexes, and let \mathcal{P} be a class of spaces. Then $\mathcal{K} \sim {}_{\mathcal{P}}\mathcal{L}$ in the following cases:

1) \mathcal{K} and \mathcal{L} consist of all finite complexes, \mathcal{P} is the class of all normal spaces;

2) \mathcal{K} consists of all countable complexes, \mathcal{L} consists of all topologically complete countable complexes, and \mathcal{P} consists of all countably paracompact p_1 -spaces.

3) \mathcal{K} and \mathcal{L} consist of all countable complexes, and \mathcal{P} consists of all perfectly normal p_1 -space.

4) \mathcal{P} consists of all perfectly normal and collectionwise normal p_1 - space.

Proof. It is well known that every finite CW-complex is an ENR. So point 1) is a consequence of Theorem 1.19. 1).

Let K be a countable CW-complex. By Proposition 1.22 there exists a locally finite countable metric simplicial complex L such that $K \simeq L$. Theorem 1.19 implies that $(X, K) \in$ het for every $X \in \mathcal{P}$. According to Proposition 1.15 and Theorem 1.12 we have $(X, L) \in$ het for every $X \in \mathcal{P}$. So $K = {}_{\mathcal{P}}L$, since Proposition 1.25.

Now let L be a topologically complete countable metric simplicial complex. Put $K = L_{\text{CW}}$. It is well known that $L \simeq L_{\text{CW}}$. So repeating the previous argument we get $L = \mathcal{P}K$.

If L is a countable metric simplicial complex and X is a perfectly normal p_1 -space, then $(X, L) \in$ het by Theorem 1.19. 5). Let $K = L_{\text{CW}}$. Then $(X, K \in$ het according to Theorem 1.19. 2), because of Proposition 1.18. Applying Proposition 1.25 we get $K = {}_{\mathcal{P}}L$.

If K is a countable CW-complex, then it was proved above that $K = {}_{\mathcal{P}}L$ for every countable metric simplicial complex L such that $L \simeq K$.

To prove assertion 4) we use the previous argument changing Theorems 1.19. 5) and 1.19. 2) for Theorems 1.19. 6) and 1.19. 3) respectively. \blacksquare

1.28. LEMMA. Let A be a subspace of a space X and $u = \{U_{\lambda} : \lambda \in \Lambda\}$ be a cover of A. Assume that either:

1) X is hereditarily normal and u is finite;

2) X is hereditarily normal and countably paracompact, and u is countable;

3) X is hereditarily paracompact and u is locally finite in A.

Then there exist open in X sets $V_{\lambda}, \lambda \in \Lambda$, such that

- (i) $A \subset V = \bigcup \{ V_{\lambda} : \lambda \in \Lambda \};$
- (ii) $V_{\lambda} \cap A \subset U_{\lambda}$ for any $\lambda \in \Lambda$;
- (iii) $\bigcap_{\lambda \in \Lambda_0} V_{\lambda} \neq \varnothing \Rightarrow \bigcap_{\lambda \in \Lambda_0} U_{\lambda} \neq \varnothing \text{ for any finite } \Lambda_0 \subset \Lambda;$
- (iv) the family $v = \{V_{\lambda} : \lambda \in \Lambda\}$ is locally finite in V.

If K is a simplicial complex, $z \in K$ and $a \in K^{(0)}$ is a vertex, then $\mu_a(z)$ is a barycentric coordinate of z. So we get a *barycentric mapping* $\mu_a : K \to [0; 1] = I = I_a$.

1.29. PROPOSITION. Let K be a metric simplicial complex. Then the diagonal product

$$\mu_K = \mathop{\triangle}\limits_{a \in K^{(0)}} \mu_a \colon K \to I^{K^{(0)}}$$

is a topological embedding. \blacksquare

From Proposition 1.29 we get

1.30. PROPOSITION. If K is a metric simplicial complex and X is a space, then $f: X \to K$ is continuous if and only if $\mu_a \circ f$ is continuous for each vertex a of K.

If $a \in K^{(0)}$ is a vertex of a simplicial complex K, then St(a) denotes the union of all open simplices $s \subset K$ such that a is a vertex of s, i.e.

(1.1) $\operatorname{St}(a) = \{ z \in K : \mu_a(z) > 0 \}.$

1.31. PROPOSITION [1]. Let $f, g: X \to K$ be mappings to a metric simplicial complex K. If for any $x \in X$ there exists $a \in K^{(0)}$ such that $f(x), g(x) \in St(a)$, then $f \simeq g$.

1.32. PROPOSITION. Let X be a space and let K be either a metric simplicial complex or a CW-complex such that:

1) either X hereditarily normal and K is finite;

2) or X hereditarily normal and hereditarily countably paracompact, and K is countable;

3) or X is hereditarily paracompact.

Then for any $A \subset X$ and any mapping $f : A \to K$ there exist a neighbourhood OA and a mapping $g : OA \to K$ such that $g|_A$ is homotopic to f.

Proof. Let K be a metric simplicial complex. Consider more complicated case of a hereditarily paracompact space X and an arbitrary complex K. Let

1.2)
$$U_a = f^{-1}(\operatorname{St}(a)), \ a \in K^{(0)}$$

Then $u = \{U_a : a \in K^{(0)}\}\$ is a point-finite cover of A. Since A is paracompact, there exists a locally finite cover $u_1 = \{U_a^1 : a \in K^{(0)}\}\$ of A such that

$$(1.3) \quad U_a^1 \subset U_a, \ a \in K^{(0)}.$$

According to Lemma 1.28 there exist open in X sets V_a , $a \in K^{(0)}$, satisfying conditions (i)–(iv), where we replace $\lambda \in \Lambda$ by $a \in K^{(0)}$. Since V is paracompact, there is a locally finite partition $\{\varphi_a\}$ of unity for V combinatorially subordinated to the cover $v = \{V_a\}$, i.e.

(1.4)
$$\overline{\varphi_a^{-1}((0;1])}^V \subset V_a, \ a \in K^{(0)}.$$

Conditions (1.3), (1.4), and (ii) imply that

(1.5)
$$A \cap \varphi_a^{-1}((0;1]) \subset U_a, \ a \in K^{(0)}.$$

Let

(1.6) $\varphi = \triangle_{a \in K^{(0)}} \varphi_a : V \to I^{K^{(0)}}.$

Conditions (ii), (iii), (1.1)-(1.4) and (1.6) yield

(1.7) $\varphi(V) \subset \mu_K(K).$

Putting

 $g = \mu_K^{-1} \circ \varphi : V \to K,$

we get the required mapping g. Indeed, condition (1.5) implies that

 $g(A \cap \varphi_a^{-1}((0;1])) \subset \operatorname{St}(a) = f(U_a).$

It remains to apply Proposition 1.31.

