CHARACTERIZATIONS OF δ -STRATIFIABLE SPACES

Kedian Li

Abstract. In this paper, we give some characterizations of δ -stratifiable spaces by means of g-functions and semi-continuous functions. It is established that:

- (1) A topological space X in which every point is a regular G_{δ} -set is δ -stratifiable if and only if there exists a g-function $g: N \times X \to \tau$ satisfies that if $F \in RG(X)$ and $y \notin F$, then there is an $m \in N$ such that $y \notin \overline{g(m, F)}$;
- (2) If there is an order preserving map $\varphi : USC(X) \to LSC(X)$ such that for any $h \in USC(X), 0 \le \varphi(h) \le h$ and $0 < \varphi(h)(x) < h(x)$ whenever h(x) > 0, then X is δ -stratifiable space.

1. Introduction

It is one of the questions in general topology how to characterize the generalized metric spaces [2, 5]. Recently, the problem of monotone insertions of generalized metric spaces has been studied [4]. Lane, Nyikos and Pan [7] proved that a topological space X is stratifiable if and only if there is an order-preserving map $\psi : UL(X) \to C(X)$ such that for any $(g,h) \in UL(X), g \leq \psi(g,f) \leq h$ and $g(x) < \psi((g,h))(x) < h(x)$ whenever g(x) < h(x).

As a generalization of stratifiable spaces, Good and Haynes [3] defined δ stratifiable spaces. Just as for stratifiablity, they discussed the products of compact metrizable spaces and δ -stratiable spaces. It is natural to pose the following question.

QUESTION 1.1. How to characterize δ -stratifiable spaces by the *g*-functions, or by the monotone insertion functions?

In this paper, we give some characterizations of δ -stratifiable spaces by means of g-functions and semi-continuous functions.

The project is supported by the NNSF (Nos: 10571151, 10971185, 10971186) and FNSF (2006J0228) of China.

AMS Subject Classification: 54E20; 54C08; 26A15.

Keywords and phrases: δ -stratifiable spaces; g-functions; upper semi-continuous maps; lower semi-continuous maps.

Kedian Li

All spaces in this paper are assumed to be T₁. For a topological space X, τ denotes the topology on X, and $\tau^c = \{X - O : O \in \tau\}$. We refer the reader to [1, 8] for undefined terms.

A real-valued function f defined on a space X is lower (upper) semi-continuous if for each $x \in X$ and each real number r with f(x) > r (f(x) < r), there exists a neighborhood U of x in X such that f(x') > r (f(x') < r) for every $x' \in U$. We write LSC(X) (USC(X)) for the set of all real-valued lower (upper) semicontinuous functions on X into I = [0, 1].

Let X be a space, if $A \subset X$, we write χ_A for the *characteristic function* on A. Then $\chi_A \in USC(X)$ if A is a closed subset of X, and $\chi_A \in LSC(X)$ if A is an open subset in X.

A g-function on a topological space (X, τ) is a mapping $g : N \times X \to \tau$ such that $x \in g(n, x)$ for each $n \in N$ [6]. We define $g(n, F) = \bigcup \{g(n, x) : x \in F\}$ for each $F \subset X$ and each $n \in N$.

We recall some basic concepts about the δ -stratifiable spaces.

DEFINITION 1.2. [10] A subset G of a topological space X is called a regular G_{δ} -set if G is an intersection of a sequence of closed sets whose interiors contain G, i.e. if $G = \bigcap_{n \in N} F_n = \bigcap_{n \in N} F_n^{\circ}$, where F_n is a closed set of X. Equivalently, there exists a sequence $\{U_n\}$ of open sets such that $G = \bigcap_{n \in N} U_n = \bigcap_{n \in N} \overline{U}_n$. The complement of a regular G_{δ} -set is called a regular F_{σ} -set. Clearly, a set M is a regular F_{σ} -set if and only if there exists a sequence $\{F_n\}$ of closed sets such that $M = \bigcup_{n \in N} F_n = \bigcup_{n \in N} F_n^{\circ}$.

For a topological space X, RG(X) denotes the set of all regular G_{δ} -sets of X, and $RF(X) = \{X - G : G \in RG(X)\}$ are the sets of all regular F_{σ} -sets of X.