Now let K be a CW-complex. Point 1) coincides with Point 1) for simplicial complexes. Consider points 2) and 3) simultaneously. Let $A \subset X$ and let $f : A \to K$ be a mapping. By Proposition 1.22 there exist a (locally finite countable) metric simplicial complex L and mappings $f_1 : L \to K$ and $f_2 : K \to L$ such that

(1.8) $f_1 \circ f_2 \simeq \mathrm{id}_K, \ f_2 \circ f_1 \simeq \mathrm{id}_L.$

According to Proposition 1.32 for simplicial complexes there exist a neighbourhood OA and a mapping $h: OA \to L$ such that

 $(1.9) \quad h|_A \simeq f_2 \circ f.$

Put $g = f_1 \circ h$. Then $g|_A = f_1 \circ h|_A \simeq (1.9) \simeq f_1 \circ f_2 \circ f|_A \simeq (1.8) \simeq \mathrm{id}_K \circ f|_A \simeq f|_A$.

2. Subspace theorem

Recall that an open set $U \subset X$ is said to be regular open in X if $U = \text{Int}(\overline{U})$.

2.1. LEMMA. Let U_1 , U_2 be open disjoint subsets of X and B be a closed subset of X such that

 $(2.1) \quad \overline{U}_1 \cap \overline{U}_2 \subset B \subset \overline{U}_1.$

If U_2 is regular open in $Y = X \setminus B$, then U_2 is regular open in X.

Proof. Since $U_1 \cap U_2 = \emptyset$, we have $U_1 \cap \overline{U}_2^X = \emptyset$. Hence $\overline{U}_1^X \cap \operatorname{Int}(\overline{U}_2^X) = \emptyset$. From (2.1) we get $B \cap \operatorname{Int}(\overline{U}_2^X) = \emptyset$ and, consequently, $\operatorname{Int}(\overline{U}_2^X) \subset Y$. Thus $\operatorname{Int}(\overline{U}_2^X)$ is a regular open in Y set containing a regular open in Y set U_2 as a dense subset. So $\operatorname{Int}(\overline{U}_2^X) = U_2$.

2.2. PROPOSITION. Let X be a space, let K be a CW-complex, and let L be a metric simplicial complex such that either:

1) X is hereditarily normal and K(L) is finite;

2) X is a hereditarily normal, hereditarily countably paracompact first countable space, and K is countable;

3) X is hereditarily paracompact first countable space;

4) X is hereditarily normal and hereditarily countably paracompact, and L is countable and topologically complete;

5) X is perfectly normal and L is countable;

6) X is perfectly normal and paracompact and L is arbitrary.

Then the following conditions are equivalent:

(i) $K \in AE(A)$ for any $A \subset X$;

(ii) $K \in AE(U)$ for any regular open $U \subset X$.

Proof. It suffices to check that (ii) \Rightarrow (i). Let F be a closed subset of A and let $f: F \to K$ be a mapping. By Proposition 1.32 there exist an open set $U \subset X$ and a mapping $g: U \to K$ such that

- $(2.2) \quad F \subset U;$
- $(2.3) \quad g|_F \simeq f.$

Let $B = (X \setminus U) \cap \overline{F}^X$ and $Y = X \setminus B$. Then the sets $C = U \cap \overline{F}^X$ and $D = Y \setminus U$ are closed in Y and disjoint. Since Y is normal, there exist regular open in Y sets V and W such that

- $(2.4) \quad C \subset V, \ D \subset W;$
- $(2.5) \quad V \cap W = \emptyset.$

Inclusions $F \subset U$ and $F \subset \overline{F}^X$ imply that $\overline{F}^X \subset \overline{C}^X$. Hence

 $(2.6) \quad B \subset \overline{C}^X \subset \overline{V}^X.$

From (2.5) and (2.6) we get

$$(2.7) \quad \overline{V}^X \cap \overline{W}^X \subset B \subset \overline{V}^X.$$

So we may apply Lemma 2.1 for $U_1 = V$ and $U_2 = W$. According to this lemma, W is regular open in X.

In view of (2.4) there exists an open set G such that

 $(2.8) \quad D \subset G \subset \overline{G}^Y \subset W.$

Hence

(2.9)
$$\Gamma \equiv W \setminus G \subset X \setminus G \subset X \setminus D \subset U.$$

Since W is regular open in X, the mapping $g_1 = g|_{\Gamma} : \Gamma \to K$ can be extended to a mapping $g_2 : W \to K$ according to condition (ii). Now we can define a mapping $g_3 : Y \to K$ in the following way:

$$g_3(y) = \begin{cases} g(y) & \text{if } y \in Y \setminus \overline{G}^Y \\ g_2(y) & \text{if } y \in W. \end{cases}$$

The mapping g_3 is defined on Y because $Y \setminus \overline{G}^Y \subset (by (2.8)) \subset W$. It is continuous since $Y \setminus \overline{G}^Y$ and W are open.

Now let $h = g_3|_A$. By definition $h|_F = g|_F$. Hence f extends over A by Theorem 1.19.

2.3. DEFINITION. Let $A \subset X$ be an arbitrary subset. A space Y is called an *absolute extensor* of a space A with respect to X (notation: $Y \in AE(A, X)$) provided $Y \in AE(F)$ for every set F such that, $F \subset A$, F closed in X.

2.4. REMARK. The class AE(X, A) from Definition 1.1 does not coincide with the class AE(A, X).

2.5. LEMMA. Let X be a space, let K be either a CW-complex or a metric simplicial complex.

If X can be represented as the union of a sequence X_1, X_2, \ldots of subspaces such that $K \in AE(X_i, X)$ and the union $\bigcup_{i \le n} X_i \equiv Y_n$ is closed for $n = 1, 2, \ldots$, then $K \in AE(X)$ in the following cases:

1) X is normal and K is finite;

2) X is a countably paracompact p_1 -space and K is a countable CW-complex;

3) X is a collectionwise normal countably paracompact p_1 -space and K is a CW-complex;

4) X is normal and K is a countable and topologically complete simplicial complex;

5) X is perfectly normal and K is a countable simplicial complex;

6) X is perfectly normal and collectionwise normal and K is a simplicial complex.

Proof. Consider a mapping $f: F \to K$, when F is closed in X. We have

(2.10) $F_n = F \cap Y_n$ is closed in X.

We shall construct inductively open sets $U_n \subset X$ and mappings $f_n: [U_n] \to K, \ n \geq 1,$ such that

 $\begin{array}{ll} (2.11)_n & Y_n \subset U_n; \\ (2.12)_n & [U_{n-1}] \subset U_n; \\ (2.13)_n & f_n|_{F_n} = f|_{F_n}; \\ (2.14)_n & f_n|_{[U_{n-1}]} = f_{n-1}. \end{array}$

Here we assume that $U_0 = \emptyset$. Let n = 1. According to (2.10) and to $K \in AE(Y_1)$ there exists a mapping $f': Y_1 \to K$ such that

$$(2.15) \quad f'|_{F_1} = f|_{F_1}.$$

By Theorems 1.11 and 1.12, there exist a neighbourhood OY_1 and a mapping $f^1:OY_1\to K$ such that

 $(2.16) \quad f^1|_{Y_1} = f'|_{Y_1}.$

Take an open set U_1 such that

 $(2.17) \quad F_1 \subset U_1 \subset [U_1] \subset OF_1$

and set

 $(2.18) \quad f_1 = f'|_{[U_1]}.$

Conditions (2.17) and ((2.15), (2.16), (2.18)) respectively imply $(2.11)_1$, and $(2.13)_1$. As for conditions $(2.12)_1$ and $(2.14)_1$, they are fulfilled trivially.

Assume that the sets U_i and the mappings f_i satisfying $(2.11)_i - (2.14)_i$ are defined for all $i < n \ge 2$. From $(2.11)_{n-1}$ it follows that

$$(2.19) \quad Z_n = Y_n \setminus U_{n-1} \subset X_n.$$

Since Z_n is closed in X and $K \in AE(X_n, X)$, we have

 $(2.20) \quad K \in AE(Z_n).$

Let

(2.21)
$$A_n = (Z_n \cap [U_{n-1}]) \cup (F_n \setminus U_{n-1}).$$

The set A_n is closed and contained in Z_n by virtue of (2.10) and (2.19). Let $f'_{n-1}: A_n \to K$ be a mapping defining by

(2.22)
$$f'_{n-1}(x) = \begin{cases} f(x) & \text{if } x \in F_n \setminus U_{n-1}, \\ f_{n-1}(x) & \text{if } x \in Z_n \cap [U_{n-1}] \end{cases}$$

According to (2.20) there exists a mapping $f_{n-1}^1: Z_n \to K$ such that

$$(2.23) \quad f_{n-1}^1|_{A_n} = f'_{n-1}.$$

Set

$$(2.24) \quad B_n = [U_{n-1}] \cup Z_n.$$

Define a mapping $f'_n: B_n \to K$ in the following way:

(2.25)
$$f'_n(x) = \begin{cases} f_{n-1}(x) & \text{if } x \in [U_{n-1}] \\ f_{n-1}^1(x) & \text{if } x \in Z_n. \end{cases}$$

By Theorems 1.11 and 1.12 there exist a neighbourhood OB_n and a mapping $f_n^1: OB_n \to K$ such that

 $(2.26) \quad f_n^1|_{B_n} = f'_n.$

Take an open set U_n such that

 $(2.27) \quad B_n \subset U_n \subset [U_n] \subset OB_n$

and define a mapping $f_n : [U_n] \to K$ by

$$(2.28) \quad f_n = f_n^1|_{[U_n]}.$$

Conditions (2.24) and (2.27) imply $(2.12)_n$. Conditions (2.10), (2.19), (2.24), (2.27), and $(2.12)_n$ yield $(2.11)_n$. From (2.25), (2.26), and (2.28) we get $(2.14)_n$. Finally, conditions (2.22), (2.23), (2.25), and $(2.13)_{n-1}$ imply $(2.13)_n$.

Hence the construction of the sets U_n and the mappings f_n satisfying $(2.11)_n$ – $(2.14)_n$ for $n = 1, 2, \ldots$ is completed. Putting

$$\overline{f}(x) = f_n(x) \text{ if } x \in [U_n],$$

we get a mapping $\overline{f}: X \to K$ which extends the mapping $f: F \to K$.

2.6. COROLLARY. Let X and K satisfy conditions of Lemma 2.5. If X can be represented as the union of a sequence X_1, X_2, \ldots of subspaces such that $K \in AE(X_i)$ and the union $\bigcup_{i \leq n} X_i = Y_n$ is closed for n = 1, 2..., then $K \in AE(X)$.

Lemma 2.5 also yields

2.7. COUNTABLE SUM THEOREM. Let X and K satisfy conditions of Lemma 2.5. If X can be represented as the union of a sequence F_1, F_2, \ldots of closed subspaces such that $K \in AE(F_n)$ for $n = 1, 2, \ldots$, then $K \in AE(X)$.

Theorem 2.7 is also an immediate consequence of Theorems 1.11, 1.12, and the following Dranishnikov's theorem.

2.8. THEOREM [10]. If a normal space X can be represented as the union of a sequence F_1, F_2, \ldots of closed subspaces, then $K \in AE(X)$ provided $K \in AE(F_n)$ for all n and $K \in ANE(X)$.

Proposition 1.5 and Theorem 2.7 yield

2.9. σ -DISCRETE SUM THEOREM. Let X and K satisfy conditions of Lemma 2.5, and let $\varphi_n = \{F_{\alpha}^n : \alpha \in A_n\}, n \in \mathbb{N}$, be discrete families of closed subsets of X such that $K \in AE(F_{\alpha}^n)$ and

 $\begin{aligned} X = \bigcup_{n,\alpha} F_{\alpha}^n. \\ Then \; K \in AE(X). \ \blacksquare \end{aligned}$

2.10. LEMMA ([21], Lemma 2.3.3). Let $u = \{U_{\alpha} : \alpha \in A\}$ be a point-finite open cover of a space X. For i = 1, 2, ... denote by X_i the set of all points of the space X which belong to exactly i members of the cover u, by T_i the family of all subsets of A that have exactly i elements, and let

 $X_T = X_i \cap \left(\bigcap \{U_\alpha : \alpha \in T\}\right)$

for each $T \in \mathcal{T}_i$. Then

- (2.29) $X = \bigcup \{ X_i : i = 1, 2, \dots \};$
- (2.30) $X_i \cap X_j = \emptyset$ whenever $i \neq j$;
- (2.31) $Y_n = \bigcup \{X_i : i \le n\}$ is closed for i = 1, 2, ...;
- (3.32) $X_i = \bigcup \{X_T : T \in \mathcal{T}_i\}$ and X_T are open in X_i and pairwise disjoint.

2.11. POINT-FINITE SUM THEOREM. Let X and K satisfy conditions of Lemma 2.5. Let X can be represented as the union of a family $\{F_{\alpha} : \alpha \in A\}$ of closed subspaces such that $K \in AE(F_{\alpha})$ for $\alpha \in A$, and there exists a point-finite open cover $u = \{U_{\alpha} : \alpha \in A\}$ of the space X such that $F_{\alpha} \subset U_{\alpha}$ for $\alpha \in A$. Then $K \in AE(X)$.

Proof. Consider the decomposition of the space X described in Lemma 2.10. Because of Lemma 2.5 it suffices to show that

(2.33) $K \in AE(X_i, X), i = 1, 2, \dots$

Let F be a closed subspace of the space X containing in X_i . It follows from (2.32) that for every $T \in \mathcal{T}_i$ the set $F \cap X_T$ is closed in X. Since

 $F \cap X_T \subset \bigcup \{F_\alpha : \alpha \in \mathcal{T}\},\$

by Proposition 1.2 and Theorem 2.7 we have $K \in AE(F \cap X_T)$ for every $T \in \mathcal{T}_i$. From (2.32) we get

$$F = \bigoplus_{T \in \mathcal{T}_i} (F \cap X_T)$$

Consequently, $K \in AE(F)$ by Proposition 1.5.