DEFINITION 1.3. [3] A topological space X is δ -stratifiable if and only if there is an operator U assigning to each $n \in N$ and $D \in RG(X)$, an open set U(n, D)containing D such that

(1) If $E, D \in RG(X)$ and $E \subset D$, then $U(n, E) \subset U(n, D)$ for each $n \in N$;

(2)
$$D = \bigcap_{n \in \mathbb{N}} U(n, D).$$

We may assume that the operator U is also monotonic with respect to n, so that $U(n+1,D) \subset U(n,D)$ for each $n \in N$ and each $D \in RG(X)$.

The following lemma, included for convenience, is clearly just another way of stating the definition.

LEMMA 1.4. A topological space X is δ -stratifiable if and only if there is an operator $V: N \times RF(X) \to \tau^c$, such that

(1) $F \supset V(n, F)$ for each $F \in RF(X)$ and all $n \in N$;

(2) If $E, F \in RF(X)$ and $E \subset F$, then $V(n, E) \subset V(n, F)$ for each $n \in N$; (3) $F = \bigcup_{n \in N} V^{\circ}(n, F)$.

We may assume that $V(n,F) \subset V(n+1,F)$ for each $n \in N$ and each $F \in RF(X)$.

2. Main results and their proofs

First, we give a characterization of δ -stratifiable spaces by the g-functions.

LEMMA 2.1. If every point of X is a regular G_{δ} -set, X is δ -stratifiable if only and if there exists a g-function $g: N \times X \to \tau$ satisfying that if $F \in RG(X)$ and $y \notin F$, then there is an $m \in N$ such that $y \notin \overline{g(m, F)}$.

Proof. Let X be δ -stratifiable and U an operator on X which satisfies conditions (1) and (2) in Definition 1.3. For each $x \in X$, let $g(n, x) = U(n, \{x\})$, then $g : N \times X \to \tau$ is a g-function. Let $F \in RG(X)$ and $y \notin F$; we have $y \notin F = \bigcap_{n \in N} \overline{U(n, F)}$ by condition (2) of Definition 1.3. Thus there is an $m \in N$ such that $y \notin \overline{U(m, F)}$, and therefore $y \notin \overline{g(m, F)}$.

Conversely, suppose there exists a g-function $g: N \times X \to \tau$ that satisfies the conditions given in the theorem. For each $D \in RG(X)$, let

$$U(n,D) = g(n,D) = \bigcup \{ g(n,t) : t \in D \}.$$

Then U is an operation on X which satisfies the conditions (1) and (2) in Definition 1.3. In fact, it is clear for (1). For (2), if $D \in RG(X)$ and $D \neq \bigcap_{n \in N} \overline{U(n,D)}$, there exists $y \in \bigcap_{n \in N} \overline{U(n,D)} - D$. Since $y \notin D$, there exists $m \in N$ such that $y \notin \overline{U(m,D)}$ by the condition of the theorem; this is a contradiction with $y \in \overline{U(n,D)}$ for each $n \in N$.

Next, we characterize δ -stratifiable spaces by semi-continuous functions.

THEOREM 2.2. A space X is δ -stratifiable if and only if for any partially ordered set $(\mathbb{H}, <)$ and map $F : N \times \mathbb{H} \to RG(X)$ such that

(1) $F(n+1,h) \subset F(n,h)$ for all $h \in H$ and all $n \in N$;

(2) for any $h_1, h_2 \in H$, if $h_1 \leq h_2$ then $F(n, h_2) \subset F(n, h_1)$,

there is a map $G: N \times \mathbb{H} \to \tau$, such that (1) and (2) hold for $G, F(n,h) \subset G(n,h)$ for all $h \in \mathbb{H}, n \in N$ and $\bigcap_{n \in N} F(n,h) = \bigcap_{n \in N} \overline{G(n,h)}$ for all $h \in \mathbb{H}$.

Proof. Let X be a δ -stratifiable space and V an operator as in Lemma 1.4. We show that the map $G: N \times \mathbb{H} \to \tau$ defined by

$$G(n,h) = X - V(n, X - F(n,h)),$$

satisfies the conditions of the theorem. By the properties of V and F, one can easily verify that the conditions (1) and (2) hold for G. Since $F(n,h) \in RG(X)$ for each $h \in \mathbb{H}$ and all $n \in N$, then $X - F(n,h) \in RF(X)$. By the condition (1) in Lemma 1.4, $X - F(n,h) \supset V(n, X - F(n,h))$ and so $F(n,h) \subset G(n,h)$ for each $h \in \mathbb{H}$ and all $n \in N$.