2.12. THEOREM. Let X and K satisfy conditions of Lemma 2.5 and let X be weakly paracompact. If X can be represented as the union of a family $u = \{U_{\alpha} : \alpha \in A\}$ of open subspaces such that $K \in AE(\overline{U}_{\alpha})$ for $\alpha \in A$, then $K \in AE(X)$.

Proof. The space X being weakly paracompact, one can assume that the cover u is point-finite and thus has a closed shrinking $\{F_{\alpha} : \alpha \in A\}$. To complete the proof it suffices to apply Proposition 1.2 and Theorem 2.11.

Recall that two subsets A and B of a space X are *separated* if $A \cap \overline{B} = \emptyset = \overline{A} \cap B$.

2.13. REMARK. Theorems 2.11 and 2.12 generalize well known results for Legesgue dimension. Theorem 2.12 $(K = S^n)$ for paracompact X was established by C.H. Dowker [6] and K. Nagamy [35]. Theorem 2.11 and 2.12 (both for $K = S^n$) were obtained by A.V. Zarelua [44].

2.14. DEFINITION [21]. A space X is called *strongly hereditarily normal* if for every pair A, B of separated subset of X there exist open sets $U, V \subset X$ such that

 $A\subset U,\ B\subset V,\ U\cap V=\varnothing,$

and both U and V can be represented as the union of point finite families of open $F_{\sigma}\text{-sets}.$

2.15. PROPOSITION. A space X is strongly hereditarily normal if and only if X is hereditarily normal and every regular open set $U \subset X$ can be represented as the union of a point-finite family of open F_{σ} -sets.

2.16. DEFINITION [43]. A disjoint covering u of a space X is said to be *scaled* if u can be represented as the union of families u_i , $i = 0, 1, \ldots$, such that:

(i) $u_0 = \emptyset;$

(ii) for $i \ge 1$, the family u_i is discrete in $Z_i = X \setminus \bigcup_{j < i} (\bigcup u_j)$ and consists of closed subsets of Z_i .

It is clear that every Z_i is open in X and every $Y_i = \bigcup_{j < i} (\bigcup u_j)$ is closed in X.

2.17. DEFINITION [43]. A hereditarily normal space X is called *totally scaled* if every open set $U \subset X$ has a scaled covering consisting of F_{σ} -sets of X.

Formally classes SHN (of strongly hereditarily normal spaces) and TS (of totally scaled spaces) are incomparable. We define a new class which contains both of them.

2.18. DEFINITION. A hereditarily normal space X is called *regular scaled* (notation: $X \in \text{RS}$) if every regular open set $U \subset X$ has a scaled covering consisting of F_{σ} -sets of X.

2.19. PROPOSITION. If RS is the class of all regular scaled spaces, then $SHN \cup TS \subset RS$.

2.20. SUBSPACE THEOREM. Let X be a regular scaled space, and let K be either a CW-complex or a metric simplicial complex. If X and K satisfy conditions of Lemma 2.5, then $K \in AE(X) \Rightarrow K \in AE(A)$ for any $A \subset X$.

Proof. According to Proposition 2.2 it suffices to check that $K \in AE(U)$ for every regular open set $U \subset X$. Since X is regular scaled, there exists a scaled covering $u = \bigcup_{i=0}^{\infty} u_i$ of U consisting of F_{σ} -sets of X. Set

(2.34) $Y_i = \bigcup_{j \le i} \left(\bigcup u_j \right);$ (2.35) $X_i = Y_i \setminus Y_{i-1} = \bigcup u_i.$

In view of Corollary 2.6 it remains to show that $K \in AE(X_i)$ for every *i*. By definition of a scaled covering, the equality (2.35) implies that

 $X_i = \bigcup \{ B_\gamma : \gamma \in \Gamma \},$

where the family $\{B_{\gamma} : \gamma \in \Gamma\}$ is discrete in X_i and consists of F_{σ} -sets of X. Since Proposition 1.2 and Theorem 2.7, $K \in AE(B_{\gamma})$ for every $\gamma \in \Gamma$. Applying Proposition 1.5, we get $K \in AE(X_i)$.

2.21. COROLLARY. If either X is a perfectly normal first countable space and K is a countable CW-complex, or X is perfectly normal and K is a countable metric simplicial complex then $K \in AE(X) \Rightarrow K \in AE(A)$ for any $A \subset X$.

From Theorems C and 2.20 we get

2.22. COROLLARY. Let X be regular scaled paracompact p_1 -space and $A \subset X$. Then

 $\dim_G A \le \dim_G X$

for an arbitrary abelian group G.

2.23. REMARK. Theorem 2.20, for regular scaled X and $K = S^n$, is contained in ([43], Theorem 6). For strongly hereditarily normal X and $K = S^n$, Theorem 2.20 was proved in ([21], Theorem 3.1.19). Subspace theorem, for metrizable X and arbitrary CW-complex K, was proved in ([16], Proposition 1.1). Corollary 2.22 is also a generalization of just mentioned Dydak's theorem.

3. Addition theorem for simplicial complexes

3.1. DEFINITION [16] (see also [12]). Given two simplicial complexes K and L, their simplicial join K * L is formed by declaring $\sigma = \langle a_0, \ldots, a_k, b_0, \ldots, b_l \rangle$ to be its simplex if and only if and only if $\sigma_1 = \langle a_0, \ldots, a_k \rangle$ is a simplex in K and $\sigma_2 = \langle b_0, \ldots, b_l \rangle$ is a simplex in L. So $\sigma = \sigma_1 * \sigma_2$ is a topological join of simplices σ_1 and σ_2 . Both K and L are naturally embedded in K * L. The simplicial join is related to the abstract join. As in the case of the abstract join, there are canonical projections

 $\pi: K * L \to [0; 1];$ $\pi_K: K * L \setminus L \to K;$ $\pi_L: K * L \setminus K \to L.$

Namely, any point $x \in K * L$ can be expressed as $t \cdot y + (1 - t) \cdot z$, where $t \in [0, 1]$, $y \in K$, and $z \in L$. Here t is unique, and we put $\pi(x) = t$, y is unique if $x \notin L$, and we put $\pi_K(x) = y$. Similarly, z is unique if $x \notin K$, and we put $\pi_L(x) = z$.

3.2. LEMMA ([16], [12]). Suppose K, L are metric simplicial complexes and X is a normal space. Then there is a one-to-one correspondence between mappings $f: X \to K * L$ and 5-tuples

 $(U, V, g: U \to K, h: V \to L, \alpha: X \to [0; 1])$

satisfying the following conditions:

(3.1) $X = U \cup V$, U and V are functionally open in X;

(3.2) $\alpha^{-1}[0;1) = U \text{ and } \alpha^{-1}(0;1] = V.$

Namely, given $f: X \to K * L$, define

$$U = f^{-1}(K * L \setminus L), \ V = f^{-1}(K * L \setminus K);$$

 $g = \pi_K \circ f, \ h = \pi_L \circ f, \ \alpha = \pi \circ f.$

Conversely, given (U, V, g, h, α) , one defines f as follows:

$$f(x) = \begin{cases} g(x) & \text{if } x \in U \setminus V, \\ (1 - \alpha(x)) \cdot g(x) + \alpha(x) \cdot h(x) & \text{if } x \in U \cap V, \\ h(x) & \text{if } x \in V \setminus U. \end{cases}$$

The mapping f defined as above will be denoted by $g * {}_{\alpha}h$.

Proof. The only thing we need to verify that f is continuous. In accordance with Proposition 1.29 we need to show that $\mu_a \circ f$ is continuous for all vertices a of K * L. Since $(K * L)^{(0)} = K^{(0)} \cup L^{(0)}$, without loss of generality we may assume that $a \in K^{(0)}$. Since $\mu_{\alpha}(h(x)) = 0$ for $x \in U$, we have

(3.3) $\mu_a \circ f(x) = (1 - \alpha(x)) \cdot \mu_a \circ g(x)$ for all $x \in U$

and

(3.4) $\mu_a \circ f(x) = 0$ for all $x \in U \setminus V$.

Clearly, $\mu_a \circ f|_U$ is continuous. Let $x_0 \in U \setminus V$ and $\epsilon > 0$. We have to find a neighbourhood Ox_0 such that

Subspace and addition theorems for extension and cohomological dimensions

 $\mu_a \circ f(x) \leq \epsilon$ for all $x \in Ox_0$.

 Set

(3.5)
$$Ox_0 = \alpha^{-1}(1 - \epsilon; 1].$$

If $x \in Ox_0 \setminus V$, then $\mu_a \circ f(x) = 0$ according to (3.4). If $x \in Ox_0 \cap U$, then

$$\mu_0 \circ f(x) = (by (3.3)) = (1 - \alpha(x)) \cdot \mu_a \circ g(x) \le (in \text{ view of } (3.5)) \le \epsilon \cdot \mu_a \circ g(x) \le \epsilon. \blacksquare$$

3.3. LEMMA. Suppose $f : A \to [0, 1]$ is continuous, A is a closed subset of a space X, and U and V are open in X sets such that

 $U \cup V = X, \ U \cap A = f^{-1}[0;1), \ V \cap A = f^{-1}(0;1].$

Then there is an extension $f_1: X \to [0; 1]$ of f such that

 $f_1^{-1}[0;1) \subset U, \ f_1^{-1}(0;1] \subset V. \blacksquare$

3.4. URYSOHN-MENGER THEOREM. Let a space X and metric simplicial complexes K and L be such that either:

1) X is hereditarily normal and K and L are finite;

2) X is hereditarily normal and hereditarily countably paracompact, and K and L are countable and topologically complete;

3) X is perfectly normal, K and L are countable;

4) X is perfectly normal and paracompact.

Let $X = A \cup B$ and $K \in AE(A)$, $L \in AE(B)$. Then $K * L \in AE(X)$.

Proof. Suppose C is a closed subset of X, and $f: C \to K * L$ is a mapping. In view of Theorem 1.12 we may assume that C is functionally closed in X. By Lemma 3.2, f defines two closed, disjoint subsets $C_K = f^{-1}(K)$, $C_L = f^{-1}(L)$ of C and maps

 $f_K: C \setminus C_L \to K, f_L: C \setminus L, \alpha: C \to [0;1]$

such that

(3.6)
$$\alpha^{-1}(0) = C_K, \ \alpha^{-1}(1) = C_L;$$

(3.7) $f(x) = (1 - \alpha(x)) \cdot f_K(x) + \alpha(x) \cdot f_L(x).$

Since C_L is a G_{δ} -set, $K \in AE(A \setminus C_L)$ according to Theorem 2.7. Consequently, f_K extends to a mapping

 $f_K: C \cup A \setminus C_L \to K,$

Applying Proposition 1.32, we can find an open set U_A and a mapping $g_K : U_A \to K$ such that

$$(3.8) \quad C \cup A \setminus C_L \subset U_A \subset X \setminus C_L; \ g_K|_{C \setminus C_L} \simeq f_K.$$

Since $C \setminus C_L$ is closed in U_A , by Theorem 1.19 there exists a mapping $f'_K : U_A \to K$ such that

$$(3.9) \quad f'_K|_{C \setminus C_L} = f_K.$$

Similarly, there exist an open set U_B and a mapping $f'_L: U_B \to L$ such that

- $(3.10) \quad C \cup A \setminus C_K \subset U_B \subset X \setminus C_K;$
- $(3.11) \quad f_L'|_{C \setminus C_K} = f_L.$

Since $U_A \cup U_B = X$, conditions (3.8) and (3.10) yield

 $(3.12) \quad U_A \cap C = C \setminus C_L, \ U_B \cap C \setminus C_K.$

Now, according to (3.6) and (3.12), we can apply Lemma 3.3 to the set C, the function α and the sets U_A and U_B . We get a function $\beta : X \to [0;1]$ such that $\beta | C = \alpha$ and

(3.13) $\beta^{-1}[0;1) \subset U_A, \ \beta^{-1}(0;1] \subset U_B.$

Setting

$$U_A^1 = \beta^{-1}[0;1), \ U_B^1 = \beta^{-1}(0;1],$$

 $f_K^1 = f'_K|_{U_A^1}, \ f_L^1 = f'_L|_{U_B^1},$

and applying Lemma 3.2, we get the mapping

 $f_K^1 * {}_\beta f_L^1 : X \to K * L$

which extends f, because of (3.9) and (3.11).

3.5. REMARK. Since dim $X \leq n$ means that $S^n \in AE(X)$ for any normal space X and $S^n * S^m = S^{n+m+1}$, Theorem 3.4 is a generalization of the Urysohn–Menger theorem for hereditarily normal spaces. Theorem 3.4 also is a generalization of Dydak's theorem ([16], Theorem 1.2) for metrizable X and arbitrary K and L.

Point 4) of Theorem 3.4 is also an immediate corollary of Theorem 1.19.6) and the following Dydak's theorem.

3.6. THEOREM ([18], Theorem 4.3). Suppose X is a hereditarily paracompact space and K and L are CW-complexes. If K is an absolute extensor of $A \subset X$ up to homotopy and L is an absolute extensor of $B \subset X$ up to homotopy, then the joint K * L is an absolute extensor of $A \cup B$ up to homotopy.

Recall, that K is an absolute extensor up to homotopy of X [18] if every mapping $f: A \to K$, A closed in X, extends over X up to homotopy.

4. Dranishnikov's theorem for paracompact spaces

The purpose of this section is to generalize a theorem of A.N. Dranishnikov [15] stating that if a CW-complex K is an absolute extensor of a compactum X, then $\dim_{H_m(K,\mathbb{Z})} X \leq m$ for all m > 0. This theorem was extended to metrizable spaces X by J.Dydak [16]. We follow his argument.