So we need only to show that $\bigcap_{n \in N} F(n,h) = \bigcap_{n \in N} \overline{G(n,h)}$ for all $h \in \mathbb{H}$. If $x \notin \bigcap_{n \in N} F(n,h)$, then $x \notin F(m_0,h)$ for some $m_0 \in N$. Consequently, $x \in V^{\circ}(n_0, X - F(m_0,h))$ for some $n_0 \in N$ since $X - F(m_0,h) = \bigcup_{n \in N} V^{\circ}(n, X - F(m_0,h))$ Kedian Li

 $F(m_0,h)$). Let $m = max\{n_0,m_0\}$, then $x \in V^{\circ}(n_0, X - F(m_0,h)) \subset V(m, X - F(m_0,h)) \subset V(m, X - F(m,h))$, and $x \in V^{\circ}(m, X - F(m,h))$. But $V(m, X - F(m,h)) \cap G(m,h) = \emptyset$, hence $x \notin \overline{G(m,h)}$, so $x \notin \bigcap_{n \in N} \overline{G(n,h)}$, which proves the necessity.

Conversely, for each $D \in RF(X)$, consider the map $F: N \times RF(X) \to RG(X)$ defined by F(n, D) = X - D. One can easily verify that F satisfies the conditions (1) and (2) above. So there is a map $G: N \times RF(X) \to \tau$ such that the conditions (1) and (2) hold for G. Moreover, $F(n, D) \subset G(n, D)$ for all $n \in N$ and all $D \in RF(X)$ and $\bigcap_{n \in N} F(n, D) = \bigcap_{n \in N} \overline{G(n, D)}$. Let V(n, D) = X - G(n, D), then the map $V: N \times RF(X) \to \tau^c$ satisfies the conditions in Lemma 1.4. In fact, it is clear that the condition (2) holds; $V(n, D) \subset D$ because V(n, D) is a subset of X - G(n, D), which is a closed subset of X - F(n, D) = D, the condition (1) holds. We now show that the condition (3) holds. We only need to show that $D \subset \bigcup_{n \in N} V^{\circ}(n, D)$. If $x \notin \bigcup_{n \in N} V^{\circ}(n, D)$, then $x \notin V^{\circ}(n, D) = X - \overline{X - V(n, D)} = X - \overline{G(n, D)}$ for all $n \in N$. This implies that $x \in \bigcap_{n \in N} \overline{G(n, D)} = \bigcap_{n \in N} F(n, D) = X - D$, hence $x \notin D$. So X is δ -stratfiable.

Let (X, <) and (Y, <') be a partially ordered sets. A map $\psi : X \to Y$ is said to be *order-preserving* [1] if $\psi(x) <' \psi(y)$ for every pair $x, y \in X$ with x < y.

THEOREM 2.3. Let X be a topological space. If there is an order preserving map $\varphi : USC(X) \to LSC(X)$ such that for any $h \in USC(X), 0 \le \varphi(h) \le h$ and $0 < \varphi(h)(x) < h(x)$ whenever h(x) > 0, then X is δ -stratifiable.

Proof. Suppose that there is a map $\varphi : USC(X) \to LSC(X)$ that satisfies the conditions of the theorem. For any $F \in RF(X)$, $F = \bigcup_{n \in N} W_n = \bigcup_{n \in N} W_n^\circ$, W_n is a closed subset of X by Definition 1.2. Let $h_{W_n} = \chi_{W_n}$; then $h_{W_n} \in USC(X)$. Let

$$h_F(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} h_{W_n}(x);$$

then $h_F \in USC(X)$ by Theorem 2.4 in [11] and so $\varphi(h_F) \in LSC(X)$. For each $n \in N$, let

$$V(n,F) = \{x \in X : \varphi(h_F)(x) > 1/2^n\}$$
 and $\overline{V}(n,F) = \overline{\{x \in X : \varphi(h_F)(x) > 1/2^n\}}.$

Then the equality above defines a map $\overline{V}: N \times RF(X) \to \tau^c$. We shall show that the map V satisfies the conditions (1) through (3) in Lemma 1.4.