4.1. PROPOSITION. Let $f : X' \to X$ be an open mapping of a weakly paracompact space X' onto a space X such that card $f^{-1}(x) \leq n$ for all $x \in X$ and some $n < \infty$, and let K be a metric simplicial complex such that $K \in AE(X)$. Then $K \in AE(X')$ in the following cases:

1) K is countable and topologically complete;

2) X' is perfectly normal and K is countable;

3) X' is perfectly normal and paracompact.

Proof. Induction on n. For n = 1 the mapping f is a homeomorphism. Suppose Proposition 4.1 holds for $n \leq m$ and consider n = m + 1. The set

 $A = \{x' \in X' : \operatorname{card} f^{-1} f(x') \le m\}$

is closed in X' and $K \in AE(A)$ by inductive assumption. Further $K \in ANE(X')$ according to Theorem 1.12. By virtue of Proposition 1.2 it suffices to prove that $K \in AE(C)$ for every closed subset C of X' containing in $X' \setminus A$. Given $x \in X' \setminus A$, there is an open neighbourhood U_x of x in X' such that $f|_{\overline{U}_x} : \overline{U}_x \to f(\overline{U}_x)$ is a homeomorphism. So $K \in AE(C)$ by Theorem 2.12.

4.2. DEFINITION [3]. Given a space X and m > 0, the *m*-th symmetric product $SP^m(X)$ of X is the space of orbits of the action of the symmetric group S_m on X^m . Points of $SP^m(X)$ will be written in the form $\sum_{i=1}^m x_i$. The set $SP^m(X)$ is equipped with the quotient topology given by the natural mapping $\pi: X^m \to SP^m(X)$.

If X is a Hausdorff space, then $\pi : X^m \to SP^m(X)$ is both open and closed, since S_m is a compact group. So if X is metrizable, then $SP^m(X)$ is metrizable, too. If X has a base point a, then $SP^m(X)$ has $\sum_{i=1}^m a$ as its base point; this base point will be denoted by a, too. There is a natural inclusion $i_m^n = i : SP^n(X) \to SP^m(X)$ for all n < m. It is given by formula

$$i(\sum_{i=1}^{n} x_i) = \sum_{i=1}^{n} x_i + (m-n)a.$$

In this way, points of the form $\sum_{i=1}^{n} x_i$, n < m, can be considered as belonging to $SP^m(X)$.

The direct limit of the sequence

 $X = SP^{1}(X) \to SP^{2}(X) \to \dots \to SP^{m}(X) \to \dots$ is denoted by $SP^{\infty}(X)$.

4.3. PROPOSITION [31]. If every pair $(SP^{m+1}(X), SP^m(X))$ satisfies homotopy extension property, then the infinite symmetric product $SP^{\infty}(X)$ is homotopy equivalent to the telescope

$$\bigcup_{m=1}^{\infty} SP^m(X) \times [m-1,m]. \blacksquare$$

4.4. COROLLARY. If X is metrizable, then $SP^{\infty}(X)$ is homotopy equivalent to the telescope

$$\bigcup_{m=1}^{\infty} SP^m(X) \times [m-1,m]. \blacksquare$$

The next statement was formulated in ([16], Lemma 3.2) for metrizable X and Z. But the metrizability condition is excessive. Repeating the original proof with more details we get

4.5. LEMMA. Suppose (X, x_0) , (Z, a) are pointed spaces and $f : (X, x_0) \rightarrow (SP^k(Z), a)$ is a mapping, $k \ge 1$. Let

$$\begin{array}{cccc} (X', x'_0) & \longrightarrow & (Z^k, a) \\ \pi' \downarrow & & \downarrow \pi \\ (X, x_0) & \stackrel{f}{\longrightarrow} & (SP^k(Z), a) \end{array}$$

be the pull-back diagram. Then, the function

$$f^*: (X, x_0) \to (SP^{k!}(X'), x'_0)$$

defined by

$$f^*(x) = \sum_{y \in (\pi')^{-1}(x)} y$$

 $is \ continuous.$

Proof. Every element $\sigma \in S_k$ defines a mapping $\sigma_Z : Z^k \to Z^k$ by

 $\sigma_Z(z_1,\ldots,z_k)=(z_{\sigma(1)},\ldots,z_{\sigma(k)}).$

Let $\alpha: Z^k \to SP^{k!}(Z^k)$ be the mapping defining as follows:

$$\alpha(z_1,\ldots,z_k) = \sum_{\sigma \in S_k} (z_{\sigma(1)},\ldots,z_{\sigma(k)}) = \sum_{\sigma \in S_k} \sigma_Z(z_1,\ldots,z_k)$$

There is a mapping $g: SP^k(Z) \to SP^{k!}(Z^k)$ such that $\alpha = g \circ \pi$. Indeed, it suffices to put

$$g(z_1 + \dots + z_k) = \sum_{\sigma \in S_k} (z_{\sigma(1)}, \dots, z_{\sigma(k)}).$$

Let

i

$$:X\times SP^{k!}(Z^k)\to SP^{k!}(X\times Z^k)$$

be the mapping defined by

$$i(x, z_1 + \dots + z_k) = (x, z_1) + \dots + (x, z_k).$$

It remains to check that $f^*(x) = i(x, gf(x))$.

The following lemma was formulated in ([16], Lemma 3.3) for metrizable X and arbitrary K. Using Proposition 4.1 and Lemma 4.5 we find more strict restrictions.

4.6. LEMMA. Suppose X is a weakly paracompact space and $K \in AE(X)$ is a pointed metric simplicial complex such that:

1) either K is countable and topologically complete;

2) X is perfectly normal and K is countable;

3) X is perfectly normal and paracompact.

Given a closed subset A of X and a mapping $g: A \to SP^k(K)$, there is an extension $g': X \to SP^{k \cdot k!}(K)$ of g.

Proof. Add a discrete base point x_0 to A and map it to the base point $a \in SP^k(K)$. Let C(K) be the metric cone over K. Then C(K) is a contractible metric simplicial complex. Since SP^k is a functor from the homotopy category

(see [3]), $SP^k(C(K))$ is homotopic to a contractible metric simplicial complex. According to Theorems 1.12, 1.19 and Proposition 1.20 there is an extension $G: X \to SP^k(C(K))$ of the mapping g. Let $f: X' \to X$ be the pull-back of the projection $C(K)^k \to SP^k(C(K))$ under G. Thus,

$$X' = \{(x, x_1, \dots, x_k) \in X \times C(K)^k : G(x) = x_1 + \dots + x_k\}$$

and $f(x, x_1, \ldots, x_k) = x$. The space X' contains as closed subset, the space A' obtained as a pull-back of $K^k \to SP^k(K)$ under g. Since X' is perfect preimage of X, X' is weakly paracompact and paracompact if X is paracompact. On the other side, if X is perfectly normal, then $X \times C(K)^k$ is perfectly normal as a product of a perfectly normal space X with a metrizable space $C(K)^k$ [33]. So X' is perfectly normal being a subset of $X \times C(K)^k$. Thus, we can apply Proposition 4.1. It follows that $K^k \in AE(X')$. Hence we can extend the natural projection $A' \to K^k$ over X' and compose it with $K^k \to SP^k(K)$. Since SP^m is a functor, the resulting mapping induces

$$SP^{k!}(X') \to SP^{k!}(SP^k(K) \to SP^{k.k!}(K)),$$

which, when composed with the mapping $f^* : X \to SP^{k!}(X')$ from Lemma 4.5, is an extension of $g : A \to SP^k(K)$.

4.7. PROPOSITION. Let X be a weakly paracompact p_1 -space and let $K \in AE(X)$ be a CW-complex such that:

1) either K is countable;

2) or X is perfectly normal and paracompact.

Then

 $K(H_m(K,\mathbb{Z}),m) \in AE(X)$

for all m > 0.

Proof. It suffices to show that $SP^{\infty}(K) \in AE(X)$ as $SP^{\infty}(K)$ homotopy dominates $K(H_m(K;\mathbb{Z}),m)$ for each m > 0 (see [3]). Let L be a metric simplicial complex (locally finite countable if K is countable) which is homotopy equivalent to K. Since Theorem 1.27, it is sufficient to check that $SP^{\infty}(L) \in AE(X)$. According to Corollary 4.4 we can replace $SP^{\infty}(L)$ by the telescope

 $\bigcup_{m=1}^{\infty} SP^m(L) \times [m-1,m].$

After this we use Lemma 4.6. \blacksquare

From Proposition 4.7 and Theorem C we get

4.8. THEOREM. Let X be a paracompact p_1 -space and let $K \in AE(X)$ be a CW-complex such that either:

1) K is countable;

2) X is perfectly normal. Then $\dim_{H_m(K,\mathbb{Z})} X \leq m \text{ for all } m > 0. \blacksquare$

4.9. REMARK. From Theorem 1.27 it follows that the assertion of Theorem 4.8 holds for a metric simplicial complex K.

5. Dydak's theorem for paracompact spaces

J.Dydak proved the following theorem.

5.1. THEOREM ([16], Theorem 1.4, the first part). Suppose A, B are subsets of a metrizable space. Then

 $\dim_G(A \cup B) \le \dim_G A + \dim_G B + 1$

for any ring G with unity. \blacksquare

We shall extend this theorem to classes of spaces which are larger that the class of all metrizable spaces. A space X is called a *hereditarily paracompact* p_1 -space if each its subspace is a paracompact p_1 -space.

5.2. THEOREM. Suppose A, B are subsets of a hereditarily paracompact p_1 -space X and G is a ring with unity. Then

 $\dim_G(A \cup B) \le \dim_G A + \dim_G B + 1$

in the following cases:

1) G is countable;

2) X is perfectly normal. \blacksquare

To prove Theorem 5.2 we need an additional information. The next assertion is was proved by J. Dydak for metrizable spaces ([16], Theorem 1.3, the first part). We give more general result.

5.3. THEOREM. Let A and B be subspaces of a hereditarily paracompact p_1 -space X. Then

(5.1) $\dim_{G\otimes H}(A\cup B) \le \dim_G A + \dim_H B + 1$

in the following cases:

1) G and H are countable;

2) X is perfectly normal.

To prove Theorem 5.3 we need an additional information. J. Milnor defined [30] the join $X_1 * X_2$ of topological spaces X_1 and X_2 in the following way. A point of the join is a formal linear combination $t_1x_1 + t_2x_2$, where $x_i \in X_i$, $t_i \ge 0$, $t_1 + t_2 = 1$, and the element x_i may be chosen arbitrarily or omitted whenever the corresponding t_i vanishes. A subbase for the open sets is given by the sets of the following two types:

1) $\{t_1x_1 + t_2x_2 : \alpha_i < t_i < \beta_i\};$

2) $\{t_1x_1 + t_2x_2 : t_i \neq 0 \text{ and } x_i \in U, \text{ where } U \text{ is an arbitrary open subset of } X_i\}.$

This topology has the property that coordinate functions

 $t_i: X_1 * X_2 \to [0; 1] \text{ and } x_i: t_i^{-1}(0, 1] \to X_i$

are continuous. It is easy to see that the topology of the metric simplicial join defined at the beginning of \S 3 coincides with the Milnor's topology.

So we can apply a partial version of Milnor's result.

5.4. PROPOSITION ([30], Lemma 2.1). Let K and L be metric simplicial complexes. Then the reduced singular homology groups of the join K * L with coefficients in a principal ideal domain D are given by

(5.2) $\tilde{H}_{r+1}(K*L) = \sum_{i+j=r} \tilde{H}_i(K) \otimes \tilde{H}_j(L) + \sum_{i+j=r-1} \operatorname{Tor}\left(\tilde{H}_i(K), \tilde{H}_j(L)\right).$

Proof of Theorem 5.3. Suppose $G, H \neq 0$ are abelian groups and $\dim_G A = m \geq \dim_H B = n$. If m = n = 0, then Theorem 5.3 reduces to the Urysohn–Menger Theorem. Assume m > 0. By Theorems C and 1.27 there exist metric simplicial complexes L_1 and L_2 such that

(5.3) $L_1 \in AE(A), \ L_2 \in AE(B);$

(5.4)
$$L_1 = K(G, m), \ L_2 = K(H, n).$$

From (5.2) and Theorem 3.4 we get

(5.5) $L_1 * L_2 \in AE(A \cup B).$

Because of (5.4), equality (5.2) implies that

(5.6) $H_{m+n+1}(L_1 * L_2, \mathbb{Z}) = G \otimes H.$

Remark 4.9 and equality (5.6) yield

 $\dim_{G\otimes H}(A\cup B) \le m+n+1. \blacksquare$

Proof of Theorem 5.2. Since G is a ring with unity 1, G is a retract $G \otimes G$. Indeed, the homomorphism $m: G \otimes G$ induced by the multiplication $G \times G \to G$ is a left inverse of $id \otimes 1: G \to G \otimes G$. Hence there exists an exact sequence

 $(5.7) \ 0 \to G \to G \otimes G \to G \to 0$

such that

(5.8) $G \to G \otimes G \to G = \mathrm{id}_G$.

The short exact sequence (5.7) generates the Bockstein exact sequence

 $(5.9) \cdots \to H^p(Y,F;G) \to H^p(Y,F;G\otimes G) \to H^p(Y,F;G) \to H^{p+1}(Y,F;G) \to \cdots$

for any paracompact space Y and its closed subset F. In view of (5.8) we have

 $(5.10) \ H^p(Y,F;G) \to H^p(Y,F;G \otimes G) \to H^p(Y,F;G) = \mathrm{id}.$

Let $Y = A \cup B$, $\dim_G A = m$, $\dim_G B = n$, and $p \ge m + n + 2$. Then Theorem 5.3 implies that

 $(5.11) H^p(Y, F; G \otimes G) = 0$

for any F. From (5.10) and (5.11) it follows that

(5.12) $H^p(Y, F; G) = 0$ for any $p \ge m + n + 2$. Hence $\dim_G(Y) = \dim_G(A \cup B) \le m + n + 1$.