For each $n \in N$, if $x \in V(n, F)$, then $1/2^n < \varphi(h_F)(x) \le h_F(x)$. So

$$h_F(x) = \sum_{k=1}^n \frac{1}{2^k} h_{W_k}(x) + \sum_{k=n+1}^\infty \frac{1}{2^k} h_{W_k}(x) = \sum_{n=1}^\infty \frac{1}{2^n} h_{W_n}(x) > 1/2^n > 0,$$

but

$$\sum_{k=n+1}^{\infty} \frac{1}{2^k} h_{W_k}(x) \le \sum_{k=n+1}^{\infty} \frac{1}{2^k} = 1/2^n.$$

Thus $\sum_{k=1}^{n} \frac{1}{2^k} h_{W_k}(x) > 0$. Hence there is $k \in \{1, 2, \dots, n\}$ such that $x \in W_k \subset \bigcup_{1 \le k \le n} W_k$, and $V(n, F) \subset \bigcup_{1 \le k \le n} W_k$. This implies that

$$\overline{V}(n,F) \subset \overline{\bigcup_{1 \le k \le n} W_k} \subset \bigcup_{1 \le k \le n} \overline{W}_k = \bigcup_{1 \le k \le n} W_k \subset F$$

for each $n \in N$ and so

$$\bigcup_{n\in N}V(n,F)\subset \bigcup_{n\in N}\overline{V}(n,F)\subset F$$

We show that reverse inclusion. If $x \notin \bigcup_{n \in N} V(n, F)$, then

$$x \in \bigcap_{n \in N} \{t \in X : \varphi(h_F)(t) \le 1/2^n\} = \{t \in X : \varphi(h_F)(t) = 0\},\$$

thus $\varphi(h_F)(x) = 0$. We have $h_F(x) = 0$ by the property of the map φ . Hence $x \notin F$, and this implies that $F \subset \bigcup_{n \in \mathbb{N}} V(n, F)$. So $F = \bigcup_{n \in \mathbb{N}} V(n, F) = \bigcup_{n \in \mathbb{N}} \overline{V}(n, F)$.

If $E, F \in RG(X)$, and $E \subset F$, then $h_E \leq h_F$, and $\varphi(h_E) \leq \varphi(h_F)$. Hence $V(n, E) \subset V(n, F)$ for all $n \in N$.

By Lemma 1.4, X is δ -strtifiable.

In the same manner as in Theorem 2.3, we can prove the following corollary.

COROLLARY 2.4. Let X be a topological space. If for each $F \in RF(X)$, there is an $f_F \in LSC(X)$ that satisfies the following conditions: (1) $X - F = f_F^{-1}(0)$ and

 $(1) X I = J_F (0) u u u$

(2) $f_U \leq f_V$ whenever $U \subset V$,

then X is δ -stratifiable.

For Theorem 2.3, we have a following question.

QUESTION 2.5. Is there an order preserving map $\varphi : USC(X) \to LSC(X)$ such that for any $h \in USC(X), 0 \leq \varphi(h) \leq h$ and $0 < \varphi(h)(x) < h(x)$ whenever h(x) > 0, if X is δ -stratifiable?

ACKNOWLEDGEMENTS. The author is very grateful to Professor Lin Shou for his help and like to thank the referee for the very constructive and valuable comments .

REFERENCES

- R. Engelking, *General Topology* (Revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [2] P. Gartside, Generalized metric spaces, I, in: K. P. Hart, J. Nagata and J. V. Vaughan eds., Encyclopedia of General Topology, Elsevier Science Publishers, 2004, 273–275.
- [3] C. Good and L. Haynes, Monotone versions of δ -nomality, Topology Appl. 156 (2009), 1985–1992.

Kedian Li

- [4] C. Good, I. Stares, Monotone insertion of continuous functions, Topology Appl. 108 (2000), 91–104.
- [5] G. Gruenhage, *Generalized metric spaces*, in: K. Kunen, J. E. Vaughan eds., Handbook of Set-theoretic Topology, Elsevier Science Publishers, 1984, 423–501.
- [6] R. E. Hodel, Spaces defined by sequences of open cover which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253–263.
- [7] E. Lane, P. Nyikos and C. Pan, Continuous function characterizations of stratifiable space, Acta Math. Hungar. 92 (2001), 219–231.
- [8] S. Lin, Generalized Metric Spaces and Mappings (2nd edition), China Science Publishers, Beijing, 2007.
- [9] D. J. Lutzer, Semimetrizable and stratifiable spaces, General Topology Appl. 1 (1971), 43-48.
- [10] J. Mack, Countable paracompactnees and weak normality properties, Trans. Amer. Math. Soc. 148 (1970), 265–272.
- [11] E. Yang, P. Yan, Function characterizations of semi-stratifiable spaces, J Math. Research and Exposition 26 (2006), 213–218.

(received 28.07.2008, in revised form 11.04.2009)

Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, P. R. China *E-mail*: likd56@126.com