5.5. COROLLARY. Suppose A, B are subsets of a first countable hereditarily paracompact space X and G is a ring with unity. Then

 $\dim_G(A \cup B) \le \dim_G A + \dim_G B + 1$

in the following cases:

1) G is countable;

2) X is perfectly normal. \blacksquare

Theorem 5.2 gives the best possible (at this time) answer to Kuzminov's question, if G is a ring with unity.

ACKNOWLEDGEMENT. Finally author would like to thank Jurek Dydak for an information and help.

REFERENCES

- R. Cauty, Sur le prolongement des fonctions continues à valeurs dans les CW-complexes, C.R. Acad. Sci. 274 (1972), A35–A37.
- [2] A. Chigogidze, Cohomological dimension of Tychonov spaces, Topology Appl. 79 (1997), 197-228.
- [3] A. Dold, R. Thom, Quasifaserungen und unendliche Symmetrische Produkte, Annals Math.
 67 (1958), 239–281.
- [4] C.H. Dowker, On countably paracompact spaces, Canadian J. Math. 3 (1951), 219–224.
- [5] C.H. Dowker, On a theorem of Hanner, Arkiv. Mat. 2:15 (1952), 307-313.
- [6] C.H. Dowker, Local dimension of normal spaces, Quart. Journ. Math. Oxford 6 (1955),101– 120.
- [7] C.H. Dowker, Homotopy extension theorems, Proc. London Math. Soc. 6:21 (1956), 100–116.
- [8] A.N. Dranishnikov, Extension of mappings into CW-complexes, Mat. Sbornik. 182 (1991), 1300–1310.
- [9] A.N. Dranishnikov, Eilenberg-Borsuk theorem for mappings into arbitrary complex, Mat. Sbornik. 185 (1994), 81–90.
- [10] A.N. Dranishnikov, On the mapping intersection problem, Pacific J. Math. 173 (1996), 403–412.
- [11] A.N. Dranishnikov, J. Dydak, Extension dimension and extension types, Proc. Steklov Inst. Math. 212 (1996), 55–88.
- [12] A.N. Dranishnikov, J. Dydak, Extension theory of separable metrizable spaces with applications to dimension theory, Trans. Amer. Math. Soc. 353 (2000), 133–156.
- [13] A.N. Dranishnikov, D. Repovš, The Urysohn-Menger sum formula: An application of the Dydak-Walsh theorem to dimension one, J. Austral. Math. Soc. Ser A. 59 (1995), 273–282.
- [14] A.N. Dranishnikov, D. Repovš, E.V. Ščepin, On the failure of the Urysohn-Menger sum formula for cohomological dimension, Proc. Amer. Math. Soc. 120 (1994), 1267–1270.
- [15] J. Dydak, Cohomological dimension and metrizable spaces, Trans. Amer. Math. Soc. 337 (1993), 219–234.
- [16] J. Dydak, Cohomological dimension and metrizable spaces. II, Trans. Amer. Math. Soc. 348 (1996), 1647–1661.
- [17] J. Dydak, Extension Theory: the interface between set-theoretic and algebraic topology, Topology Appl. 74 (1996), 225–258.
- [18] J. Dydak, Extension dimension for paracompact spaces, Preprint, 2002.
- [19] J. Dydak, J.J. Walsh, Aspects of cohomological dimension for principal ideal domains, Preprint.

- [20] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989.
- [21] R. Engelking, Theory of Dimensions. Finite and Infinite, Sigma Ser. Pure Math., 10, Heldermann, Lemgo, 1995.
- [22] R. Godement, Topologia algébraique et théorie des faisceaux, Hermann, Paris, 1958.
- [23] A. Grothendick, Sur quelques points d'algebre homologique, Tôhoku Math. J. 9 (1957), 119– 211.
- [24] O. Hanner, Solid spaces and absolute retracts, Arkiv Mat. 1 (1951), 375–382.
- [25] P.J. Huber, Homotopical Cohomology and Čech Cohomology, Math. Ann. 144 (1961), 73–76.
- [26] M. Katĕtov, Measures in fully normal spaces, Fund. Math. 38 (1951), 73-84.
- [27] Y. Kodama, Note on cohomological dimension for non-compact spaces, Journ. Math. Soc. Japan 18 (1966), 343–359.
- [28] W.I. Kuzminov, Homological dimension theory, Russian Math. Surveys 23:5 (1968), 1–45.
- [29] E. Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789–806.
- [30] J.W. Milnor, Construction of universal bundles, II, Ann. Math. 63 (1956), 430–436.
- [31] J.W. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337–341.
- [32] K. Morita, Star-finite coverings and star-finite property, Math. Japonicae 1 (1948), 60-68.
- [33] K. Morita, On a product of a normal space with a metric space, Proc. Japan Acad. 39 (1963), 148–150.
- [34] K. Morita, On generalizations of Borsuk's homotopy extension theorem, Fund. Math. 88 (1975), 1–6.
- [35] K. Nagami, The dimension of paracompact Hausdorff spaces, Nagoya Math. Journ. 8 (1955), 69–70.
- [36] L.R. Rubin, Characterizing cohomological dimension: The cohomological dimension of $A \subset B$, Topology Appl. 27 (1991), 233–263.
- [37] I.A. Shvedov, Dimensions and soft sheaves. General Topology and its Relations to Modern Analysis and Algebra, II, Proc. Second Prague Topological Symposium, 1966, Prague (1967), 347–348.
- [38] Ju. Smirnov, Some relations in the theory of dimension, Mat. Sbornik 29 (1951), 151–172.
- [39] M. Starbird, The Borsuk homotopy extension theorem without binormality condition, Fund. Math. 87 (1975), 207–211.
- [40] P. Urysohn, Les multiplicités Cantorinne, C.R. Acad. Paris 175 (1922), 440–442.
- [41] P. Urysohn, Mémoire sur les multiplicités Cantorienne (suite), Fund. Math. 8 (1926), 225– 359.
- [42] J.H.C. Whitehead, A certain exact sequence, Ann. Math. 52 (1950), 51–110.
- [43] L.G. Zambakhidze, B.A. Pasynkov, On the behaviour of dimensional-type functions in some special classes of topological spaces, Bull. Acad. Sci. Georgian SSR 79 (1975), 549–552.
- [44] A.V. Zarelua, On a theorem of Hurewicz, Mat. Sbornik 60 1963), 17–28.

(received 25.02.2009)

Mech.-Math. Faculty, Moscow State University, Moscow 119992, Russia. *E-mail*: vvfedorchuk@gmail.com